RU2779120C1 - Композиция для получения огнестойкого антикоррозионного теплоизоляционного покрытия и способ ее приготовления (варианты) - Google Patents

Композиция для получения огнестойкого антикоррозионного теплоизоляционного покрытия и способ ее приготовления (варианты) Download PDF

Info

Publication number
RU2779120C1
RU2779120C1 RU2021115894A RU2021115894A RU2779120C1 RU 2779120 C1 RU2779120 C1 RU 2779120C1 RU 2021115894 A RU2021115894 A RU 2021115894A RU 2021115894 A RU2021115894 A RU 2021115894A RU 2779120 C1 RU2779120 C1 RU 2779120C1
Authority
RU
Russia
Prior art keywords
composition
hollow glass
mixture
microspheres
glass microspheres
Prior art date
Application number
RU2021115894A
Other languages
English (en)
Inventor
Екатерина Сергеевна Макарова
Елена Николаевна Черезова
Владимир Михайлович Войлошников
Диляра Рафаилевна Тарамасова
Андрей Вячеславович Нефёдов
Original Assignee
Общество с ограниченной ответственностью "Весто"
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Весто" filed Critical Общество с ограниченной ответственностью "Весто"
Application granted granted Critical
Publication of RU2779120C1 publication Critical patent/RU2779120C1/ru

Links

Abstract

Группа изобретений относится к области получения покрытий, обладающих высокими прочностными, огне- и атмосферостойкими характеристиками для защиты трубопроводов систем теплоснабжения и воздуховодов систем воздушного отопления и вентиляции. Композиция может быть использована также для отделки огнестойких промышленных конструкций и корпусов морских и речных судов. Композиция для получения огнестойкого антикоррозионного теплоизоляционного покрытия содержит эпоксидную смолу в качестве связующего, отвердитель, полые стеклянные микросферы и целевую многофункциональную добавку - пластификаторы, пигменты, целевые добавки либо их смесь. В композиции используют полые стеклянные микросферы, различающиеся между собой по размерам. Значение насыпной плотности навески полых стеклянных микросфер выбрано из диапазона от 0,20 до 0,43 г/см3. Используют полые стеклянные микросферы, предварительно обработанные смесью кремнийсодержащих веществ, содержащей наноразмерный диоксид кремния, полученной путем химической деструкции силоксановых эластомеров. Композиция содержит компоненты в следующем соотношении: эпоксидная смола - 100 мас.ч., отвердитель - стехиометрическое количество, смесь модифицированных полых стеклянных микросфер - 10-25 мас.ч., целевая многофункциональная добавка - 8-12 мас.ч. Дополнительно композиция содержит фосфорилированный продукт амидолиза пенополиуретана в качестве целевой многофункциональной добавки или части смеси целевой многофункциональной добавки, повышающей эластичность и снижающей горючесть. Осуществляют предварительную подготовку компонентов и объемное смешивание ингредиентов в замкнутой емкости. Предварительная подготовка полых стеклянных боросиликатных микросфер заключается в их предварительной обработке кремнийсодержащим аппретом, представляющим собой продукт химической деструкции силоксановых эластомеров, содержащим наноразмерный диоксид кремния. Продукт имеет следующий состав: органическая часть: олигодиметилсилоксан и олигоэтоксисилоксан в количестве 61-82 мас.%, неорганическая часть: смеси SiO2:CaCO3=50:10 в количестве 39-18 мас.%. Измельченный пенополиуретан смешивают с е-капролоктамом в соотношении масс 1:4. Перемешивают смесь при воздействии излучения СВЧ мощностью 350-450 Вт в течение 10-15 мин. Полученный смолообразный продукт фосфорилируют фосфористой кислотой по реакции Кабачника-Филдса. Обеспечиваются высокие эксплуатационные свойства композиции, совмещая одновременно огнезащитные свойства, антикоррозионные свойства, прочность на изгиб и ударную вязкость. 3 н. и 1 з.п. ф-лы.

