RU2783070C1 - Способ создания сенсора для детектирования водорода - Google Patents

Способ создания сенсора для детектирования водорода Download PDF

Info

Publication number
RU2783070C1
RU2783070C1 RU2021139244A RU2021139244A RU2783070C1 RU 2783070 C1 RU2783070 C1 RU 2783070C1 RU 2021139244 A RU2021139244 A RU 2021139244A RU 2021139244 A RU2021139244 A RU 2021139244A RU 2783070 C1 RU2783070 C1 RU 2783070C1
Authority
RU
Russia
Prior art keywords
sample
vacuum
film
creating
hydrogen
Prior art date
Application number
RU2021139244A
Other languages
English (en)
Inventor
Вячеслав Юрьевич Фоминский
Дмитрий Вячеславович Фоминский
Алексей Соловьев
Роман Иванович Романов
Игорь Анатольевич Руднев
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Application granted granted Critical
Publication of RU2783070C1 publication Critical patent/RU2783070C1/ru

Links

Images

Abstract

Изобретение относится к электроизмерительной технике, в частности к датчикам измерения состава окружающей среды при высоких температурах и может быть использовано для обнаружения утечек водорода и предотвращения создания взрывоопасной воздушно-водородной смеси при использовании в водородной энергетике. Способ создания сенсора для детектирования водорода включает размещение образца из 4H-SiC в вакуумной камере, создание вакуума с последующим нанесением пленки Ni методом импульсного лазерного осаждения с последующим отжигом образца в вакууме и охлаждением образца до комнатной температуры, поворот образца другой стороной и повторное создание вакуума, напуск рабочего газа до давления 25 Па и нагрев изделия с последующим нанесением основной пленки W18O49 методом импульсного лазерного осаждения, затем создают вакуум и наносят поверх пленки W18O49 каталитическую пленку, после чего охлаждают и извлекают образец, при этом после создания вакуума до остаточного давления 10-5 Па наносят слой Ni толщиной до 100 нм в течение времени до 10 мин, затем проводят отжиг образца при температурах 500-1000°С в течение времени не менее 30 мин с последующим охлаждением образца до комнатной температуры и поворотом образца другой стороной, после поворота образца и повторного создания вакуума поверхность образца нагревают до температуры 350-800°С и затем наносят дополнительный слой ВС3 толщиной 50-100 нм при давлении 10-5 Па методом импульсного лазерного осаждения путем лазерной абляции композитной мишени, состоящей из бора и углерода в отношении 1:3, далее напускают кислород до давления 25 Па и осаждают основную пленку W18O49 толщиной до 500 нм в течение времени до 60 мин, после чего создают вакуум и наносят каталитический слой Pd при давлении 10-5 Па толщиной до 50 нм в течение времени до 1,0 мин. Изобретение обеспечивает возможность создать сенсор, обладающий повышенной чувствительностью к водороду при температурах свыше 300°С и увеличенным сроком службы, за счет увеличения толщины чувствительной к водороду пленки и улучшения ее адгезионных свойств. 3 ил.

