RU2779264C1 - Алюминиевый сплав - Google Patents

Алюминиевый сплав Download PDF

Info

Publication number
RU2779264C1
RU2779264C1 RU2022117130A RU2022117130A RU2779264C1 RU 2779264 C1 RU2779264 C1 RU 2779264C1 RU 2022117130 A RU2022117130 A RU 2022117130A RU 2022117130 A RU2022117130 A RU 2022117130A RU 2779264 C1 RU2779264 C1 RU 2779264C1
Authority
RU
Russia
Prior art keywords
aluminum
alloy
zirconium
strength
alloys
Prior art date
Application number
RU2022117130A
Other languages
English (en)
Inventor
Юлия Игоревна Борисова
Анна Алексеевна Могучева
Евгений Сергеевич Ткачев
Сергей Игоревич Борисов
Дамир Вагизович Тагиров
Рустам Оскарович Кайбышев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Application granted granted Critical
Publication of RU2779264C1 publication Critical patent/RU2779264C1/ru

Links

Abstract

Изобретение относится к области металлургии, а именно к способам получения изделий электротехнического назначения на основе алюминия, применяемых для изготовления электротехнической катанки и проводов высоковольтных линий электропередач. Алюминиевый сплав содержит, мас. %: 0,15-0,3 Мо, 0,1-0,18 Zr, 0,07-0,08 Si, 0,09-0,13 Fe, Al – остальное. Полученный сплав имеет комплекс высоких эксплуатационных характеристик, а именно повышенную прочность и высокую электропроводность. 2 пр.

