RU2775986C1 - Двойной молибдат натрия-висмута и способ его получения - Google Patents

Двойной молибдат натрия-висмута и способ его получения Download PDF

Info

Publication number
RU2775986C1
RU2775986C1 RU2022105548A RU2022105548A RU2775986C1 RU 2775986 C1 RU2775986 C1 RU 2775986C1 RU 2022105548 A RU2022105548 A RU 2022105548A RU 2022105548 A RU2022105548 A RU 2022105548A RU 2775986 C1 RU2775986 C1 RU 2775986C1
Authority
RU
Russia
Prior art keywords
temperature
moo
sodium
bismuth
stage
Prior art date
Application number
RU2022105548A
Other languages
English (en)
Inventor
Лидия Григорьевна Максимова
Ольга Ивановна Гырдасова
Татьяна Александровна Денисова
Яна Викторовна Бакланова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Application granted granted Critical
Publication of RU2775986C1 publication Critical patent/RU2775986C1/ru

Links

Images

Abstract

Изобретение относится к химической технологии получения неорганического соединения - молибдата натрия-висмута со структурой шеелита, который является перспективным материалом в качестве матрицы для люминесцентных устройств, таких как светодиоды белого свечения, газоразрядных мембран, сепараторов, сенсоров и топливных элементов. Предложен двойной молибдат натрия-висмута состава Na5Bi(MoO4)4 в качестве матрицы для лазерного материала. Способ получения Na5Bi(MoO4)4 включает растворение в дистиллированной воде кристаллического порошка молибдата натрия Na2MoO4 и кристаллического порошка гексамолибдата аммония (NH4)6Mo7O24⋅4H2O при соотношении (мол.): Na2MoO4:(NH4)6Mo7O24⋅4H2O, равном 1,25:0,107, при температуре 50-60°С и перемешивании с последующим упариванием до сухого остатка, растворение оксида висмута Bi2O3 в азотной кислоте HNO3 концентрации 40,34% при соотношении (мол.): Bi2O3:HNO3, равном 0,25:(7,7÷8,0), при температуре 35-40°С и перемешивании с последующим упариванием до сухого остатка, объединение остатков и добавление муравьиной кислоты НСООН концентрации 99,7% при соотношении (мол.): молибдат натрия:гексамолибдат аммония:оксид висмута:муравьиная кислота, равном 1,25:0,107:0,25:(26÷29), при температуре 30-35°С с последующей выдержкой при температуре 80-100°С до полного упаривания, затем полученный сухой осадок подвергают отжигу в три стадии: I стадия – при температуре 350-360°С в течение 7-8 ч; II стадия – при температуре 430-440°C в течение 5-6 ч; III стадия – при температуре 455-460°С в течение 3-4 ч с перешихтовкой и прессованием в таблетки под давлением 50 бар после второй стадии. Способ отличается универсальностью, воспроизводимостью и позволяет получать однофазные составы молибдатов висмута-натрия в высокодисперсном состоянии без участия токсичных органических соединений, обеспечивая при этом расширение ассортимента материалов, используемых в качестве лазерной матрицы. 2 н.п. ф-лы, 2 ил., 2 пр.