Description

Изобретение относится к электроизмерительной технике, в частности к датчикам измерения состава окружающей среды при высоких температурах и может быть использовано для обнаружения утечек водорода и предотвращении создания взрывоопасной воздушно-водородной смеси при использовании в водородной энергетике.
Известен способ создания сенсора для детектирования водорода [1], в котором каталитический электрод выполнен в виде слоя из нанотрубок оксида титана, на которые нанесен металл платиновой группы. Добавка металла платиновой группы может быть выполнена в виде нанокластеров (10-50 нм) платины. А нанотрубки для каталитического чувствительного электрода готовят методом высокотемпературного изотермического испарения хлоридного флюса, содержащего исходные прекурсоры, после чего нанотрубки платинируют разложением гексахлорплатиновой кислоты, а сенсор собирают в корпусе, одновременно являющемся пресс-формой, методом послойного прессования порошков. Основным недостатком данного сенсора является использование в качестве рабочего электрода нанотрубок оксида титана, имеющего очень плохую чувствительность к водороду при повышенных (более 300°С) температурах.
Наиболее близким по технической сущности и принятым в качестве прототипа является способ создания сенсора для детектирования водорода [2], включающий в себя нагрев подложки из 4H-SiC до температуры ~ 600°С и нанесение на нее пленки, чувствительной к водороду, из W18O49 толщиной ~ 200 нм методом импульсного лазерного осаждения при давлении 25 Па при использовании в качестве рабочего газа воздух, затем нанесение на поверхность пленки из W18O49 платины в качестве каталитического слоя.
До нанесения пленки из W18O49 на обратную поверхность подложки из 4H-SiC наносили никель методом импульсного лазерного осаждения, отжигали при температуре ~ 900°С в течении 15 минут и дополнительно наносили платину.
Основными недостатками такого способа является небольшой срок службы сенсора вследствие малой толщины основного чувствительного к водороду слоя W18O49, а также плохой его адгезии к подложке.
Технический результат изобретения направлен на повышение чувствительности сенсора к водороду и увеличению срока его службы, за счет увеличения толщины чувствительной к водороду пленки и улучшения ее адгезионных свойств.
Технический результат достигается способом создания сенсора для детектирования водорода, включающим размещение образца из 4H-SiC в вакуумной камере, создание вакуума с последующим нанесением пленки Ni методом импульсного лазерного осаждения путем лазерной абляции металлической никелевой мишени, далее проводят отжиг образца с никелевым покрытием в вакууме и последующим охлаждением образца до комнатной температуры, после чего осуществляют поворот образца другой стороной и повторное создание вакуума, затем осуществляют напуск рабочего газа до давления 25 Па и нагрев изделия с последующим нанесением основной пленки W18O49 методом импульсного лазерного осаждения путем лазерной абляции металлической вольфрамовой мишени, далее создают вакуум и наносят поверх пленки W18O49 каталитическую пленку методом импульсного лазерного осаждения путем лазерной абляции металлической мишени, после чего охлаждают и извлекают образец. Способ отличается тем, что после создания вакуума до остаточного давления 10-5 Па наносят слой Ni толщиной до 100 нм в течение времени до 10 мин, затем проводят отжиг образца при температурах 500-1000°С в течение времени не менее 30 мин с последующим охлаждением образца до комнатной температуры и поворотом образца другой стороной, после поворота образца и повторного создания вакуума поверхность образца нагревают до температуры 350-800°С и затем наносят дополнительный слой ВС3 толщиной 50-100 нм при давлении 10-5 Па методом импульсного лазерного осаждения путем лазерной абляции композитной мишени, состоящей из бора и углерода в отношении 1:3, далее напускают кислород до давления 25 Па и осаждают основную пленку W18O49 толщиной до 500 нм в течение времени до 60 мин, после чего создают вакуум и наносят каталитический слой Pd при давлении 10-5 Па толщиной до 50 нм в течение времени до 1,0 мин.
Технический результат достигается благодаря следующему.
В качестве материала для основной пленки был выбран W18O49, обладающий хорошей чувствительностью к водороду при температурах свыше 300°С.
Увеличение толщины чувствительной к водороду пленки W18O49 до 500 нм приводит к повышению чувствительности сенсора к водороду и увеличению срока его службы.
Отжиг образца с нанесенной пленкой никеля при давлении 10-5 Па, температурах 500-1000°С в течение времени не менее 30 мин позволяет атомам никеля глубже проникнуть в слой карбида кремния и улучшить адгезию нанесенного слоя. При температурах ниже 500°С диффузия мала, при температуре свыше 1000°С происходят структурные изменения в никеле.
Нанесение дополнительного слоя ВС3 толщиной 50-100 нм приводит к улучшению адгезии основного чувствительного к водороду слоя W18O49 к подложке и позволяет увеличить толщину основного слоя в 2,5 раза, что приводит к увеличению срока службы сенсора.
Осаждение основной пленки W18O49 на нагретую до 350-800°С поверхность образца с нанесенными на нее пленками никеля и карбида бора позволяет улучшить адгезию и создать пленку необходимой кристаллической структуры. При температуре подложки с нанесенными на нее пленками никеля и карбида бора ниже 350°С формируется аморфная пленка WxOy, обладающая плохой чувствительностью к водороду, при температурах свыше 800°С начинает формироваться вольфрамовая бронза, также снижающая чувствительность сенсора к водороду.
Нанесение пленки W18O49 в кислороде при давлении 25 Па позволяет увеличить толщину наносимого слоя и создать необходимую кристаллическую структуру, не изменяя энергетические параметры лазера.
В качестве материала для каталитического слоя был выбран палладий, обладающий лучшим коэффициентом распыления по сравнению с платиной, что сокращает по времени процесс нанесения при тех же самых энергетических параметрах лазера и без ухудшения каталитических свойств по отношению к водороду.