Description

Изобретение относится к области металлургии, а именно к способам получения изделий электротехнического назначения на основе алюминия, применяемых для изготовления электротехнической катанки и проводов высоковольтных линий электропередач.
Алюминиевые сплавы широко применяют в изделиях электротехнического назначения, благодаря высокой электропроводности и коррозионной стойкости. Оптимальное сочетание легкого веса и умеренной электропроводности делает эти сплавы предпочтительными для производства проводов высоковольтных воздушных линий электропередач (ЛЭП) по сравнению с медными сплавами. Поэтому алюминиевая продукция отечественного производства является востребованным продуктом на российском рынке.
Для модернизации существующей электроэнергетической инфраструктуры необходимо применение новых термостабильных материалов, которые сочетают высокую электропроводность и достаточную прочность. В качестве алюминиевого сплава электротехнического назначения применяется преимущественно технический чистый алюминий. Известно, что рабочая температура электропроводов из алюминиевых сплавов обычно не превышает 100°С. Данные сплавы должны сочетать низкое электросопротивление, близкое к электрическому сопротивлению чистого алюминия и достаточную прочность при повышенных температурах, сохраняющуюся после нагревов вплоть до 250°С. Последнее требование исключает использование традиционных проводов из технического алюминия и сплавов типа АВЕ (сплавы с химическим составом в масс.%: 0,4 - 0,7 Fe, 0,45 - 0,6 Si, до 0,05 Cu, 0,45 - 0,6 Mg, до 0,05 Zn, Ti+V+Mn+Cr <0.015, Al – остальное), поскольку даже кратковременный нагрев свыше 200-250°С приводит к их сильному разупрочнению. Для решения этой проблемы наиболее перспективными являются алюминиевые сплавы, легированные цирконием. Легирование цирконием применяется для повышения прочности при комнатной температуре и обеспечения стабильности структуры и свойств при растяжении при повышенных температурах из-за образования дисперсных частиц.
Известен алюминиевый сплав, раскрытый в патенте RU 2544331 публ. 23.01.2014. Согласно данному патенту сплав на основе алюминия содержит компоненты в масс. %: цирконий 0,15-0,40, кремний 0,03-0,15, железо 0,15-0,35, магний 0,01-0,60, медь 0,005-0,01, цинк 0,005-0,02, бор 0,001-0,003, сумму примесей титана, хрома, ванадия, марганца до 0,030, алюминий - остальное. Сплав может быть использован преимущественно для изготовления катанки электротехнического назначения, а также деформированных полуфабрикатов, используемых в строительстве, машиностроении и других областях народного хозяйства.
Недостатком данного сплава является недостаточная прочность при высоких проводящих характеристиках и способности сохранять прочность после нагрева до высоких температур. При этом в состав сплава входит большое количество циркония, что обуславливает высокую стоимость конечного продукта.
Известен литейный алюминиевый сплав, раскрытый в патенте SU 1746737 публ. 30.11.1994. Согласно этому патенту данный сплав содержит компоненты в масс. %: медь 4,2 - 6,7, марганец 0,5 - 1,5, никель 0,05 - 2,0, цирконий 0,05 - 0,5, титан 0,05 - 0,5, кадмий 0,01 - 0,25, кобальт 0,05 - 1,0, молибден 0,05 - 0,5, алюминий – остальное. Алюминиевый сплав предназначен для применения в авиационно-космической технике и других отраслях народного хозяйства. Данный сплав после обработки показывает высокие прочностные свойства – предел прочности составляет 430-450 МПа.
Недостатком сплава является проведение дополнительной термической обработки для получения высоких свойств алюминиевого сплава. Также наблюдается недостаточная прочность после нагрева до высоких температур и низкая пластичность 4-7%.
Известен термостойкий высокопрочный алюминиевый сплав, раскрытый в патенте ЕР 0787811 публ. 06.08.1997. Согласно данному патенту сплав на основе алюминия содержит: 0,28-0,8 масс. % Zr; 0,1-0,8 Mn; 0,1-0,4 Сu; 0,16-0,3 Si. Способ получения проволоки из алюминиевого сплава включает следующие стадии: приготовление расплава при температуре не ниже чем 750+227Ч(Z-0,28)°С (где Z - концентрация циркония в сплаве, мас.%); охлаждение со скоростью не ниже чем 0,1°С/с; получение первичной (литой) заготовки с последующей горячей деформацией; термическую обработку при температуре 320-390°С в течение 30-200 часов и холодную деформацию.
К недостаткам данного способа можно отнести:
1. Высокая продолжительность термической обработки (более 100 часов).
2. В способе присутствует дополнительная холодная обработка, что усложняет технологический процесс получения требуемого уровня характеристик.
3. Низкую электропроводность (ниже 53% IACS) сплава после термомеханической обработки.
Наиболее близким к предлагаемому изобретению является алюминиево-циркониевый сплав, описанный в патенте RU 2696797 публ. 06.08.2019. Данный сплав содержит, масс. %: 0,22-0,4 Zr, 0,2-0,4 Si, 0,62-0,8 Fe, алюминий – остальное, при соотношении кремний/железо, равном 0,3-0,5.
В способе присутствует дополнительная термомеханическая обработка, что усложняет технологический процесс и приводит к увеличению затраченного времени на производство, что является нецелесообразным в промышленных условиях. При этом в состав сплава входит большое количество циркония, что обуславливает высокую стоимость конечного продукта.
Задачей предлагаемого изобретения является разработка алюминиевого сплава, обладающего повышенной прочностью, достаточной электропроводностью, термостойкостью при низкой себестоимости без дополнительной термомеханической обработки.