Description

Изобретение относится к области химической технологии, в частности, к получению нового неорганического соединения - молибдата натрия-висмута со структурой шеелита, который является перспективным материалом в качестве матрицы для люминесцентных устройств, таких как светодиоды белого свечения, газоразрядных мембран, сепараторов, сенсоров и топливных элементов.
Известен молибдат висмута натрия NaBi(MoxW1-xO4)2, где 0.1≤x≤0.9, c размером зерна 20-50 нм, способ получения которого включает следующие этапы: в растворителе изопропаноле проводят сольвотермическую реакцию между нитратом висмута и глицерином для получения глицеролата висмута; глицеролат висмута равномерно диспергируют в смешанном водном растворе молибдата натрия и вольфрамата натрия для гидротермальной реакции при температуре 150-200°С в течение 1-24 часов, затем естественным образом охлаждают до комнатной температуры, твердый порошок отделяют фильтрацией и сушат при 80-100°С (Патент CN 105481017; МПК B82Y40/00, C01G41/00; 2018 г.).
Использование известного материала с заменой части молибдат-ионов вольфрамат-ионами является одним из направлений развития для улучшения характеристик кристалла молибдата. Поскольку радиус и химические свойства ионов Bi3+ и редкоземельных элементов (Re3+) близки друг к другу, легирование ионами редкоземельных элементов легко достигается для получения высокостабильного материал лазерной матрицы. Однако конечный продукт загрязнен примесью углерода вследствие неполного удаления углерода из органических комплексов при температурах отжига 150-200°С, что негативно сказывается в случае его использования в качестве лазерной матрицы.
Известен молибдат висмута натрия состава NaBi(MoO4)2, который может быть использован в качестве матрицы лазерного кристалла, допированного редкоземельными металлами. Способ получения известного материала включает следующие стадии: растворение нитрата висмута в этиленгликоле и получения раствора, содержащего висмут; растворение молибдата натрия в этиленгликоле и получения раствора, содержащего молибден; смешивание раствора, содержащего висмут, с раствором, содержащим молибден, добавление смеси этанола и воды в смешанный раствор, равномерное перемешивание и помещение автоклав для сольвотермической реакции, а затем фильтрация, промывка и сушка для получения наноразмерного материала молибдата висмута-натрия. Этиленгликоль и этанол используют в качестве растворителей, а нитрат висмута и молибдат натрия используют в качестве сырья для проведения сольвотермической реакции. Получают молибдат натрия-висмута чистотой более 99% со средним диаметром нанокристаллических частиц 60 нм (Патент CN107032401; МПК B82Y 30/00; B82Y 40/00; C01G 39/00; 2021 г.).
Однако известный материал может быть получен с использованием токсичных органических соединений и специального оборудования.
Таким образом, перед авторами стояла задача с целью расширения ассортимента материалов, используемых в качестве лазерной матрицы, получить материал нового состава без использования при его получении токсичных органических соединений.
Поставленная задача решена путем использования нового химического соединения - двойного молибдата натрия-висмута состава Na5Bi(MoO4)4.
Поставленная задача также решена в способе получения двойного молибдата натрия-висмута состава Na5Bi(MoO4)4, включающем растворение в дистиллированной воде кристаллического порошка молибдата натрия Na2MoO4 и кристаллического порошка гексамолибдата аммония (NH4)6Mo7O24⋅4H2O при соотношении (мол): Na2MoO4 : (NH4)6Mo7O24⋅4H2O = 1,25 : 0,107 при температуре 50-60°С и перемешивании с последующим упариванием до сухого остатка, растворение оксида висмута Bi2O3 в азотной кислоте HNO3 концентрации 40,34% при соотношении (мол.): Bi2O3:HNO3=0,25 : (7,7÷8,0) при температуре 35-40°С и перемешивании с последующим упариванием до сухого остатка, объединение осадков и добавление муравьиной кислоты НСООН концентрации 99,7% при соотношении (мол.): молибдат натрия : гексамолибдат аммония : оксид висмута: муравьиная кислота, равном 1,25 : 0,107 : 0,25 : 26,0 ÷ 29,0, при температуре 30-35°С с последующей выдержкой при температуре 80-100°C до полного упаривания, затем полученный сухой осадок подвергают отжигу в три стадии: I стадия - при температуре 350-360°C в течение 7-8 ч; II стадия - при температуре 430-440°С в течение 5-6 ч; III стадия - при температуре 455-460°C в течение 3 - 4 ч. с перешихтовкой и прессованием после второй стадии.
В настоящее время из патентной и научно-технической литературы не известен двойной молибдат натрия-висмута состава Na5Bi(MoO4)4, а также способ его получения.
Использование двойных молибдатов в качестве лазерных матриц является перспективным, поскольку люминофоры данного типа использовались в производстве цветных дисплеев и газоразрядных люминесцентных ламп дневного света. Авторами было установлено, что существенным фактором, определяющим состав и структуру конечного продукта, является выбор исходных соединений и условий получения. Авторами установлено, что использование в качестве исходных молибдата натрия, гексамолибдата аммония, оксида висмута и муравьиной кислоты обусловливает получение промежуточного продукта - комплексной молибден- и висмутсодержащей соли ориентировочного состава Na5Bi(MoO)[(HCOO]12⋅nH2O, которая включает в свой состав одновременно источник висмута, молибдена, натрия и анион карбоновой кислоты в виде формиатной группы, препятствующей агломерированию частиц. В процессе прокаливания сложного формиата Na5Bi(MoO)[(HCOO]12 происходит разрушение связи металл-формиат-ион с распадом аниона HCOOна CO2 и H2 и удалением газообразных продуктов, что приводит к образованию пустот и пор внутри образующегося порошка соединения состава Na5Bi(MoO4)4, что способствует увеличению площади активной поверхности, повышает гомогенизацию продуктов термолиза и обеспечивает однофазность конечного продукта. Использование прекурсорной технологии позволяет, таким образом, управлять составом, а также морфологическими и структурными характеристиками сложного оксида. При этом существенным является соотношение смеси осадков молибдата натрия Na2MoO4 и гексамолибдата аммония (NH4)6Mo7O24⋅4H2O к количеству вводимой муравьиной кислоты; так, при мольном соотношении менее 26 не полностью удаляются нитрат-ионы, вследствие чего возможно нарушение чистоты конечного продукта за счет примеси промежуточных соединений (пиромолибдата натрия, оксидов металлов). При мольном соотношении более 29 происходит загрязнение конечного продукта углеродной примесью. Необходимость проведения отжига в три стадии требуется для предотвращения образования примесных фаз (пиромолибдата натрия Na2Mo2O7) в конечном продукте.