Description

Описание изобретения
Изобретение относится к области получения покрытий, обладающих высокими огне-, хим-, тепло-, атмосферостойкостью, ударной прочностью, водонепроницаемостью, и может быть использована для защиты трубопроводов систем теплоснабжения и воздуховодов систем воздушного отопления и вентиляции, для отделки огнестойких промышленных конструкций, корпусов морских и речных судов.
Известна композиция для получения термозащитной краски с использованием керамических и корундовых микросфер, связующего, пигмента для защиты от коррозии и теплопотерь газопроводов, инженерных коммуникаций, имеющих температурный градиент (см. патент RU №2245350 С1, МПК7 C09D 5/08, 1/04 (2005). Однако керамические микросферы обладают низкой прочностью, вследствие чего используется сложная технология нанесения покрытия.
Известна эпоксидная композиция для получения теплоизоляционного покрытия, применяемого в коммунальном хозяйстве, с использованием полых стеклянных микросфер (см. патент RU №2009143210 А, МПК В29С 67/20 (2006.01), 2011), аминного отвердителя и глицидилового эфира кислот фосфора. Однако данная композиция не обеспечивает необходимый комплекс свойств покрытия по всему его объему. Данное покрытие имеет градиентное изменение свойств по толщине, обусловленное тем, что стеклянные микросферы в процессе отверждения эпоксидного покрытия мигрируют к поверхности покрытия вследствие плохой совместимости с компонентами эпоксидной композиции. Покрытие, получаемое на основе данной композиции, не обладает достаточными теплоизоляционными свойствами, т.к. ее теплопроводность недостаточно низкая.
Известна композиция для получения теплогидроизоляционных покрытий трубопроводов, включающая эпоксидное связующее, отвердитель - полиэтиленполиамин (ПЭПА), стеклянные микросферы диаметром 200-300 микрон и пластификатор полиизобутилен (см. патент RU №93052300 А, МПК С04В 26/14 (1995.01) С04В 26/14 (1995.01) С04В 14/24 (1995.01) С04В 24/12 (1995.01) C09D 163/00 (1995.01), 1996). Данная композиция имеет высокие теплоизоляционные свойства, водонепроницаемость, однако данная композиция не удовлетворяет свойствам пожаробезопасности, имеет недостаточную адгезию к стальным трубам. Покрытие имеет градиентное изменение свойств по толщине, обусловленное тем, что микросферы в процессе отверждения мигрируют к поверхности покрытия вследствие плохой совместимости с компонентами.
Известна композиция для получения антикоррозионного теплоизоляционного покрытия для трубопроводов, включающая эпоксидную смолу, отвердитель, смесь полых микросфер размером от 10 до 500 мкм и насыпной плотностью от 650 до 50 кг/м3, выбранных из группы, включающей полые стеклянные, полые керамические, полые полимерные микросферы и вспомогательные добавки (пластификаторы, катализаторы и пр.) (см. патент RU №2301241 С2, МПК C09D 163/00 (2006.01) C09D 5/08 (2006.01) C09D 5/18 (2006.01) C08K 7/22 (2006.01), 2007). Известная композиция обладает хорошими физико-механическими свойствами, однако не обладает достаточной эластичностью и атмосферостойкостью, что приводит к появлению трещин и отслаиванию покрытия при знакопеременных температурах. Недостатком покрытия является также невысокая огнестойкость. Покрытие, включающие полые микросферы, имеет градиентное изменение свойств, обусловленное тем, что микросферы в процессе отверждения мигрируют к поверхности покрытия вследствие плохой совместимости с компонентами.
Известна самозатухающая полимерная композиция, включающая эпоксидную смолу, отвердитель олигоамидоамин, аммоний фосфорнокислый, порошок отвержденной фенолформальдегидной смолы и полые стеклянные микросферы (см. патент RU 2220990 С2, МПК7 C08L 63/00, C08K 13/02//(C08L 63/00, 61:10, 77:06), (C08K 13/02, 5:32, 7:20), 2004). Однако данная композиция не предназначена для получения покрытия, а используется для заполнения участков сотовых конструкций в авиационной технике. Полимерный материал, включающий полые стеклянные микросферы, имеет градиентное изменение свойств, обусловленное тем, что стеклянные микросферы в процессе отверждения мигрируют к поверхности полимерного материала вследствие плохой совместимости с компонентами.
Известна композиция для получения энергосберегающего покрытия с использованием полых керамических или стеклянных микросфер (см. патент RU 2522008 С1, МПК C09D 163/02 (2006.01), 2012), включающая эпоксидную смолу ЭД-20, отвердитель на основе алифатических аминов (ДЭТА), полые стеклянные или керамические микросферы фракции 40-120 мкм, реакционноспособный каучук СКН-30КТРА (низкомолекулярный сополимер бутадиена с нитрилом акриловой кислоты, содержащий концевые карбоксильные группы) и слюду мусковит. Однако покрытие на основе данной композиции имеет градиентный состав по толщине, обусловленное тем, что стеклянные микросферы в процессе отверждения мигрируют к поверхности покрытия вследствие плохой совместимости с компонентами, что приводит к градиентному изменению свойств и не обеспечивает высокий комплекс свойств к предъявляемому покрытию по объему.
