RU2779840C1 - Способ микробиологического анализа на основе оптического метода и портативный микробиологический анализатор - Google Patents

Способ микробиологического анализа на основе оптического метода и портативный микробиологический анализатор Download PDF

Info

Publication number
RU2779840C1
RU2779840C1 RU2021111818A RU2021111818A RU2779840C1 RU 2779840 C1 RU2779840 C1 RU 2779840C1 RU 2021111818 A RU2021111818 A RU 2021111818A RU 2021111818 A RU2021111818 A RU 2021111818A RU 2779840 C1 RU2779840 C1 RU 2779840C1
Authority
RU
Russia
Prior art keywords
microbiological
microorganisms
analyzer
medium
samples
Prior art date
Application number
RU2021111818A
Other languages
English (en)
Inventor
Артем Викторович Будаев
Роман Николаевич Беленьков
Дмитрий Николаевич Уколов
Никита Александрович Емельянов
Анастасия Игоревна Лаврова
Евгений Борисович Постников
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Курский Государственный Университет»
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Курский Государственный Университет» filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Курский Государственный Университет»
Priority to PCT/RU2022/000138 priority Critical patent/WO2022231470A1/ru
Application granted granted Critical
Publication of RU2779840C1 publication Critical patent/RU2779840C1/ru

Links

Images

Abstract

Изобретение относится к области анализа материалов с использованием оптических средств, а именно к способам и устройствам микробиологических анализов, и может быть использовано в качестве основного инструмента для оценки динамики популяций микроорганизмов в исследуемой среде. 2 н.п. ф-лы, 2 ил., 1 пр.