Предлагаемый способ отличается универсальностью, воспроизводимостью, позволяет получать однофазные составы молибдатов висмута-натрия в высокодисперсном состоянии без участия токсичных органических соединений.
Новое химическое соединение состава Na5Bi(MoO4)4 может быть получено следующим образом. Берут кристаллический порошок молибдата натрия Na2MoO4 и кристаллический порошок гексамолибдата аммония (NH4)6Mo7O24⋅4H2O и растворяют в минимальном количестве дистиллированной воды при соотношении (мол): Na2MoO4:(NH4)6Mo7O24⋅4H2O = 1,25:0,107 при температуре 50-60°С и перемешивании с последующим упариванием до сухого остатка, навеску оксида висмута Bi2O3 растворяют в азотной кислоте HNO3 концентрации 40,34% при соотношении (мол.) : Bi2O3:HNO3=0,25: (7,7÷8,0) при температуре 35-40°С и перемешивании с последующим упариванием до сухого остатка, объединяют осадки и добавляют муравьиную кислоту НСООН концентрации 99,7% при соотношении (мол.):молибдат натрия : гексамолибдат аммония : оксид висмута: муравьиная кислота = 1,25 : 0,107 : 0,25 : (26÷29) при температуре 30-35°С с последующей выдержкой при температуре 80-100°С до полного упаривания, затем полученный сухой осадок подвергают отжигу в три стадии: I стадия - при температуре 350÷360°С в течение 7÷8 ч; II стадия - при температуре 430÷440°С в течение 5÷6 ч; III стадия - при температуре 455÷460°C в течение 3÷4 ч., с перешихтовкой и прессованием после второй стадии. Полученный продукт аттестуют рентгенофазовым анализом, определяют параметры элементарной ячейки.
На фиг. 1 представлена рентгенограмма Na5Bi(MoO4)4
На фиг. 2 представлены СЭМ изображения Na5Bi(MoO4)4
Получение двойного молибдата натрия-висмута иллюстрируется следующими примерами.
Пример 1
Берут 2,5740 г Na2MoO4 (чда), прокаленный при 350°C, и 1,3233 г (NH4)6Mo7O24 4H2O (хч); растворяют в термостойком стакане в 45 мл H2O, что соответствует соотношению (мол.): Na2MoO4 : (NH4)6Mo7O24·4H2O =1,25 : 0,107 упаривают до сухого остатка. В другом стакане (V=50 мл) растворяют 1,1649 г кристаллического порошка оксида висмута Bi2O3(хч), прокаленного при 600°C в течение 2 ч., в 9,6 мл 40,34%-ного раствора HNO3, что соответствует соотношению (мол) Bi2O3 : 40,34%-ная HNO3 = 0,25 : 7,7, с подогревом при 40°С и перемешиванием, потом упаривают до сухого остатка. Затем оба порошка смешивают, перешихтовывают в агатовой ступке и пересыпают в термостойкий стакан объемом 250 мл. Приготовленную смесь белого цвета подогревают до температуры 35°С, добавляют 10 мл муравьиной кислоты HCOOH концентрации 99,7%, что соответствует соотношению (мол.): молибдат натрия : гексамолибдат аммония : оксид висмута : муравьиная кислота = 1,25 : 0.107 : 0,25 : 26. Выдерживают на плитке при температуре 100°С и перемешивании с упариванием до сухого остатка. Образующийся осадок серо-голубого цвета отжигают в 3 стадии: I- при 350°C в течение 7 ч, II - при температуре 440°С в течение 5 ч; III стадия - при температуре 460°C в течение 3 ч с перешихтовкой и прессованием в таблетки под давлением 50 бар после второй стадии прокаливания. Полученный продукт белого цвета по данным рентгенофазового и химического анализов является однофазным и соответствует составу Na5(Bi(MoO4)4 (см. фиг.1), изоструктурному известному Na5La(MoO4)4, с параметрами элементарной ячейки (Пр.гр. I41/a, Z=4): а = b = 11,49022(4) Å; с = 11.50507(7) Å; α=β=γ= 90°. По данным СЭМ средний размер частиц составляет 1,15 мкм.
Пример 2
Берут 2,8314 г Na2MoO4 (чда), прокаленный при 350°C, и 1,4556 г (NH4)6Mo7O24 4H2O (хч); растворяют в термостойком стакане в 55 мл H2O, что соответствует соотношению (мол.): Na2MoO4 : (NH4)6Mo7O24·4H2O =1,25 : 0,107, упаривают до сухого остатка. В другом стакане (V=50 мл) растворяют 1,2814 г кристаллического порошка оксида висмута Bi2O3(хч), прокаленного при 600°С в течение 2 ч., в 10 мл 40,34%-ного раствора HNO3, что соответствует соотношению (мол) Bi2O3 : 40,34%-ная HNO3= 0,25 : 8,0, с подогревом при 40°С и перемешиванием, потом упаривают до сухого остатка. Затем оба порошка смешивают, перешихтовывают в агатовой ступке и пересыпают в термостойкий стакан объемом 250 мл. Приготовленную смесь белого цвета подогревают до температуры 35°С, добавляют 11 мл муравьиной кислоты HCOOH концентрации 99,7%, что соответствует соотношению (мол.): молибдат натрия : гексамолибдат аммония : оксид висмута : муравьиная кислота = 1,25 : 0.107 : 0,25 : 29. Выдерживают на плитке при температуре 100°С и перемешивании до упаривания до сухого остатка. Образующийся осадок серо-голубого цвета отжигают в 3 стадии: I- при 360°C в течение 8 ч., II - при температуре 430°С в течение 6 ч.; III стадия - при температуре 455°C в течение 4 ч с перешихтовкой и прессованием в таблетки под давлением 50 бар после второй стадии прокаливания. Полученный продукт белого цвета по данным рентгенофазового, химического анализов является однофазным и соответствует составу Na5(Bi(MoO4)4, изоструктурному известному Na5La(MoO4)4, с параметрами элементарной ячейки (Пр.гр. I41/a, Z=4): а = b = 11,49022(4) Å; с = 11.50507(7) Å; α=β=γ= 90°. По данным СЭМ средний размер частиц составляет 1,15 мкм.
Таким образом, авторами предлагается способ получения нового химического соединения - двойного молибдата натрия-висмута состава Na5(Bi(MoO4)4, обеспечивающий расширение ассортимента материалов, используемых в качестве лазерной матрицы.