Наиболее близкой по технической сущности является композиция для получения теплоизоляционного покрытия, включающая эпоксидную смолу, отвердитель, смесь полых микросфер размером от 10 до 500 мкм и вспомогательные добавки (см. патент RU №2301241 С2, МПК C09D 163/00 (2006.01) C09D 5/08 (2006.01) C09D 5/18 (2006.01) C08K 7/22 (2006.01), 2005). Композиция обладает хорошими физико-механическими и теплоизоляционными свойствами, однако не обладает достаточной эластичностью и атмосферостойкостью, что приводит к появлению трещин и отслаиванию покрытия при знакопеременных температурах. Недостатком покрытия является также невысокая огнестойкость и градиент изменения физико-механических свойств по толщине покрытия.
Преимуществом полимерных композиций, имеющих в составе стеклянные полые микросферы являются, снижение плотности, высокая абразивная стойкость, низкая усадка, низкий коэффициент расширения. Однако все известные (см. выше) эпоксидные покрытия, в состав которых включены стеклянные микросферы, при отверждении имеют градиентное изменение свойств, обусловленное тем, что стеклянные микросферы в процессе отверждения мигрируют к поверхности покрытия вследствие плохой совместимости с компонентами, низкой межфазной связью между стеклянными сферами и органическими компонентами полимерной композиции.
Технической задачей заявленной группы изобретения является получение многофункционального покрытия, выполняющего одновременно функции огнестойкого, атмосферостойкого, теплоизоляционного покрытия, повышенной коррозионной стойкостью в различных агрессивных средах, не имеющее градиента изменения физико-механических свойств по толщине покрытия.
Поставленная техническая задача достигается тем, что композиция для покрытия, включающая эпоксидную смолу, отвердитель, полые микросферы и целевую добавку, содержит в качестве микросфер смесь модифицированных полых стеклянных борсиликатных микросфер, различающихся между собой по размерам с соотношением, обеспечивающем минимальный объем свободного пространства между микросферами, а именно с насыпной плотностью навески полых стеклянных микросфер в пределах от 0,20 до 0,43 г/см3. За счет этого достигается повышение прочности покрытия, уменьшение эффекта возникновения градиента свойств и количества микросфер в покрытии. При этом модифицирование поверхности полых стеклянных микросфер заключается в предварительной обработке (аппретировании) смесью кремнийсодержащих веществ, включающей наноразмерный диоксид кремния, полученной путем химической деструкции силоксановых эластомеров. За счет модифицирования достигается повышение сцепления борсиликатных микросфер с компонентами полимерной композиции в молекулярных слоях, и, как следствие, уменьшение эффекта возникновения градиента количества микросфер в покрытии. Дополнительно полимерная композиция содержит в качестве многофункциональной добавки, повышающей эластичность и снижающей горючесть полимера, фосфорилированный продукт амидолиза пенополиуретана, полученный с использованием микроволнового излучения.
Осуществление изобретения
Композиция для получения огнестойкого, антикоррозионного, теплоизоляционного покрытия по настоящему патенту включает в себя эпоксидную смолу в качестве связующего, отвердитель, полые стеклянные микросферы и целевую многофункциональную добавку в следующем соотношении
Соотношение компонентов в полимерной композиции (мас. ч.):
Figure 00000001
Примеры конкретного выполнения приведены в таблицах 1-3.
Могут быть использованы полые боросиликатные микросферы ПСМ-МШ ТУ 23.19.22-001-39520448-2019, сферы 3М™ Полые стеклянные микросферы серии VS или серии HGS.
В композиции соотношение стеклянных полых микросфер различного диаметра варьируется в зависимости от диаметра вводимых в композицию стеклянных микросфер и рассчитывается таким образом, чтобы объем свободного пространства между микросферами был наименьшим, что обусловливает высокие теплозащитные свойства, а также высокую коррозионную стойкость (фиг. 1). Критерием для оптимального соотношения сфер в композиции является подбор значения насыпной плотности навески стеклянных полых микросфер, которое в соответствии с настоящим изобретением должно попадать в диапазон от 0,20 до 0,43 г/см3. Например, соотношение масс. ч. соотношение 1:4 для диаметров 60:15 мкм.
По данному изобретению для предварительной обработки полых стеклянных микросфер используется смесь кремнийсодержащих веществ, наполненная наноразмерным диоксидом кремния, полученная путем химической деструкции силоксановых эластомеров (см. Садыков Р.А., Бескровный Д.В., Рахматуллина А.П., Войлошников В.М. / Исследование деструкции отходов силоксановых резин и свойств полученных деструктатов // Вестник Технологического университета. 2016. Т. 19. №21. С. 45-48.). Органическая часть получаемой таким образом смеси состоит из олигодиметилсилоксана и олигоэтоксисилокеана в количестве 61-82% мас., неорганическая часть (SiO2:CaCO3=50:10) в количестве 39-18% мас. (фракционный состав неорганической части: 1-2 нм (17%), 6-8 нм (18%), 70-90 нм (15%). Аппретирование полых стеклянных борсиликатных микросфер проводят, как указано в Примере 1.
