RU2778908C1 - Способ получения топливной соли на основе lif-bef2 для жидкосолевых ядерных реакторов - Google Patents

Способ получения топливной соли на основе lif-bef2 для жидкосолевых ядерных реакторов Download PDF

Info

Publication number
RU2778908C1
RU2778908C1 RU2022101619A RU2022101619A RU2778908C1 RU 2778908 C1 RU2778908 C1 RU 2778908C1 RU 2022101619 A RU2022101619 A RU 2022101619A RU 2022101619 A RU2022101619 A RU 2022101619A RU 2778908 C1 RU2778908 C1 RU 2778908C1
Authority
RU
Russia
Prior art keywords
salt
mixture
bef
lif
tetrafluoroberyllate
Prior art date
Application number
RU2022101619A
Other languages
English (en)
Inventor
Юрий Павлович Зайков
Андрей Владимирович Исаков
Александр Александрович Катаев
Анастасия Евгеньевна Вахромеева
Степан Павлович Архипов
Юлия Ринатовна Халимуллина
Original Assignee
Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК")
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") filed Critical Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК")
Application granted granted Critical
Publication of RU2778908C1 publication Critical patent/RU2778908C1/ru

Links

Abstract

Изобретение относится к атомной энергетике и может быть использовано для получения топливной соли на основе фторидов лития и бериллия, предназначенной для введения в контур энергоблока жидкосолевых реакторов. Способ включает использование смеси, содержащей тетрафторбериллат аммония и фторид лития, взятые в количестве, соответствующем эвтектическому составу получаемой соли, нагревают в токе аргона до температуры 230-250°С, выдерживают до полного разложения тетрафторбериллата аммония, затем температуру нагрева смеси поднимают выше температуры плавления Li2BeF4, но не выше 530°С. Далее смесь выдерживают до получения топливной соли, которую охлаждают в токе аргона до комнатной температуры. Технический результат заключается в возможности получения топливной соли для энергоблоков жидкосолевых реакторов без необходимости продувать с избытком газообразный HF.