Claims (2)

1. Двойной молибдат натрия-висмута состава Na5Bi(MoO4)4 в качестве матрицы для лазерного материала.
2. Способ получения двойного молибдата натрия-висмута состава Na5Bi(MoO4)4 по п.1, включающий растворение в дистиллированной воде кристаллического порошка молибдата натрия Na2MoO4 и кристаллического порошка гексамолибдата аммония (NH4)6Mo7O24⋅4H2O при соотношении (мол.): Na2MoO4:(NH4)6Mo7O24⋅4H2O, равном 1,25:0,107, при температуре 50-60°С и перемешивании с последующим упариванием до сухого остатка, растворение оксида висмута Bi2O3 в азотной кислоте HNO3 концентрации 40,34% при соотношении (мол.): Bi2O3:HNO3, равном 0,25:(7,7÷8,0), при температуре 35-40°С и перемешивании с последующим упариванием до сухого остатка, объединение остатков и добавление муравьиной кислоты НСООН концентрации 99,7% при соотношении (мол.): молибдат натрия:гексамолибдат аммония:оксид висмута:муравьиная кислота, равном 1,25:0,107:0,25:(26÷29), при температуре 30-35°С с последующей выдержкой при температуре 80-100°С до полного упаривания, затем полученный сухой осадок подвергают отжигу в три стадии: I стадия – при температуре 350-360°С в течение 7-8 ч; II стадия – при температуре 430-440°C в течение 5-6 ч; III стадия – при температуре 455-460°С в течение 3-4 ч с перешихтовкой и прессованием в таблетки под давлением 50 бар после второй стадии.
RU2022105548A 2022-03-02 Двойной молибдат натрия-висмута и способ его получения RU2775986C1 (ru)