Description

Заявляемое в качестве изобретения техническое решение относится к области анализа материалов с использованием оптических средств, а именно к способам и устройствам для проведения микробиологических анализов и может быть использовано в качестве основного инструмента для оценки динамики популяций микроорганизмов в исследуемой среде.
В настоящее время современные серийно выпускаемые фотометры, рассчитанные на работу с наиболее распространенными микробиологическими планшетами, такие как, например, Микропланшетный фотометр Immunochem-2100 [url: http://www.intermedika.ru/catalog/katalog/laboratornoe-oborudovanie/oborudovanie-dlja-ifa/immunochem-2100] или Фотометр для микропланшетов iMark [url: https://all-pribors.ru/opisanie/68941-17-mark-isp-imark-78423] - предназначены для измерений оптической плотности в лунках стандартного 96-луночногопланшета при проведении различного рода исследований (иммуноферментный анализ, биохимические исследования).Принцип действия фотометров основан на измерении оптической плотности анализируемых проб в 96-луночных планшетах. Для коррекции нестабильности источника света используется опорный световой канал. Выделение необходимой длины волны в световомпотоке производится при помощи узкополосных интерференционных фильтров. Световой поток падает через верхний блок линз сверху, на лунку с измеряемым образцом. Ослабленный пробой световой поток регистрируется фотодетектором, расположенным под образцом. В момент измерения каретка с микропланшетом перемещается относительно светового потока. Достоинствами вышеперечисленных фотометров, предлагаемых на рынке, является то, что эти приборы многофункциональны, пригодны для проведения всех методов иммуноферментного анализа, причем встроенная система управления объединяет в себе все основные функции и не требует дополнительного подключения к компьютеру.
Общим признаком фотометра с заявляемым техническим решением является принцип действия, основанный на измерении оптической плотности.
Однако предлагаемые серийно выпускаемые фотометры характеризуются высокой стоимостью, громоздкостью (характерные габаритные размеры составляют несколько десятков сантиметров; вес – от нескольких до более чем десяти килограммов), необходимостью постоянного подключения для работы к сети 220 В, необходимостью наличия специализированного проприетарного программного обеспечения для обработки снимаемых сигналов.
Предшествующий уровень техники в отношении устройств микробиологического анализа характеризуется известными альтернативными техническими решениями, среди которых можно отметить следующие.
Патент Канады № CA2291122C от 22.05.1998г., МПК: G01N21 / 6452, опубликованный 26.11.1998г., защищающий устройство и способ автоматизированного микробиологического анализа (Automated microbiological testing apparatus and methods therefor). Недостатками данного технического решения являются: - наличие движущихся частей в виде карусели, обеспечивающей последовательное освещение ячеек микробиологических планшетов одним линейным источником света; - регистрация светопропускания единственным светоприемником, что требует дополнительной постобработки полученных изображений для выделения сигнала с каждой из ячеек; - громоздкий размер агрегата с характерными размерами в несколько десятков сантиметров.
Другим примером развития техники является техническое решение по патенту РФ №2103369 от 06.05.1996г., МПК: C12Q 1/06, опубликованному 27.01.1998 г. и защищающему экспресс-анализатор концентрации бактерий в водной среде. Экспресс-анализатор содержит светонепроницаемый кожух, кювету или проточную оптическую ячейку, фотоприемник – телевизионную камеру, блок сравнения, программируемый блок памяти темно-красного цвета, электрический счетчик количества бактерий кишечной палочки розового цвета, электрический счетчик прозрачных бактерий кишечной палочки, сумматор-вычислитель коли-индекса, вычислитель коли-титра, блок индикации, цифро-аналоговый преобразователь.
Общими признаками являются наличие источника и приемника света, устройства управления, блока анализа.
Недостатками технического решения по патенту РФ №2103369 являются использование громоздкого компонента-фотоприемника – телевизионной камеры, возможность работы только с одной кюветой большого объема, т.е. несовместимость с микробиологическим планшетом, вывод результатов измерений в цифровом виде для последующей компьютерной обработки, узкая специализация анализатора в диапазонах длин волн, типичных для окрашенных бактерий кишечной палочки.
Известен способ оценки угрозы развития анемии на третьем триместре гестации (прототип) по патенту России на изобретение №2553361 от 19.06.2014г., МПК: G01N 33/50, опубликованному 10.06.2015г., включающий определение титра антител к цитомегаловирусу, содержания в эритроцитах 2,3 ДФГ (2,3-дифосфоглицерата), оксигемоглобина. При увеличении титра антител к цитомегаловирусу до 1:1600, нарастании 2,3 ДФГ до 6,7±0,3 мкмоль/мл, содержании HbO2 95,0±1,7%, при снижении удельной оптической плотности гемоглобина до 0,70±0,01 делают вывод о формировании угрозы развития анемии. Способ позволяет изучить характер нарушения оксигенации гемоглобина с помощью определения удельной оптической плотности.