По данному изобретению в качестве целевой многофункциональной добавки могут быть использованы традиционные для отрасли пластификаторы, пигменты и пр. целевые добавки для усиления тех или иных свойств покрытия.
Также, по данному изобретению в качестве целевой многофункциональной добавки, для повышения эластичности и снижения горючести композиции, можно использовать фосфорилированный продукт амидолиза пенополиуретана, полученный с использованием микроволнового излучения по примеру 2.
В качестве отвердителя могут быть использованы алифатические и ароматические отвердители аминного и аминофенольного типа (ПЭПА, АФ-2 и др.), полиамидные отвердители (Л-18, ПО-300 и др.) олигоамидоамины.
Композиция приготовляется из навесок описанных выше компонентов в замкнутой емкости путем объемного смешивания.
Вначале тщательно перемешивают связующее (эпоксидную смолу) с целевой многофункциональной добавкой. Затем в композицию добавляют смесь модифицированных полых микросфер и также тщательно перемешивают. Далее вводят отвердитель. Полученную композицию тщательно перемешивают.
Полученная композиция пригодна для холодного отверждения. Для получения покрытия композицию наносят на предварительно подготовленную поверхность. Отверждение покрытия проводится без подвода тепла в течение 24-48 часов.
В таблицах 1-3 предоставлены примеры составов композиций по изобретению и основные свойства покрытий. Если композиция содержит какие-либо другие вспомогательные вещества, то их вводят или совместно с микросферами, или после, но до введения отверждающих добавок.
Адгезию к различным поверхностям определяли по ГОСТ 15140-78.
Стойкость покрытий к действию агрессивных сред определяли по ГОСТ 9.403-80.
Ударную вязкость определяли по ГОСТ 19109-2017
Водопроницаемость определяли по ГОСТ 28593-90
Прочность на изгиб определяли по ГОСТ 4648-2014
Горючесть определяли по ГОСТ 12.1.044-89.
Коэффициент коррозионной стойкости определяли по ГОСТ 6992-68
Время высыхания до степени 3 определяли по ГОСТ 19007-73.
Характеристики исходных компонентов.
Эпоксидная смола ЭД-20 - ГОСТ 10587-84
Отвердитель на основе алифатических аминов - ПЭПА - ТУ 6-02-594-80.
Отвердитель аминофенольный АФ-2 ТУ 2494-511-00203521-94.
Отвердитель Л-18 (аддукт полиаминов с кислотами растительных масел) ТУ 6-06-1123-98
Полые стеклянные микросферы марки ПСМ-МШ ТУ 23.19.22-001-39520448-2019
Пример 1.
В аппарат с роторной мешалкой загружают полые стеклянные микросферы. В установленную над мешалкой емкость подается смесь кремнийсодержащих органических веществ, полученная путем химической деструкции силоксановых эластомеров, наполненная наноразмерным диоксидом кремния, которая проходя через трубопровод, поступает на форсунки и подается в аппарат аппретирования в количестве 2-5% по отношению к массе полых стеклянных микросфер.
Скорость вращения роторов составляет 25 об/мин. По истечении 1 часа, включается обогрев с целью удаления легколетучих компонентов, содержащихся в деструктате силоксановой резины. Температура постепенно повышается до 130°С, процесс длится около 2-3 часов. Далее смесь охлаждают, после чего она проходит механический процесс удаления загрязнений и различных включений на вибросите.
Пример 2.
В реактор из кварцевого стекла, снабженный перемешивающим устройством, помещают измельченные отходы пенополиуретана, е-капролоктам в соотношении (мас. ч.) 1:4. Получение продукта ведут при воздействии излучения СВЧ мощностью 350-450 Вт в течение 10-15 мин. Полученный смолообразный продукт фосфорилировали по реакции Кабачника-Филдса (см. Черкасов Р.А. Реакция Кабачника-Филдса: синтетический потенциал и проблема механизма / Р.А. Черкасов, В.И. Галкин/ Успехи химии, 1998, 992, 940-968.). Продукт охарактеризован методами ИК-спектрскопии и элементного анализа. Содержание фосфора - 5%, содержание азота - 6%.
Примеры 3-9.
Составы композиций по изобретению, содержащие в качестве отвердителя аминофенольный отвердитель АФ-2, приведены в таблице 1.
Figure 00000002
Figure 00000003
Примеры 10-14
Составы композиций по изобретению, содержащие в качестве отвердителя алкиламинный отвердитель ПЭПА, приведены в таблице 2.
Figure 00000004
Figure 00000005
Примеры 15-20
Составы композиций по изобретению, содержащие в качестве отвердителя смесь алкиламинного отвердителя ПЭПА и амидного отвердителя Л-18, приведены в таблице 3.
Figure 00000006
Figure 00000007
Таким образом, полимерные эпоксидные покрытия, получаемые из композиции по изобретению, обладают высокими эксплуатационными свойствами, совмещая одновременно высокие теплоизоляционные свойства, огнезащитные свойства, антикоррозионные свойства, прочность на изгиб и ударную вязкость.