Description

Изобретение относится к атомной энергетике и может быть использовано для получения топливной соли на основе фторидов лития и бериллия, предназначенной для введения в контур энергоблока жидкосолевых реакторов (ЖСР).
Известно, что расплавы на основе фторида лития и фторида бериллия (система LiF-BeF2,) отвечают основным требованиям, предъявляемым к основе топливной соли жидкосолевого реактора. Расплавы представляют собой смесь слабо поглощающих нейтроны расплавленных солей LiF и BeF2, предназначенных для растворения фторидов делящихся и сырьевых материалов. Важным преимуществом расплавов LiF-BeF2 являются невысокие температуры плавления композиций (около 500°С), а также низкое давление насыщенных паров (10 Па при 700°С) (Игнатьев В.В., Фейнберг О.С., Загнитько А.В. и др. Жидкосолевые реакторы: новые возможности, проблемы и решения // Атомная энергия, 2012, т. 112, вып. 3, с. 157-165) [1].
Наиболее перспективным для топливной соли считается расплав 73 мол. % LiF - 27 мол. % BeF2. Известен способ получения топливной соли на основе LiF-BeF2 для жидкосолевого ядерного реактора, включающий плавление смеси солей фторидов лития и бериллия. Для получения топливной соли через расплав смеси этих солей пропускают (барботируют) газообразный HF с использованием газа носителя Н2. (J. Н. Shaffer, "Preparation and Handling of Salt Mixtures for the Molten Salt Reactor Experiment"// ORNL-4616, OakRidgeNationalLaboratory (1971)) [2]. Пропускание HF производят для удаления кислородных примесей по реакции:
Figure 00000001
Основным недостатком данного способа является выброс в окружающую среду и необходимость улавливания значительного количества ядовитого газа - фтористого водорода, предельно допустимая концентрация которого, в воздухе рабочей зоны составляет 0,0005 мг/л. Применение такого способа потенциально опасно не только для окружающей среды, но и для работников. Фтористый водород способен образовывать аэрозоли с влагой в воздухе (плавиковую кислоту), которые могут конденсироваться на поверхностях оборудования, на коже и слизистых оболочках человека и животных. Появление плавиковой кислоты на поверхности оборудования приводит к повышенной коррозии металлов и выходу из строя изготовленных их них механизмов.
Задачей изобретения является повышение экологической безопасности получения топливной соли для энергоблоков жидкосолевых реакторов.
Для этого предложен способ получения топливной соли на основе LiF-BeF2 для жидкосолевых ядерных реакторов, включающий, как и прототип, плавление смеси солей, содержащей фторид лития. Новый способ отличается тем, что используют смесь, содержащую тетрафторбериллат аммония и фторид лития, взятые в количестве, соответствующему эвтектическому составу получаемой соли, нагревают в токе аргона до температуры 230-250°С, выдерживают в течение времени, достаточного для полного разложения тетрафторбериллата аммония, затем температуру нагрева смеси поднимают выше температуры плавления Li2BeF4, но не выше 530°С и выдерживают при этой температуре до получения топливной соли, которую охлаждают в токе аргона до комнатной температуры.
В основе заявленного способа заложено химическое взаимодействие компонентов смеси по реакции:
Figure 00000002
Соотношение реагентов по реакции (2) обеспечивает получение расплава 73 мол. % LiF - 27 мол. % BeF2. Ток аргона предназначен для создания конвективных потоков, препятствующих «зарастанию» отверстий газовой системы кристаллами NH4F. В процессе получения соблюдают температурно-временной режим и проводят плавление в две стадии.
Нагрев смеси до температуры 230-250°С с последующей выдержкой в течение времени, достаточного для полного разложения тетрафторбериллата аммония, предусмотрен для расплавления этого компонента и образования в нем суспензии фторида лития. Это обусловлено тем, что реакция (2) является гетерогенной, притом, что эта стадия важна для наиболее полного протекания процесса. Верхний диапазон температуры в 250°С обусловлен активизацией процесса разложения тетрафторбериллата аммония, а нижний в 230°С - температурной его плавления.
На второй стадии температуру повышают выше температуры плавления Li2BeF4 (472°С), но не выше 530°С и выдерживают при этой температуре до получения топливной соли, соответствующей гомогенизации расплава. Верхний диапазон температуры в 530°С обусловлен необходимостью снижения количества Li2BeF4 в возгонах и соответственно с минимизацией потерь полезного продукта.
После проведения второй стадии продукт реакции (2) NH4F кристаллизуется в холодных частях реторты и может быть удален с них механически, например, при помощи скребка. При этом очистка от кислородных примесей по реакции (1) происходит только в минимально необходимом объеме внутри расплава, избыток NH3 улавливается в гидрозатворе и конденсируется на холодных частях ячейки в виде гидрата аммония (жидкость при нормальных условиях) образованного по реакции:
Figure 00000003
Таким образом, новый технический результат, достигаемый заявленным способом, заключается в возможности получения топливной соли для энергоблоков жидкосолевых реакторов без необходимости продувать с избытком газообразный HF.
Для получения топливной соли использовали тетрафторбериллат аммония (NH4)2BeF4, представляющий собой доступный полупродукт бериллиевых производств. В стеклоуглеродном контейнере смешивали порошки тетрафторбериллата аммония и фторида лития в количественном соотношении, соответствующем эвтектическому составу получаемой топливной соли. Контейнер размещали в кварцевой реторте, снабженной гидрозатвором, которую герметизировали. После чего в реторте создавали атмосферу аргона и его ток, необходимый для создания конвективных потоков, препятствующих «зарастанию» отверстий газовой системы кристаллами NH4F. Результаты экспериментальной проверки изложены в примерах осуществления способа.
Пример 1
Смесь из навесок тетрафторбериллата аммония в количестве 61,23 г и фторида лития в количестве 35,54 г, то есть в весовом соотношении, равным 1,72, размещали в стеклоуглеродном контейнере внутри реторты, затем нагревали в токе аргона до 230°С и выдерживали в течение 2 часов. Затем температуру нагрева смеси поднимали до 482°С и выдерживали в течение 2 часов. Полученный расплав охлаждали в токе аргона до комнатной температуры. Методом рентгенофазового анализа в полученном расплаве обнаружены фазы Li2BeF4 и LiF. Методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получен расплав 73 мол. % LiF - 27 мол % BeF2.
Пример 2
Смесь, аналогичную примеру 1, размещали в стеклоуглеродном контейнере внутри реторты, затем нагревали в токе аргона до 250°С и выдерживали в течение 1 часа. Затем температуру нагрева смеси поднимали до 520°С и выдерживали в течение 1 часа. Полученный расплав охлаждали в токе аргона до комнатной температуры. Методом рентгенофазового анализа в полученном расплаве обнаружены фазы Li2BeF4H LiF. Методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получен расплав 73 мол. % LiF - 27 мол % BeF2.
Пример 3
Смесь, аналогичную примеру 1, размещали в стеклоуглеродном контейнере внутри реторты, затем нагревали в токе аргона до 240°С и выдерживали в течение 2 часов. Затем температуру нагрева смеси поднимали до 530°С и выдерживали в течение 2 часов. Полученный расплав охлаждали в токе аргона до комнатной температуры. Методом рентгенофазового анализа в полученном расплаве обнаружены фазы Li2BeF4 и LiF. Методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получен расплав 73 мол. % LiF - 27 мол % BeF2.
Пример 4
Смесь из навесок тетрафторбериллата аммония в количестве 121,09 г и фторида лития в количестве 70,30 г, то есть в весовом соотношении, равным 1,72, размещали в стеклоуглеродном контейнере внутри реторты, затем нагревали в токе аргона до 230°С и выдерживали в течение 2 часов. Затем температуру нагрева смеси поднимали до 520°С и выдерживали в течение 2 часов. Полученный расплав охлаждали в токе аргона до комнатной температуры. Методом рентгенофазового анализа в полученном расплаве обнаружены фазы Li2BeF4 и LiF. Методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получен расплав 73 мол. % LiF - 27 мол % BeF2.
Пример 5
Смесь из навесок тетрафторбериллата аммония в количестве 86,00 г и фторида лития в количестве 52,00, то есть в весовом соотношении, равным 1,72, размещали в стеклоуглеродном контейнере внутри реторты, затем нагревали в токе аргона до 230°С и выдерживали в течение 2 часов. Затем температуру нагрева смеси поднимали до 490°С и выдерживали в течение 2 часов. Полученный расплав охлаждали в токе аргона до комнатной температуры. Методом рентгенофазового анализа в полученном расплаве обнаружены фазы Li2BeF4 и LiF. Методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получен расплав 73 мол. % LiF - 27 мол % BeF2.
Пример 6
Смесь из навесок тетрафторбериллата аммония в количестве 73,9 г и фторида лития в количестве 43,00 г, то есть в весовом соотношении, равным 1,72, размещали в стеклоуглеродном контейнере внутри реторты, затем нагревали в токе аргона до 230°С и выдерживали в течение 2 часов. Затем температуру нагрева смеси поднимали до 482°С и выдерживали в течение 2 часов. Полученный расплав охлаждали в токе аргона до комнатной температуры. Методом рентгенофазового анализа в полученном расплаве обнаружены фазы Li2BeF4 и LiF. Методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой подтверждено, что получен расплав мол. % 73 LiF - % BeF2.
Таким образом, без необходимости продувать с избытком газообразный HF, получена топливная соль на основе LiF-BeF2 для энергоблоков жидкосолевых реакторов.
Помимо этого, в отличие от прототипа, топливная соль (NH4)2BeF4 является продуктом, предшествующим получению чистого BeF2, что делает предложенный способ еще более экономически выгодным.