Для решения поставленной задачи предлагается сплав на основе алюминия, содержащий молибден, цирконий, кремний, железо со следующим соотношением компонентов, масс. %: 0,15-0,3 Мо, 0,1-0,18 Zr, 0,07-0,08 Si, 0,09-0,13 Fe, Al – остальное.
Предложенный сплав отличается от прототипа тем, что содержит следующие компоненты в масс. %:
Молибден 0,15-0,3
Цирконий 0,1-0,18
Кремний 0,07-0,08
Железо 0,09-0,13
Алюминий остальное
Техническим результатом изобретения является сплав, обладающий повышенной прочностью, достаточной электропроводностью, термостойкостью за счет полученного химического состава, что позволит применять его в качестве материалов электротехнического назначения, в частности, в качестве алюминиевой катанки и материала для ЛЭП.
Известно (Alabin, A.N.; Belov, A.N.; Korotkova, N.O.; Samoshina, M.E. Effect of annealing on the electrical resistivity and strengthening of low-alloy alloys of the Al-Zr-Si system. Metal Sci. Heat Treat. 2016, 58, 527–531; Belov, N.A.; Alabin, A.N.; Prokhorov, A.Y. Effect of zirconium additive on the strength and electrical resistivity of cold-rolled aluminum sheets. Izv. Vysh. Uchebn. Zaved. Tsvetn. Met. 2009, 4, 42–47.), что с увеличением количества легирующих элементов снижаются проводящие свойства сплава. Увеличение содержания циркония более 0,3 вес. % в алюминиевых сплавах приводит к выделению первичных включений Al3Zr, которые уменьшают механические свойства. Поэтому содержание циркония должно быть не более 0,3 вес. %. При этом низкое содержание циркония будет недостаточно для упрочнения при выделении частиц Al3Zr. Высокое содержание кремния значительно влияет на твердость и электропроводность исследуемых сплавов, в то время как отсутствие кремния приводит к образованию «вредных» игольчатых частиц Al3Fe после термической обработки. Поэтому оптимальное количество кремния должно быть 0,25-0,50 вес. % из-за образования фазы Al8Fe2Si с предпочтительной морфологией пластин.
Однако, немаловажным недостатком в ключе технологического применения легирующей добавки циркония является его высокая себестоимость. Одним из возможных вариантов оптимизации является его частичная замена молибденом. Эффективность использования молибдена в качестве легирующей добавки в рассматриваемом контексте производства стабильных высокопрочных алюминиевых сплавов представляет существенный интерес. Низкая диффузионная подвижность атомов молибдена в алюминии, составляющая 2,3×10-26 м2/с при температуре 300°C в совокупности с его ограниченной растворимостью в твердом растворе алюминия, равной 0,25 вес.% при температуре 660°C, резко снижается с уменьшением температуры, что способствует образованию частиц молибдена в алюминии. При комнатной температуре молибден имеет незначительную растворимость в алюминии. После литья и термической обработки микротвердость, предел текучести увеличиваются с увеличением содержания молибдена и достигают пиковых значений при 0,3 масс. % с последующим выходом на плато. При оптимальном содержании молибдена (0,3 масс. %), объемная доля частиц увеличивается, в то время как объемная доля зоны, свободной от частиц, значительно снижается по сравнению с основным сплавом, не содержащим молибден, что приводит к значительному увеличению прочности при повышенных температурах. Повышение прочности и термической стабильности при сохранении электропроводности за счет оптимизации химического состава алюминиевых сплавов позволит как уменьшить расход сплава на единицу длины провода, снизив его себестоимость, так и увеличить срок эксплуатации готовых изделий.
Примеры осуществления.
Пример 1. Алюминиевый сплав, содержащий не более 0,35 масс. % циркония и молибдена, выплавлен в тигельной печи под флюсом. Перед литьем производилась чистка тигля плавильной печи, переливного корыта и кристаллизатора алюминием. В качестве основы использовался алюминий марки А995 и сплавы AlZr10 и AlMo5 в соотношении 1:1. Выплавку проводили в тигельных печах под флюсом при температуре 760°С и скорости охлаждения 10°С/сек. Температура литья заготовок измерялась непосредственно перед заливкой в форму. Скорость литья составила 120 мм/мин, а скорость охлаждения кристаллизатора – 8 м3/ч. В соответствии с предложенным способом получен сплав следующего химического состава в мас.%: Al - 0,18 Zr - 0,15 Mo – 0,08 Si – 0,09 Fe.
Способ обеспечивает одновременное достижение хорошей удельной электропроводимости (IACS) и механических свойств: предела прочности и относительного удлинения до разрушения из алюминиевого сплава в литом состоянии.
Полученный алюминиевый сплав в литом состоянии обладает высокой удельной электропроводимостью составляющей 52% IACS и микротвердостью по Виккерсу равной 23 HV. В литом состоянии предел прочности составляет 62 МПа, а относительное удлинение до разрушения составляет 26,5%.
Пример 2. Алюминиевый сплав, содержащий не более 0,4 масс. % циркония и молибдена, был выплавлен в тигельной печи под флюсом. В качестве основы использовался алюминий марки А995 и сплавы AlZr10 и AlMo5 в соотношении 1:4. Выплавку проводили в тигельных печах под флюсом при температуре 760°С и скорости охлаждения 10°С/сек. Скорость литья составила 120 мм/мин. Диаметр кристаллизатора равен 145 мм, а скорость охлаждения кристаллизатора – 8 м3/ч. В соответствии с осуществленным способом получен сплав следующего химического состава в мас.%: Al - 0,10 Zr - 0,26 Mo – 0,07 Si – 0,13 Fe.
Способ обеспечивает одновременное достижение комплекса физико-механических свойств. Алюминиевый сплав в литом состоянии обладает хорошей удельной электропроводимостью равной 51% IACS и микротвердостью по Виккерсу равной 22 HV. В литом состоянии предел прочности составляет 62 МПа при относительном удлинении до разрушения 28,0%.