Claims (7)

1. Композиция для получения огнестойкого антикоррозионного теплоизоляционного покрытия, включающая эпоксидную смолу в качестве связующего, отвердитель, полые стеклянные микросферы и целевую многофункциональную добавку, которой могут быть пластификаторы, пигменты, целевые добавки либо их смесь, отличающаяся тем, что полые стеклянные микросферы берут различающимися между собой по размерам, причем значение насыпной плотности навески полых стеклянных микросфер выбирают из диапазона от 0,20 до 0,43 г/см3, а также тем, что полые стеклянные микросферы предварительно обработаны смесью кремнийсодержащих веществ, содержащей наноразмерный диоксид кремния, полученной путем химической деструкции силоксановых эластомеров, при этом компоненты берут в следующем соотношении:
Эпоксидная смола 100 мас.ч. Отвердитель стехиометрическое количество Смесь модифицированных полых стеклянных микросфер 10-25 мас.ч. Целевая многофункциональная добавка 8-12 мас.ч.
2. Композиция по п. 1, отличающаяся тем, что дополнительно содержит в качестве целевой многофункциональной добавки или части смеси целевой многофункциональной добавки, повышающей эластичность и снижающей горючесть, фосфорилированный продукт амидолиза пенополиуретана.
3. Способ получения композиции по п. 1, включающий предварительную подготовку компонентов и объемное смешивание ингредиентов в замкнутой емкости и отличающийся тем, что предварительная подготовка полых стеклянных боросиликатных микросфер заключается в их предварительной обработке кремнийсодержащим аппретом, представляющим собой продукт химической деструкции силоксановых эластомеров, содержащим наноразмерный диоксид кремния и имеющим следующий состав:
- органическая часть: олигодиметилсилоксан и олигоэтоксисилоксан в количестве 61-82 мас.%;
- неорганическая часть: смеси SiO2:CaCO3=50:10 в количестве 39-18 мас.%.
4. Способ получения композиции по п. 2, заключающийся в амидолизе пенополиуретана, отличающийся тем, что измельченный пенополиуретан смешивают с е-капролоктамом в соотношении масс 1:4, перемешивают смесь при воздействии излучения СВЧ мощностью 350-450 Вт в течение 10-15 мин, далее полученный смолообразный продукт фосфорилируют фосфористой кислотой по реакции Кабачника-Филдса.
RU2021115894A 2021-05-31 Композиция для получения огнестойкого антикоррозионного теплоизоляционного покрытия и способ ее приготовления (варианты) RU2779120C1 (ru)

Publications (1)