В прототипе целью разработки является нахождение и разработка нового способа оценки степени оксигенации гемоглобина методом измерения удельной оптической плотности. Как выявлено в прототипе, электронная структура молекул предполагает способность поглощать электромагнитное излучение, при этом весьма характерны спектры поглощения гемоглобина, что и используется для количественной оценки степени насыщения гемоглобина кислородом. Поглощение света молекулами проявляется в ослаблении светового потока после его прохождения через объект, т.е. поглощение света объектом тем выше, чем выше его плотность. Это выведено законом Бугера-Ламберга-Бера и измеряется показателем удельной оптической плотности, которая является достаточно точной характеристикой. Способ и устройство прототипа позволяет определять фотометрические параметры клеток для диагностики заболеваний, в описании прототипа одно из исследований этим аппаратом было проведено на больных бронхиальной астмой для определения гемоглобина в эритроцитах периферической крови.
Техническое решение прототипа обладает признаками сходства с заявляемым техническим решением, такими как применение измерения оптической плотности, автоматизированная работа созданного на основе предложенного способа цитофотометрического, индивидуальный анализ конкретных микробиологических образцов.
Недостатками прототипа являются: относительно узкий диапазон применения, разработанная формула предназначена только для анализа клеток гемоглобина при определении угрозы развития анемии на третьем триместре гестации. Кроме того, критикуемые в прототипе особенности спектрофотометрического метода, тем не менее, не приводят к ясности в отношении сущности предлагаемого способа оценки. Авторы технического решения прототипа пишут в описании, что при гомогенном строении вещества (таком как гемоглобин) интенсивность света во всех точках оптического пути одинакова, однако это утверждение неправильно, т.к. интенсивность светового потока при прохождении через вещество одинакова и интенсивность поглощения света веществом будет в этом случае одинакова. Скорость изменения интенсивности будет одинакова в описанных условиях анализа такого вещества как гемоглобин.
Следовательно, способ-прототип не позволяет проводить измерение оптической плотности в условиях конкретных параметров широкого спектра анализируемых образцов. Применение метода, использованного в прототипе, в частности, затруднительно при исследовании бактериальных культур.
Заявляемое техническое решение позволяет придать универсальность задаче проведения микробиологического анализа, а его применение позволяет осуществлять работу портативного анализатора даже в условиях отсутствия возможности подключения сетевого электропитания к измерительному устройству, при этом применение заявляемого способа позволяет проводить как качественный, так и количественный анализ.
Заявляемые способ и устройство работают с применением резазуринового теста.
Резазуриновый тест является одним из современных методов микробиологического анализа как в фундаментальных, так и в прикладных исследованиях, что подтверждают литературные источники в узкой специальной области:
- Präbst K., Engelhardt H., Ringgeler S., Hübner H. Basic colorimetric proliferation assays: MTT, WST, and Resazurin // Cell Viability Assays: Methods and Protocols / Eds.: D. F. Gilbert and O. Friedrich. Springer Science+Business Media. 2017. P. 1–17;
- ГОСТ 32901–2014 Молоко и молочная продукция. Методы микробиологического анализа. Введен 01.01.2016. М.: Стандартинформ, 2015. 28 с.
Резазуриновый тест основан на способности живых клеток в процессе дыхания восстанавливать резазурин (7-гидрокси-3Н-феноксазин-3-он-10-оксид), индикатор, имеющих голубой цвет сазурина (пиковое поглощение 605 нм) в резоруфин (7-гидрокси-3Н-феноксазин-3-он), имеющий розовый цвет (пиковое поглощение 573 нм).
Помимо качественного анализа, основанного на сравнении цвета микробиологической пробы, приготовленной в присутствии резазуриново-натриевой соли, со стандартизированной колориметрической шкалой, используются также методы количественного анализа, основанного как на изменении оптической плотности меняющего цвет раствора, так и на спектрофотометрической регистрации сигнала, так как резоруфин, в отличие от резазурина, является флуоресцентным.
Однако проблема заключается в том, что большинство спектрофотометров являются громоздкими и сложными в обращении устройствами, что исключает их широкое применение вне специально оборудованных лабораторий, а также в полевых условиях. Аналогичная проблема существует в практической реализации методов измерения оптической плотности на основе промышленных фотометров, примеры которых приведены нами выше, предназначенных для работы со стандартными микробиологическими планшетами.
Помимо этого, проведение резазуринового теста при исследовании патогенных микроорганизмов, в частности, его широкое распространение для исследования роста культуры микобактерий, как в клинических пробах, так при анализе их лекарственной чувствительности требует регулярного перемещения микробиологического планшета из помещения в зоне биологической опасности, в которой осуществляется непосредственное выращивание культур в условиях повышенной температуры и влажности, в место размещения спектро- или фотометра, что приводит к повышению опасности контаминации. Примеры таких процессов описаны в источнике: Palomino, J. C., Martin, A., Camacho, M., Guerra, H., Swings, J., Portaels, F. Resazurinmicrotiterassayplate: simpleandinexpensivemethodfordetectionofdrugresistanceinMycobacteriumtuberculosis // Antimicrobialagentsandchemotherapy. 2002. V. 46. P. 2720-2722.
Заявляемое техническое решение призвано решить вышеуказанные проблемы.
Цель разработки заявляемого технического решения – автоматизация процесса микробиологического анализа на основе оптического метода, создание портативного прибора для микробиологического исследования роста микроорганизмов в условиях, приближенных к реальным лечебно-диагностическим процессам.