Совокупность всех перечисленных выше признаков позволяет разработку способа создания сенсора для детектирования водорода в окружающей среде, обладающего повышенной чувствительностью к водороду при температурах свыше 300°С и увеличенным сроком службы, за счет увеличения толщины чувствительной к водороду пленки и улучшения ее адгезионных свойств.
Сущность изобретения поясняется чертежами, где проиллюстрирован заявляемый способ:
на фиг. 1 показана принципиальная схема осуществления способа;
на фиг. 2 представлена схема измерения сенсорных характеристик;
на фиг. 3 диаграмма зависимости измеренной разности потенциалов от содержания водорода в воздухе;
На фиг. 1 обозначено: образец 1, держатель из нержавеющей стали 2, вакуумная камера 3, мишень 4, лазер 5, омический нагреватель 6.
На фиг. 2 обозначено: 7 - нагреватель, 8 - сапфир (Al2O3), 9 - золото (Au), 10 - сенсор (Pd/W18O49/BC3/SiC/Ni), 11 - пленка никеля (Ni), 12 -подложка 4H-SiC, 13 - W18O49, 14 - палладий (Pd), 15 - графитовые иглы.
Пример конкретного осуществления способа.
В качестве образца была использована пластина из 4H-SiC размерами 10×10 мм и толщиной 450 мкм. Предварительно одна сторона образца полировалась, другая сторона - шлифовалась. Далее обработка образца осуществлялась в ультразвуковой ванне в среде изопропилового спирта в течение 10 минут.
Образец 1 размещался на держателе 2 шлифованной стороной вверх, а полированной стороной вниз, и с помощью держателя вводился в вакуумную камеру 3 на расстоянии 40 мм от мишени 4. Мишень 4 состояла из четырех пластинок размерами 10×10×1 мм. Первая пластинка была изготовлена из никеля, вторая пластинка - из вольфрама, третья пластинка - из палладия, четвертая пластинка представляла собой композит, состоящий из бора и углерода в отношении 1:3. Вакуумная камера 3 откачивалась насосом до остаточного давления 10-5 Па. Далее наносили Ni методом импульсного лазерного осаждения путем лазерной абляции никелевой пластинки в мишени. Энергия лазерного излучения была в пределе ~50 мДж, а плотность энергии в пятне фокусировки ~9 Дж/см2. В качестве источника лазерного излучения использовался лазер 5 с длиной волны 266 нм, длительностью 10 нс и частотой следования импульсов 20 Гц. Нанесение покрытия производилось в течение времени 10 мин. Толщина покрытия составила 100 нм. Далее проводили отжиг при температуре 700°С в течение времени 45 мин. Нагрев образца до необходимой температуры осуществлялся с помощью встроенного в держатель образца омического нагревателя 6. Контроль температуры осуществляли термопарой хромель-алюмель, расположенной на держателе образца. После нанесения покрытия образец охлаждали до комнатной температуры и разворачивали полированной стороной вверх. Далее вакуумную камеру откачивали до давления 10-5 Па и нагревали поверхность образца 1 с помощью омического нагревателя 6 до температуры 700°С. После чего наносили дополнительный слой ВС3 толщиной 80 нм при давлении 10-5 Па методом импульсного лазерного осаждения путем лазерной абляции композитной пластинки мишени. Далее, в вакуумную камеру напускали кислород до давления 25 Па и осаждали пленку W18O49 толщиной 400 нм в течение времени 40 мин, после чего вакуумную камеру откачивали до давления 10-5 Па и наносили каталитический слой Pd толщиной 20 нм в течение времени 1 мин.
Для проверки работоспособности полученного описанным выше способом сенсора 10, он помещался в камеру из нержавеющей стали и устанавливался на пластине сапфира 8 с тонким покрытием золота 9 (См. Фиг. 2). Сапфировая пластинка 8 являлась изолятором между сенсором и нагревателем. Тонкий слой золота 9, напыленный на одну из плоскостей сапфировой пластины, дает возможность проводить электрофизические измерения. Электрофизические и сенсорные измерения проводилось в диапазоне температур 22-350°С на воздухе и в смеси воздуха с водородом. Стабилизированные значение температуры контролировались подключенным к ПК датчиком температур. Нагрев до 350°С осуществлялся тэновым нагревателем 7. Концентрация водорода в воздушной смеси варьировалась от 0,5 до 2% от объема камеры. В качестве электрических контактов использовались графитовые иглы 15, диаметр которых составлял ~ 400 мкм. Диаметр иглы на несколько порядков превышали толщину пленки W18O49. Этот факт позволил предполагать, что токопрохождение в основном происходило через плоскопараллельные слои и не выходило за область, образованную диаметром иглы.
Для измерения сенсорных свойств полученной структуры сенсора (Pd/W18O49/BC3/SiC/Ni) (Фиг. 2) последовательно к исследуемому образцу подключалось нагрузочное сопротивление RH. Регистрация сигнала напряжения на нагрузочном сопротивлении RH дифференциальным вольтметром В2-34 давала информацию об образовавшейся, при различии температур, в следствии взаимодействия сенсора (Pd/W18O49/BC3/SiC/Ni) с водородосодержащей средой, величины разности потенциалов между верхней и нижней плоскостями образца. В воздушной среде между плоскостью на которую нанесен слой Ni и плоскостью с нанесенным слоем Pd существует разность потенциалов, которая составляет ~100 μВ. При напуске водорода до концентрации 2% от объема камеры разность потенциалов возрастала до значения ~1000 μВ. На Фиг. 3 приведены диаграммы полученной разности потенциалов в зависимости от концентрации водорода в воздухе.
Таким образом, был разработан способ создания сенсора для детектирования водорода в окружающей среде, обладающего повышенной чувствительностью к водороду при температурах свыше 300°С и увеличенным сроком службы, за счет увеличения толщины чувствительной к водороду пленки и улучшения ее адгезионных свойств.
Список использованных источников:
1. RU 2371713, 27.10.2009.
2. Fominski V. et al. Comparison of hydrogen detection by WOx/SiC and Pt/WOx/SiC structures using amperometric and potentiometric modes of measurement. // Thin Solid Films. - 2019. - Vol. 669. - P. 461-470.