Publications (1)

Publication Number Publication Date
RU2775986C1 true RU2775986C1 (ru) 2022-07-12

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807408C1 (ru) * 2023-04-24 2023-11-14 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Сложный молибдат натрия-висмута-циркония

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105668627A (zh) * 2016-01-15 2016-06-15 武汉工程大学 一种纳米钼酸铋钠及其制备方法
CN107032401A (zh) * 2017-05-27 2017-08-11 武汉工程大学 一种钼酸铋钠纳米材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105668627A (zh) * 2016-01-15 2016-06-15 武汉工程大学 一种纳米钼酸铋钠及其制备方法
CN107032401A (zh) * 2017-05-27 2017-08-11 武汉工程大学 一种钼酸铋钠纳米材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЖУРАВЛЕВ Н. А. и др. Локальное окружение катионов в двойных шеелитах Li(Na)Bi (MoO4)2 по данным ЯМР и квантово-химических расчетов, "Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов", 2017, N 9, стр. 189-198. ZHANG J. et al. Optical Characterization of Novel Crystal Na5Bi(WO4)2(MoO4)2:Yb3+, "Advanced Materials Research. - Trans Tech Publications Ltd", 2013, Vol.787, pp 281-285. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807408C1 (ru) * 2023-04-24 2023-11-14 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Сложный молибдат натрия-висмута-циркония
RU2814778C1 (ru) * 2023-07-17 2024-03-04 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Ниобий-замещенный молибдат натрия-циркония и способ его получения

Similar Documents

Publication Publication Date Title
Bensalah et al. Synthesis and optical characterizations of undoped and rare-earth-doped CaF2 nanoparticles
Rao Preparation and characterization of fine‐grain yttrium‐based phosphors by sol‐gel process
Trukhanov et al. Synthesis and structure of nanocrystalline La 0.50 Ba 0.50 MnO 3
Braziulis et al. Sol-gel derived europium doped CaMoO4: Eu3+ with complex microstructural and optical properties
DE2951944A1 (de) Erzeugnis aus keramischem material
Zalga et al. On the sol–gel preparation of different tungstates and molybdates
CN105712299A (zh) 不溶于水的金属氢氧化物及其制备方法
Leleckaite et al. Sol‐gel preparation and characterization of codoped yttrium aluminium garnet powders
Xu et al. KLn (MoO 4) 2 micro/nanocrystals (Ln= La–Lu, Y): systematic hydrothermal crystallization, structure, and the performance of doped Eu 3+ for optical thermometry
RU2775986C1 (ru) Двойной молибдат натрия-висмута и способ его получения
Wu et al. In situ hydrothermal synthesis of YVO4 nanorods and microtubes using (NH4) 0.5 V2O5 nanowires templates
Yang et al. Hydrothermal synthesis of SrCO3: Eu3+/Tb3+ microneedles and their luminescence properties
Zheng et al. Influence of microwave hydrothermal reaction factor on the morphology of NaY (MoO 4) 2 nano-/micro-structures and luminescence properties of NaY (MoO 4) 2: Tb 3+
Yadav et al. Structural and optical analysis of Eu3+ doped BiVO4 nanophosphor by combustion method
DE68918100T2 (de) Metalloxid-keramische pulver und verfahren zur herstellung.
Huang et al. Malate-aided selective crystallization and luminescence comparison of tetragonal and monoclinic LaVO 4: Eu nanocrystals
áM Rodriguez et al. Luminescent characteristics and morphology of Eu 3+: YVO 4 phosphor powders prepared by HCR and flux techniques
Sheng et al. Solvothermal synthesis and luminescence properties of BaCeF 5, and BaCeF 5: Tb 3+ nanocrystals
JP2018070394A (ja) 低温作動可能なペロブスカイト型酸化物およびその製造法
KR100280369B1 (ko) 녹색발광형광체의제조방법
Han et al. Soft solution processing of cerium hydroxysulfate powders with different morphologies
RU2704990C1 (ru) Способ получения сложного литиевого танталата лантана и кальция
CN115180940A (zh) 一种黄光激光用Dy,Tb:LuAG透明陶瓷及其制备方法
KR100945250B1 (ko) 기공구조의 실리카를 이용한 페로브스카이트 구조를 갖는산화물 나노분말 및 산화물과 실리카의 복합체 나노분말의제조방법
RU2803302C1 (ru) Способ получения сложного оксида ниобия и стронция