Техническая задача заявляемого изобретения заключается в разработке оптимальных параметров эффективного способа и портативного автономного устройства, которые позволят проводить микробиологические исследования жизнедеятельности и роста микроорганизмов на основе получения количественных характеристик изменения оптической плотности исследуемой культурной среды, содержащей индикатор, вследствие изменения её окраски.
Техническим результатом заявленного изобретения является применение на практике способа микробиологического анализа на основе оптического метода с качественной и количественной оценкой динамики популяций микробиологических культур; расчет и визуализация, на основе полученных данных, кривой популяционного роста; обеспечение возможности количественной оценки динамики популяций микробиологических культур при помощи редуктазной пробы с резазурином, в том числе в условиях отсутствия возможности подключения сетевого электропитания к измерительному устройству, а также при наличии массогабаритных ограничений к нему.
В результате решения поставленной задачи доказана возможность применения редуктазной пробы с резазурином для количественной оценки динамики популяции микроорганизмов при помощи разрабатываемого портативного микробиологического анализатора. Испытания подтвердили возможность применения заявляемого устройства, технический результат был достигнут.
Сущность заявляемого технического решения – способа состоит в том, что способ микробиологического анализа на основе оптического метода с качественной и количественной оценкой динамики популяций микробиологических культур включает подключение источника питания к узлу управления, установление режима работы, передачу сигнала включения/отключения осветительного узла, излучение начального светового потока, оценку прошедшего светового потока через микробиологический планшет с пробами исследуемой среды, при этом осветительный узел формирует световой поток в полосе излучения 600-605 нм, при этом пробы исследуемой среды содержат микроорганизмы и раствор резазурина, а микробиологический планшет с пробами исследуемой среды помещают в анализатор и при помощи элементов взаимодействия с оператором задают режимы работы устройства, а именно определяют продолжительность проведения эксперимента, частоту включения анализирующих элементов в единицу времени, вид исследуемых микроорганизмов, количество N активных ячеек, в которые помещены образцы исследуемой среды, и после задания всех начальных условий запускают процесс измерения оптической плотности исследуемых растворов, а далее по каналу передачи данных отправляют полученные при оценке данные на узел управления, который обрабатывает их и на основе градуировочных данных, рассчитывает оптическую плотность среды и конвертирует её в количество содержащихся в ней микроорганизмов; далее передают данные о количестве микроорганизмов в среде при помощи внешних интерфейсов передачи данных, считывают по внешним интерфейсам передачи данных данные о количестве микроорганизмов в среде, передают данные о количестве микроорганизмов в среде на элементы взаимодействия с оператором; при качественной оценке количества микроорганизмов, основанной на том факте, что максимальное значение освещенности датчиков фотоприемников соответствует максимальному количеству микроорганизмов, находящихся в растворе, строят фотометрическую кривую, согласованную с математической моделью отклика биохимического процесса в индикаторной среде на динамику роста популяции микроорганизмов, а количественные измерения проводят на основе данных об изменении интенсивности светового потока в ходе изменения количества микроорганизмов в среде, полученных с анализирующего узла портативного микробиологического анализатора, проводя их усреднение по набору кривых от ячеек микробиологического планшета с последующей обработкой выборки по времени скользящим фильтром с целью удаления шумовых компонентов, а далее полученную сглаженную кривую приводят к виду, типичному для кривой популяционного роста, позволяющей определить соответствующие параметры, характеризующие величину времени клеточного деления.
Сущность заявляемого технического решения – устройства состоит в том, что портативный микробиологический анализатор включает соединенные между собой при помощи проводного монтажа осветительный узел в формате печатной платы со светодиодами на N ячеек, разделенными на независимые каналы, размещенный между осветительным и анализирующим узлами микробиологический планшет с пробами исследуемой среды, а также анализирующий узел с датчиками для оценки освещенности, конвертирующими уровень прошедшего излучения в цифровой сигнал при помощи аналого-цифрового преобразователя, передающего полученный с N датчиков оценки освещенности результат, коммутируемый в одну цифровую сигнальную линию, на узел управления, осуществляющий выбор активного канала; анализатор также включает узел автономного энергоснабжения, обеспечивающий автономный режим работы микробиологического анализатора при его отключении от источника питания, а также элементы взаимодействия с оператором и внешние интерфейсы передачи данных, причем данные функциональные элементы реализуются в формате печатных узлов, на которые установлены управляющий микроконтроллер, источник и приёмник оптического излучения, аккумуляторы, активные и пассивные радиоэлектронные изделия.