Publication Number Publication Date
RU2779120C1 true RU2779120C1 (ru) 2022-09-01

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396669A (zh) * 2022-09-16 2023-07-07 中国航发北京航空材料研究院 一种低密度防腐涂料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1781241A1 (ru) * 1990-06-25 1992-12-15 Vladimirsky Polt I Способ получения термостойкого синтактового пенопласта
JP2001064481A (ja) * 1999-08-24 2001-03-13 Kansai Putty Kako Kk 可撓性エポキシパテ組成物
RU2301241C2 (ru) * 2005-07-13 2007-06-20 Виталий Степанович Беляев Композиция для получения антикоррозионного, огнестойкого и теплоизоляционного покрытия, применение ее
RU2374281C1 (ru) * 2008-08-18 2009-11-27 Воробьев Евгений Николаевич Антикоррозионное и теплоизоляционное покрытие на основе полых микросфер
CN106366740A (zh) * 2016-08-27 2017-02-01 安徽省金盾涂料有限责任公司 一种高阻燃涂料
US20170066928A1 (en) * 2014-03-05 2017-03-09 Hempel A/S Anti-corrosive zinc primer coating compositions
RU2655901C2 (ru) * 2016-06-15 2018-05-29 Андрей Сергеевич Субботин Способ создания огнестойкой силоксановой композиции и композиции, полученные этим способом

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1781241A1 (ru) * 1990-06-25 1992-12-15 Vladimirsky Polt I Способ получения термостойкого синтактового пенопласта
JP2001064481A (ja) * 1999-08-24 2001-03-13 Kansai Putty Kako Kk 可撓性エポキシパテ組成物
RU2301241C2 (ru) * 2005-07-13 2007-06-20 Виталий Степанович Беляев Композиция для получения антикоррозионного, огнестойкого и теплоизоляционного покрытия, применение ее
RU2374281C1 (ru) * 2008-08-18 2009-11-27 Воробьев Евгений Николаевич Антикоррозионное и теплоизоляционное покрытие на основе полых микросфер
US20170066928A1 (en) * 2014-03-05 2017-03-09 Hempel A/S Anti-corrosive zinc primer coating compositions
RU2655901C2 (ru) * 2016-06-15 2018-05-29 Андрей Сергеевич Субботин Способ создания огнестойкой силоксановой композиции и композиции, полученные этим способом
CN106366740A (zh) * 2016-08-27 2017-02-01 安徽省金盾涂料有限责任公司 一种高阻燃涂料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396669A (zh) * 2022-09-16 2023-07-07 中国航发北京航空材料研究院 一种低密度防腐涂料及其制备方法

Similar Documents

Publication Publication Date Title
US5108832A (en) Flexible intumescent coating composition
US5070119A (en) Flexible intumescent coating composition
JPH0139714B2 (ru)
CN108795134A (zh) 一种无溶剂防火涂料
CN107603423B (zh) 一种水下固化海洋钢结构长效防腐涂料及其制备方法
KR101715825B1 (ko) 무용제형 하도용 고방식 도료와 실란 함유 중상도용 고방식 도료 및 이를 이용한 이중도막 초내후성 강구조물 도장방법
CN103305094A (zh) 基于酚醛环氧乙烯基树脂的复合有机涂层及其制备方法
CN113045961A (zh) 一种石墨烯改性氟硅防腐耐磨涂料及其制备方法
CN108047798A (zh) 一种高强度阻燃水性聚氨酯涂料的制备方法
CN109762393B (zh) 高效硅氮磷阻燃剂、耐水型透明防火涂料及其制备方法和应用
RU2779120C1 (ru) Композиция для получения огнестойкого антикоррозионного теплоизоляционного покрытия и способ ее приготовления (варианты)
CN112266707B (zh) 辐射交联聚丙烯热收缩带用耐高温无溶剂环氧底漆
EP0669963B1 (en) Solid surface modifier
KR101700156B1 (ko) 부식방지 및 방수용 고분자 코팅 조성물과 이의 제조방법
CN110628028A (zh) 一种有机硅改性腰果酚聚缩水甘油醚树脂的制备和应用
US3976613A (en) Composition and process for treating and repairing metallic and non-metallic surfaces
KR20210018873A (ko) 조성물
WO1996018058A1 (en) Coal tar enamel-coated steel pipe and process for same
KR102132606B1 (ko) Sis를 이용한 고분자 개질 쇄석 매스틱 아스팔트 콘크리트(psma) 조성물 및 이의 시공방법
KR102103223B1 (ko) 강구조물 방식 도장재 및 그 제조방법
RU2424905C1 (ru) Способ получения теплоизоляционного градиентного покрытия
CN113195616A (zh) 可喷涂的有机硅聚合物分散体
CN112341932A (zh) 防污耐候聚硅氧烷涂料
CN111574947A (zh) 一种耐腐蚀性脱硫管道衬里层及其施工工艺
JP2001131476A (ja) 鋼材の注型被覆用ポリウレタン組成物