Claims (1)

  1. Способ создания сенсора для детектирования водорода, включающий размещение образца из 4H-SiC в вакуумной камере, создание вакуума с последующим нанесением пленки Ni методом импульсного лазерного осаждения путем лазерной абляции металлической никелевой мишени, далее проводят отжиг образца с никелевым покрытием в вакууме с последующим охлаждением образца до комнатной температуры, после чего осуществляют поворот образца другой стороной и повторное создание вакуума, затем осуществляют напуск рабочего газа до давления 25 Па и нагрев изделия с последующим нанесением основной пленки W18O49 методом импульсного лазерного осаждения путем лазерной абляции металлической вольфрамовой мишени, далее создают вакуум и наносят поверх пленки W18O49 каталитическую пленку методом импульсного лазерного осаждения путем лазерной абляции металлической мишени, после чего охлаждают и извлекают образец, отличающийся тем, что после создания вакуума до остаточного давления 10-5 Па наносят слой Ni толщиной до 100 нм в течение времени до 10 мин, затем проводят отжиг образца при температурах 500-1000°С в течение времени не менее 30 мин с последующим охлаждением образца до комнатной температуры и поворотом образца другой стороной, после поворота образца и повторного создания вакуума поверхность образца нагревают до температуры 350-800°С и затем наносят дополнительный слой ВС3 толщиной 50-100 нм при давлении 10-5 Па методом импульсного лазерного осаждения путем лазерной абляции композитной мишени, состоящей из бора и углерода в отношении 1:3, далее напускают кислород до давления 25 Па и осаждают основную пленку W18O49 толщиной до 500 нм в течение времени до 60 мин, после чего создают вакуум и наносят каталитический слой Pd при давлении 10-5 Па толщиной до 50 нм в течение времени до 1,0 мин.
RU2021139244A 2021-12-28 Способ создания сенсора для детектирования водорода RU2783070C1 (ru)