Применением заявляемых способа и устройства достигается возможность непрерывного измерения оптической плотности, что позволяет количественно изучать динамику изменения исследуемых микроорганизмов. На практике это означает, что в режиме реального времени можно видеть, как именно действует или не действует примененное лекарственное средство на патогенные микроорганизмы.
Новым является предложенный принцип качественного анализа с переходом от освещенности датчиков фотоприемников к фотометрической кривой, согласованной с математической моделью отклика биохимического процесса в среде с индикатором и принцип количественного анализа на основе данных об изменении интенсивности прошедшего через исследуемую среду светового потока в ходе изменения популяции микроорганизмов, полученных с анализирующего узла портативного микробиологического анализатора с проведением их усреднения по набору кривых от каждой из ячеек микробиологического планшета и приведения полученной сглаженной кривой к виду, типичному для кривой популяционного роста, позволяющему определить соответствующие параметры, характеризующие величину времени клеточного деления.
Заявляемый способ проиллюстрирован графиком фиг.1, на котором изображена зависимость кривой популяционного роста от времени. Показана голубым кривая обработанного сигнала анализатора и черным сглаженная кривая популяционного роста по модели Ферхюльста.
На Фиг.2 представлена блок-схема работы заявляемого устройства, где:
1 – узел осветительный;
2 – узел анализирующий;
3 – узел управления;
4 – узел автономного энергоснабжения;
5 – источник питания;
6 – элементы взаимодействия с оператором;
7 – внешние интерфейсы передачи данных;
8 – микробиологический планшет с пробами исследуемой среды с микроорганизмами и раствором резазурина (не является составной частью портативного микробиологического анализатора).
ПРИМЕР конкретного выполнения заявляемого способа
Заявляемое техническое решение было апробировано в лабораторных условиях. Заявляемое устройство было использовано для определения динамики популяции микроорганизмов (дрожжей Saccharomyces cerevisiae и лактобактерий Lactobacillus acidophilus) на основе получения количественных характеристик изменения оптической плотности (и как следствие окраски) раствора, содержащего внесенный в культурную среду индикатор. В качестве питательной среды для дрожжей использовался раствор глюкозы с добавлением в него индикатора (рабочего раствора резазурино-натриевой соли, полученного согласно ГОСТ 32901-2014 Молоко и молочная продукция. Методы микробиологического анализа). После этого полученный раствор вносился в ячейки кюветы и помещался в портативный микробиологических анализатор.
Фотоприемники микробиологического анализатора регистрировали изменение светового потока, прошедшего через ячейки микрокюветы в течение времени, превышающего в несколько раз характерный период деления клеток исследуемых микроорганизмов. Вследствие того, что спектральная характеристика осветительных светодиодов согласована с полосой поглощения в видимом свете индикаторного раствора при переходе резазурина в резоруфин в ходе жизнедеятельности растущих и размножающихся микроорганизмов, сопровождающегося изменением цвета раствора с голубого на малиновый, датчики освещенности зарегистрировали уменьшение напряжения, пропорционального увеличению их освещенности. Полученные кривые имеют сигмоидальную форму, характерную для кривой роста плотности популяции микроорганизмов, так как максимальное значение освещенности датчиков соответствует максимальному количеству микроорганизмов, находящихся в растворе. Данный факт свидетельствует о качественном согласовании полученной фотометрической кривой с математической моделью отклика биохимического процесса в индикаторной среде на динамику роста популяции микроорганизмов.
Количественное подтверждение базируется на следующих операциях: на основе данных об изменении интенсивности светового потока в ходе изменения популяции микроорганизмов, полученных с анализирующего узла портативного микробиологического анализатора, проводится их усреднение по набору кривых от каждой из ячеек микробиологического планшета с последующей обработкой выборки по времени скользящим фильтром с целью удаления шумовых компонентов; полученная сглаженная кривая приводится к виду, типичному для кривой популяционного роста; проводится регрессия полученной кривой при помощи функций, типичных для моделей микробиологического роста (модели Ферхюльста, Гомперца) и определяются соответствующие параметры модели, отвечающие величине времени клеточного деления (Фиг.1). Показано, что найденные значения согласуются с величинами, типичными для исследуемых микроорганизмов, что является количественным подтверждением адекватности метода исследования биофизических процессов для данных объектов.
Найденные таким образом параметры популяционного роста позволяют получить величину количественного увеличения численности микроорганизмом в относительных единицах (при условии введенной нормировки их максимального (стационарного) количества на единицу объема). При необходимости абсолютная величина определяется путем использования нормировочного множителя, найденного на основании градуировочной кривой, сформированной независимо методом оптической микроскопии и/или микротитрования выборки образца из ячеек микробиологического планшета.
Раскрытие конструкции и работы заявляемого устройства.
Портативный микробиологический анализатор реализуется в формате печатных узлов, на которые установлены радиоэлектронные изделия и включает в себя: узел осветительный 1; узел анализирующий 2; узел управления 3; узел автономного энергоснабжения 4; источник питания 5; элементы взаимодействия с оператором 6; внешние интерфейсы передачи данных 7 и микробиологический планшет с пробами исследуемой среды с микроорганизмами и раствором резазурина 8.