Claims (1)

  1. Способ получения топливной соли на основе LiF-BeF2 для жидкосолевых ядерных реакторов, включающий плавление смеси солей, содержащей фторид лития, отличающийся тем, что используют смесь, содержащую тетрафторбериллат аммония и фторид лития, взятые в количестве, соответствующем эвтектическому составу получаемой соли, нагревают в токе аргона до температуры 230-250°С, выдерживают в течение времени, достаточного для полного разложения тетрафторбериллата аммония, затем температуру нагрева смеси поднимают выше температуры плавления Li2BeF4, но не выше 530°С и выдерживают до получения топливной соли, которую охлаждают в токе аргона до комнатной температуры.
RU2022101619A 2022-01-24 Способ получения топливной соли на основе lif-bef2 для жидкосолевых ядерных реакторов RU2778908C1 (ru)

Publications (1)

Publication Number Publication Date
RU2778908C1 true RU2778908C1 (ru) 2022-08-29

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1746827A1 (ru) * 1991-01-09 1997-02-10 Научно-исследовательский институт атомных реакторов им.В.И.Ленина Способ переработки облученного уран-плутониевого топлива
JP2001133572A (ja) * 1999-10-29 2001-05-18 Toshiba Corp 溶融塩炉
WO2014128457A1 (en) * 2013-02-25 2014-08-28 Ian Richard Scott A practical molten salt fission reactor
US20140254740A1 (en) * 2012-12-28 2014-09-11 Global Nuclear Fuel - Americas, Llc Fuel rods with wear-inhibiting coatings and methods of making the same
RU2709966C2 (ru) * 2014-12-29 2019-12-25 ТерраПауэр, ЭлЭлСи Ядерное реакторное устройство для выработки энергии из ядерной реакции

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1746827A1 (ru) * 1991-01-09 1997-02-10 Научно-исследовательский институт атомных реакторов им.В.И.Ленина Способ переработки облученного уран-плутониевого топлива
JP2001133572A (ja) * 1999-10-29 2001-05-18 Toshiba Corp 溶融塩炉
US20140254740A1 (en) * 2012-12-28 2014-09-11 Global Nuclear Fuel - Americas, Llc Fuel rods with wear-inhibiting coatings and methods of making the same
WO2014128457A1 (en) * 2013-02-25 2014-08-28 Ian Richard Scott A practical molten salt fission reactor
RU2709966C2 (ru) * 2014-12-29 2019-12-25 ТерраПауэр, ЭлЭлСи Ядерное реакторное устройство для выработки энергии из ядерной реакции

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Н. Shaffer, "Preparation and Handling of Salt Mixtures for the Molten Salt Reactor Experiment" // ORNL-4616, OakRidgeNationalLaboratory (1971). Игнатьев и др. Жидкосолевые реакторы: новые возможности, проблемы и решения // Атомная энергия, 2012, т. 112, вып. 3, с. 157-165. *
Merle-Lucotte E., Delpech S., Renoult C. e.a. Optimizing the burning efficiency and the deployment capacities of the molten salt fast reactor. — In: Proc. of Global’09. Paris, France, 6—11 September, 2009, p. 1865—1872. *

Similar Documents

Publication Publication Date Title
Gunn et al. The Heats of Formation at 25° of the Crystalline Hydrides and Deuterides and Aqueous Hydroxides of Lithium, Sodium and Potassium1
EP1874684B1 (en) A method for preparing carbon nitride c3n4
Warf et al. Solutions of europium and ytterbium metals in liquid ammonia
JP2016530196A (ja) ハイドロジェンビス(フルオロスルホニル)イミドの合成
US20220204353A1 (en) Method for Synthesizing Ammonia, and Apparatus for Said Method
RU2778908C1 (ru) Способ получения топливной соли на основе lif-bef2 для жидкосолевых ядерных реакторов
JP2018131351A (ja) 大気中co2を回収して炭素を分離する方法
US8377416B2 (en) Method for releasing hydrogen from ammonia borane
Moulton et al. The Formation and Decomposition of Trichloromonogermane and Germanium Dichloride1
ES2388463T3 (es) Procedimiento de reciclado de tetrafluoruro de zirconio en zirconia
Devlin et al. Thermal decomposition and dehydration of sodium perchlorate monohydrate
Moody et al. Alkali metal nitrides
Xie et al. Study on the mechanism of deoxidization and purification for Li2BeF4 molten salt via graphite nanoparticles
Knausenberger et al. Preparation and phase studies of titanium phosphides
Nolting et al. Preparation and properties of high purity yttrium metal
US3084025A (en) Process for preparing chlorodi-fluoromaine
US4237105A (en) Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein
US3192016A (en) Xenon hexafluoride and method of making
Markowitz et al. THE DIFFERENTIAL THERMAL ANALYSIS OF PERCHLORATES. V. THE SYSTEM LiClO4—KClO4
RU2781870C1 (ru) СПОСОБ ПОЛУЧЕНИЯ СОЛЕВОЙ КОМПОЗИЦИИ НА ОСНОВЕ LiF-BeF2
Johnston et al. Efficiency of the electrolytic separation of chlorine isotopes
RU2777321C1 (ru) Способ получения безводного трифторида плутония
Farber The development of metal hydride chemistry
Morrow et al. The Reaction of Xenon with Dioxygen Difluoride. A New Method for the Synthesis of Xenon Difluoride
Stowe et al. Synthesis of a potential semiconductor neutron detector crystal LiGa (Se/Te) 2: Materials purity and compatibility effects