Claims (1)

  1. Алюминиевый сплав, содержащий цирконий, кремний, железо и алюминий, отличающийся тем, что он дополнительно содержит молибден, при следующем соотношении компонентов, мас. %: 0,15-0,3 Мо, 0,1-0,18 Zr, 0,07-0,08 Si, 0,09-0,13 Fe, Al – остальное.
RU2022117130A 2022-06-24 Алюминиевый сплав RU2779264C1 (ru)

Publications (1)

Publication Number Publication Date
RU2779264C1 true RU2779264C1 (ru) 2022-09-05

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6910474A (en) * 1973-05-17 1975-11-20 Sumitomo Electric Industries, Ltd Aluminium alloy for electric conductors
GB2121435B (en) * 1981-10-15 1986-08-28 Taiho Kogyo Co Ltd Aluminium alloy bearing
SU1746737A1 (ru) * 1990-05-03 1994-11-30 Московский машиностроительный завод им.А.И.Микояна Литейный сплав на основе алюминия
EP0787811A1 (en) * 1996-01-30 1997-08-06 Sumitomo Electric Industries, Ltd. High-strength heat-resistant aluminium alloy, conductive wire, overhead wire and method of preparing the aluminium alloy
RU2686797C2 (ru) * 2014-04-11 2019-04-30 Бристоль, Инк., Д/Б/А Ремоут Аутомейшен Солюшенз Контроллер потока нагнетания для воды и пара

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6910474A (en) * 1973-05-17 1975-11-20 Sumitomo Electric Industries, Ltd Aluminium alloy for electric conductors
GB2121435B (en) * 1981-10-15 1986-08-28 Taiho Kogyo Co Ltd Aluminium alloy bearing
SU1746737A1 (ru) * 1990-05-03 1994-11-30 Московский машиностроительный завод им.А.И.Микояна Литейный сплав на основе алюминия
EP0787811A1 (en) * 1996-01-30 1997-08-06 Sumitomo Electric Industries, Ltd. High-strength heat-resistant aluminium alloy, conductive wire, overhead wire and method of preparing the aluminium alloy
RU2686797C2 (ru) * 2014-04-11 2019-04-30 Бристоль, Инк., Д/Б/А Ремоут Аутомейшен Солюшенз Контроллер потока нагнетания для воды и пара

Similar Documents

Publication Publication Date Title
CN106350716B (zh) 一种高强度外观件铝合金材料及其制备方法
WO2021008428A1 (zh) 一种超高强铝锂合金及其制备方法
CN113789459B (zh) 一种铜镍锡合金及其制备方法和应用
CN105714148B (zh) 一种调幅分解型高强铜镍锡合金
CN113278846B (zh) 一种耐磨铜镍锡合金及其制备方法
CN102268575A (zh) 一种铝合金材料及其制备方法
CN101974709A (zh) 特软铝合金导体及其制备方法
CN106065443B (zh) 铜合金及其制造方法
US20040238501A1 (en) Electrode material and method for manufacture thereof
CN112874058B (zh) 一种建筑用铜钢固液复合双金属材料及其制备方法
CN100532599C (zh) 一种抗疲劳的Cu-Ti合金及其生产方法
US20150376755A1 (en) Copper alloy material for continuous casting mold and process for producing same
CN112522549A (zh) 一种高强、高导、耐蚀、可焊、良好热成型性能铝合金及其制备方法和应用
CN109988946A (zh) 一种真空钎焊翅片材料及其制备方法
CN103898353A (zh) 一种高强度高导电性能铜合金及其制备方法
CN104263992A (zh) 电机整流子用铜银合金材料及其制备方法
US20190062876A1 (en) Copper alloy containing tin, method for producing same, and use of same
CN108570583B (zh) 不含稀土低合金超高强韧镁合金及其制备方法
JP5555154B2 (ja) 電気・電子部品用銅合金およびその製造方法
RU2722950C1 (ru) Сплав на основе алюминия и способ получения изделия из него
JPS6132386B2 (ru)
RU2779264C1 (ru) Алюминиевый сплав
KR101499096B1 (ko) 스칸듐을 첨가한 알루미늄 합금 및 그 제조방법
CN114231793B (zh) 一种重力铸造锌合金
CN112853150B (zh) 一种化工用铜钢固液复合双金属材料及其制备方法