Портативный микробиологический анализатор работает следующим образом. Микробиологический планшет 8 с пробами исследуемой среды с микроорганизмами и раствором резазурина на N (N = 1, 2, 3...) ячеек помещают в анализатор и при помощи элементов взаимодействия с оператором 6 задают режимы работы устройства: определяют продолжительность проведения эксперимента; частоту включения анализирующих элементов в единицу времени; вид исследуемых микроорганизмов; количество активных ячеек, в которые помещены образцы исследуемой среды. После задания всех начальных условий пользователь запускает процесс измерения. В качестве элементов взаимодействия с оператором могут выступать любые источники/приёмники визуальной, звуковой информации, а также электрических и радиочастотных сигналов. Узел осветительный 1 формирует световой поток в полосе излучения 600-605 нм. Данный элемент анализатора реализован в формате печатной платы со светодиодами на N ячеек, разделенными на независимые каналы. Управление данным узлом осуществляется при помощи цифрового сигнала (приходящим с узла управления 3), который включает/отключает питание узла и осуществляет выбор активного канала.
Помещенный между узлом осветительным 1 и узлом анализирующим2 микробиологический планшет 8 с пробами исследуемой среды с микроорганизмами и раствором резазурина частично поглощает данное излучение, причем интенсивность поглощения напрямую связана с концентрацией резазурина в растворе и как следствие динамики популяции микроорганизмов, содержащихся в среде. Прошедшее излучение затем попадает на датчики для оценки освещенности, размещенные на узле анализирующем 2, которые конвертируют уровень прошедшего излучения в цифровой сигнал при помощи АЦП (аналого-цифрового преобразователя). Далее, полученный с N датчиков для оценки освещенности результат коммутируется в одну цифровую сигнальную линию и передается на узел управления 3. В качестве датчиков могут использоваться любые аппаратно-программные средства для оценки освещенности.
Пришедшие по каналу передачи данных значения освещенности с датчиков для оценки освещенности записываются во внутреннюю память микроконтроллера, который обрабатывает их и на основе градуировочных данных определяет количество микроорганизмов, содержащихся в исследуемой среде. Полученный результат микроконтроллер передает по внешним интерфейсам передачи данных 7. В качестве данных интерфейсов могут выступать любые аппаратно-программные средства передачи, хранения и визуализации данных.
Кроме функции обработки данных, узел управления 3 выполняет следующие функции: стабилизирует входное постоянное напряжение, приходящее с узла автономного энергоснабжения 4 и источника питания 5, в линию питания для работы всех функциональных узлов; обрабатывает информацию, полученную от пользователя через элементы взаимодействия с оператором 6; координирует работу всех функциональных узлов устройства; защищает входные цепи питания от неправильного включения полярности питающего напряжения и отключает узел автономного энергоснабжения 4 от нагрузки при слишком сильном разряде его аккумуляторов.
Узел автономного энергосбережения 4 обеспечивает работу устройства при отключении его от сети переменного напряжения на время необходимо для проведения эксперимента. Зарядка аккумуляторных элементов данного узла происходит в автоматическом режиме при помощи источника питания 5.
Микробиологический планшет с пробами исследуемой среды с микроорганизмами и раствором резазурина 8 не является составной частью портативного микробиологического анализатора. В качестве ёмкости для разведения микроорганизмов может быть использован любой стандартный микробиологический планшет. Поэтому в качестве исследуемых биологических объектов могут выступать микроорганизмы, метаболиты дыхательной цепи которых в ходе жизнедеятельности вступают в окислительно-восстановительные реакции с резазурином.
Таким образом была доказана возможность применения редуктазной пробы с резазурином для количественной оценки динамики популяции микроорганизмов при помощи разрабатываемого портативного микробиологического анализатора.
Апробация показала, что заявляемое устройство позволило получить количественные оценки динамики популяций микробиологических культур на паритетном уровне с современными профессиональными микробиологическими анализаторами и при этом с меньшими массогабаритными характеристиками. Также за счет того, что заявляемое устройство обладает портативностью и автономностью, независимостью съема и вывода фотометрического сигнала с каждой ячейки кюветы, использование заявляемых способа и устройства осуществимо на практике для самого широкого спектра микробиологических измерений.
Заявляемое техническое решение может найти широкое практическое применение не только в пищевой, химической, мукомольно-крупяной, комбикормовой и медицинской отраслях промышленности, но и в микробиологических лабораториях центров экологического анализов и расчетов, профильных вузов и медицинских учреждений.
Подобное сочетание универсальности способа микробиологического анализа на основе оптического метода и портативности устройства микробиологического анализатора с относительной простотой использования, в современных аналогах и в прототипе не достигнуто.
Исходя из вышеизложенного, можно сделать вывод о том, что заявляемое техническое решение соответствует критериям «новизна», «изобретательский уровень» и «промышленная применимость».