Publications (1)

Publication Number Publication Date
RU2783070C1 true RU2783070C1 (ru) 2022-11-08

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1752071A1 (ru) * 1990-03-30 1994-06-15 Институт новых химических проблем АН СССР Электрод сравнения для твердотельного электрохимического детектора водорода
RU2371713C2 (ru) * 2007-11-07 2009-10-27 Некоммерческая организация Институт проблем химической физики Российской академии наук (статус государственного учреждения) (ИПХФ РАН) Сенсор для детектирования водорода и способ его изготовления
EP2643690A1 (de) * 2011-03-25 2013-10-02 ODB-Tec GmbH & Co.KG Dioden-dünnschichtanordnung zur detektion von wasserstoff und verfahren zu ihrer herstellung sowie wasserstoffsensor
CN103424458A (zh) * 2012-05-22 2013-12-04 株式会社日立制作所 半导体气体传感器及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1752071A1 (ru) * 1990-03-30 1994-06-15 Институт новых химических проблем АН СССР Электрод сравнения для твердотельного электрохимического детектора водорода
RU2371713C2 (ru) * 2007-11-07 2009-10-27 Некоммерческая организация Институт проблем химической физики Российской академии наук (статус государственного учреждения) (ИПХФ РАН) Сенсор для детектирования водорода и способ его изготовления
EP2643690A1 (de) * 2011-03-25 2013-10-02 ODB-Tec GmbH & Co.KG Dioden-dünnschichtanordnung zur detektion von wasserstoff und verfahren zu ihrer herstellung sowie wasserstoffsensor
CN103424458A (zh) * 2012-05-22 2013-12-04 株式会社日立制作所 半导体气体传感器及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fominski V. et al. Comparison of hydrogen detection by WOx/SiC and Pt/WOx/SiC structures using amperometric and potentiometric modes of measurement. Thin Solid Films. 2019. Vol. 669. P. 461-470. *

Similar Documents

Publication Publication Date Title
JP2813578B2 (ja) 水素センサ
TWI786062B (zh) 環境感測器與用於環境感測器的方法
US6673644B2 (en) Porous gas sensors and method of preparation thereof
US6893892B2 (en) Porous gas sensors and method of preparation thereof
EP2154520B1 (en) Gas sensor, gas measuring system using the gas sensor, and gas detection method
EP1269177A2 (en) Mis hydrogen sensors
Etzel et al. A microcalorimeter for measuring heat effects of electrochemical reactions with submonolayer conversions
CN113061839B (zh) 一种电阻型纳米结构氢气传感器的制备方法
RU2783070C1 (ru) Способ создания сенсора для детектирования водорода
Yoshimura et al. A hydrogen sensor based on Mg–Pd alloy thin film
Tsunozaki et al. Fabrication and electrochemical characterization of boron-doped diamond microdisc array electrodes
JP4743375B2 (ja) 可燃性ガス濃度測定方法
Aroutiounian et al. Noise spectroscopy of gas sensors
Liu et al. A new carbon monoxide sensor using a polypyrrole film grown on an interdigital-capacitor substrate
Yoshimura et al. Room-temperature hydrogen sensor based on Pd-capped Mg2Ni thin film
US20160091445A1 (en) Hydrogen Gas Sensor And Method For Fabrication Thereof
Kecskeméti et al. Production of porous PTFE–Ag composite thin films by pulsed laser deposition
Bruzzi et al. First study of humidity sensors based on nanostructured carbon films produced by supersonic cluster beam deposition
Ding et al. Effects of microstructure on electrochemical reactivity and conductivity in nanostructured ceria thin films
Demin et al. Dynamics of response of In 2 O 3-Ga 2 O 3 gas sensors
Zuev et al. Effect of hydrogen on the electrical characteristics of structural elements of the Pt/WO x/6 H-SiC
Achahour et al. Suppression of contact noise in a study on 1/f noise as a function of film thickness in Al-doped ZnO
Bruzzi et al. Electrical conduction in nanostructured carbon films produced by supersonic cluster beam deposition
Kaur et al. Shelf Life Study of NiO Nanowire Sensors for NO
Fitl et al. Sensing properties of tin acetylacetonate-based thin films doped with platinum