Claims (2)

1. Портативный микробиологический анализатор, включающий соединенные между собой при помощи проводного монтажа осветительный узел в формате печатной платы со светодиодами на N ячеек, разделенными на независимые каналы, размещенный между осветительным и анализирующим узлами микробиологический планшет с пробами исследуемой среды, а также анализирующий узел с датчиками для оценки освещенности, конвертирующими уровень прошедшего излучения в цифровой сигнал при помощи аналого-цифрового преобразователя, передающего полученный с N датчиков оценки освещенности результат, коммутируемый в одну цифровую сигнальную линию, на узел управления, осуществляющий выбор активного канала; анализатор также включает узел автономного энергоснабжения, обеспечивающий автономный режим работы портативного микробиологического анализатора при отключении источника питания, а также элементы взаимодействия с оператором и внешние интерфейсы передачи данных, причем данные функциональные элементы реализуются в формате печатных узлов, на которые установлены управляющий микроконтроллер, источник и приёмник оптического излучения, аккумуляторы, активные и пассивные радиоэлектронные изделия.
2. Способ микробиологического анализа на основе оптического метода с качественной и количественной оценкой динамики популяций микробиологических культур с использованием портативного микробиологического анализатора по п.1, включающий подключение источника питания к узлу управления, установление режима работы, передачу сигнала включения/отключения осветительного узла, излучение начального светового потока, оценку прошедшего светового потока через микробиологический планшет с пробами исследуемой среды, при этом осветительный узел формирует световой поток в полосе излучения 600-605 нм, при этом пробы исследуемой среды содержат микроорганизмы и раствор резазурина, а микробиологический планшет с пробами исследуемой среды помещают в анализатор и при помощи элементов взаимодействия с оператором задают режимы работы устройства, а именно определяют продолжительность проведения эксперимента, частоту включения анализирующих элементов в единицу времени, вид исследуемых микроорганизмов, количество N активных ячеек, в которые помещены образцы исследуемой среды, и после задания всех начальных условий запускают процесс измерения, а далее по каналу передачи данных передают полученные при оценке данные на узел управления, который обрабатывает их и на основе градуировочных данных рассчитывает оптическую плотность среды и конвертирует оптическую плотность среды в количество содержащихся в ней микроорганизмов; далее передают данные о количестве микроорганизмов в среде при помощи внешних интерфейсов передачи данных, считывают по внешним интерфейсам передачи данных данные о количестве микроорганизмов в среде, передают данные о количестве микроорганизмов в среде на элементы взаимодействия с оператором; при качественной оценке количества микроорганизмов, основанной на том факте, что максимальное значение освещенности датчиков фотоприемников соответствует максимальному количеству микроорганизмов, находящихся в растворе, строят фотометрическую кривую, согласованную с математической моделью отклика биохимического процесса в индикаторной среде на динамику роста популяции микроорганизмов, а количественное измерение проводят на основе данных об изменении интенсивности светового потока в ходе изменения количества микроорганизмов в среде, полученных с анализирующего узла портативного микробиологического анализатора, проводя их усреднение по набору кривых от каждой из ячеек микробиологического планшета с последующей обработкой выборки по времени скользящим фильтром с целью удаления шумовых компонентов, а далее полученную сглаженную кривую приводят к виду, типичному для кривой популяционного роста, позволяющей определить параметры, характеризующие величину времени клеточного деления.
RU2021111818A 2021-04-26 2021-04-26 Способ микробиологического анализа на основе оптического метода и портативный микробиологический анализатор RU2779840C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2022/000138 WO2022231470A1 (ru) 2021-04-26 2022-04-25 Способ микробиологического анализа на основе оптического метода

Publications (1)

Publication Number Publication Date
RU2779840C1 true RU2779840C1 (ru) 2022-09-13

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553361C1 (ru) * 2014-06-19 2015-06-10 Федеральное государственное бюджетное учреждение "Дальневосточный научный центр физиологии и патологии дыхания" Сибирского отделения РАМН Способ оценки угрозы развития анемии на третьем триместре гестации при обострении цитомегаловирусной инфекции путем измерения удельной оптической плотности гемоглобина в эритроцитах периферической крови при нарушении оксигенации

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553361C1 (ru) * 2014-06-19 2015-06-10 Федеральное государственное бюджетное учреждение "Дальневосточный научный центр физиологии и патологии дыхания" Сибирского отделения РАМН Способ оценки угрозы развития анемии на третьем триместре гестации при обострении цитомегаловирусной инфекции путем измерения удельной оптической плотности гемоглобина в эритроцитах периферической крови при нарушении оксигенации

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PRÄBST K. et al., Basic colorimetric proliferation assays: MTT, WST, and Resazurin, Cell Viability Assays: Methods and Protocols, 2017, Vol.1601, pp.1-17. *
КИТАЕВА М.П., Выбор метода для определения цитостатического действия экстрактов клеточной культуры Podophyllum peltatum, ИЗВЕСТИЯ ГГТУ. МЕДИЦИНА, ФАРМАЦИЯ, 2020. *

Similar Documents

Publication Publication Date Title
Liu et al. Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018)
CN112074725B (zh) 基于精确比色法的检测试纸读取器系统
US3833864A (en) Digital direct reading colorimeter
Wu et al. Clinical chemistry measurements with commercially available test slides on a smartphone platform: Colorimetric determination of glucose and urea
Han et al. Low-cost point-of-care biosensors using common electronic components as transducers
US20230314331A1 (en) Optical Sensor System for Quantitative Colorimetric Liquid Analysis
TW201414830A (zh) 微生物之檢查方法及其裝置
Luo et al. A smartphone-based multi-wavelength photometer for on-site detection of the liquid colorimetric assays for clinical biochemical analyses
CN115836210A (zh) 使用光学反应表征来自感兴趣区域的化验的系统和方法
Xing et al. A cellphone-based colorimetric multi-channel sensor for water environmental monitoring
CN201788153U (zh) 一种集成微型电子天平的农药残留检测仪
RU2779840C1 (ru) Способ микробиологического анализа на основе оптического метода и портативный микробиологический анализатор
WO2022231470A1 (ru) Способ микробиологического анализа на основе оптического метода
Sasidharan et al. A low-cost DIY device for high resolution, continuous measurement of microbial growth dynamics
CN106769907B (zh) 定量分析仪
Schlebusch et al. Analytical performance of a portable critical care blood gas analyzer
CN104792707A (zh) 一种皮革蛋白奶便携式测定仪及其测定方法
RU93990U1 (ru) Устройство для мультисубстратной флуоресцентной идентификации биологических микрообъектов и их биологических свойств
CN115046922A (zh) 基于发光细菌的便携式水质综合毒性分析仪及检测方法
Palekar et al. Biochemical blood sensing platform with CMOS image sensor and software-based wavelength filter
CN106872341A (zh) 一种基于智能手机的移动即时微生物诊断仪
Cheng et al. A low-cost compact blood enzyme analyzer based on optical sensing for point-of-care liver function testing
CN206248539U (zh) 定量分析仪
Niculescu et al. Portable biochemistry analyzer based on image acquisition algorithm
JP3995888B2 (ja) 微生物計量方法および微生物計量装置