RU2772810C1 - Траншейный роторный экскаватор - Google Patents

Траншейный роторный экскаватор Download PDF

Info

Publication number
RU2772810C1
RU2772810C1 RU2021127078A RU2021127078A RU2772810C1 RU 2772810 C1 RU2772810 C1 RU 2772810C1 RU 2021127078 A RU2021127078 A RU 2021127078A RU 2021127078 A RU2021127078 A RU 2021127078A RU 2772810 C1 RU2772810 C1 RU 2772810C1
Authority
RU
Russia
Prior art keywords
output
input
rotor
excavator
drive
Prior art date
Application number
RU2021127078A
Other languages
English (en)
Inventor
Яков Львович Либерман
Ольга Анатольевна Лукашук
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Application granted granted Critical
Publication of RU2772810C1 publication Critical patent/RU2772810C1/ru

Links

Images

Abstract

Изобретение относится к землеройной технике и может быть использовано при производстве строительных работ. Технический результат – повышение надежности экскаватора. Траншейный роторный экскаватор содержит ковшовый ротор с приводом его вращения, тягач с приводом подачи, отвальный конвейер с приводом перемещения грунта, выносимого из траншеи ротором, и регулятор скорости. Экскаватор снабжен первым и вторым блоками деления сигналов, блоком настройки средней паспортной подачи экскаватора на ковш, выход которого соединен с шиной ввода делимого первого блока деления, блоком настройки средней паспортной скорости вращения ротора, выход которого соединен шиной ввода делителя первого блока деления, задатчиком среднего значения коэффициента разрыхления грунта траншеи, подлежащей разработке экскаватором, задатчиком текущей скорости вращения ротора, измерителем грунта, установленным между тягачом и ротором, блоком вычисления текущего значения коэффициента разрыхления грунта, вход которого соединен с выходом измерителя, сглаживающим фильтром, вход которого соединен с выходом блока вычисления текущего значения коэффициента разрыхления грунта, трехвходовым блоком умножения сигналов. При этом первый вход трехвходового блока умножения сигналов соединен с выходом первого блока делением сигналов, второй вход соединен с задатчиком среднего значения коэффициента разрыхления грунта, а третий вход соединен с выходом задатчика текущей скорости вращения ротора. При этом выход блока умножения соединен с шиной ввода делимого второго блока деления, выход фильтра соединен с шиной ввода делителя второго блока деления. Регулятор скорости экскаватора выполнен в виде трех автономных блоков-регуляторов, вход первого из которых соединен с выходом задатчика текущей скорости вращения ротора, а выход – с приводом вращения ротора, вход второго соединен с выходом второго блока деления, а выход – с приводом подачи тягача, а третий выполнен в виде блока программирования, соединенного с приводом отвального конвейера. 1 ил.

Description

Предлагаемое изобретение относится к землеройной технике и может быть использовано при производстве строительных работ.
В настоящее время различные траншейные роторные экскаваторы известны. Они включают в себя привод (чаще всего дизель-электрический) и генератор переменного тока, выполняющий функции питания привода (Б.Н. Абрамов, О.А. Лукашук. Многоковшовые экскаваторы: проектирование и расчет. – Екатеринбург: УрФУ, 2012, стр. 51-52). Регулирование работы приводов в таких экскаваторах производится путем управления режимами работы дизеля, производимого водителем тягача. При этом водитель зачастую действует интуитивно, не согласуя работу привода тягача с работой ротора экскаватора. Этого недостатка лишен экскаватор, защищенный авторским свидетельством СССР № 1717731 А1, кл. Е02F3/26 (авторы Я.А. Локшин, Ю.К. Мыльников, В.В. Расин). Указанный экскаватор, принятый нами за прототип, содержит электропривод, включающий электродвигатели хода (движения подачи тягача), ротора и транспортера, подключенные к генератору параллельно друг другу, а также пускатель генератора. Электродвигатель хода и генератор образуют, по существу, привод тягача, электродвигатель вращения ротора и тот же генератор образуют привод вращения ротора, а пускатель играет роль преобразователя-регулятора работы приводов тягача, но одновременно с ним и двигателей ротора и отвального транспортера, т.е. скорости работы экскаватора в целом. Управляя приводом тягача, водитель управляет одновременно с этим и приводом ротора, что обеспечивает их согласованную работу: увеличивая подачу на ковш экскаватора (скорость хода тягача), водитель увеличивает и скорость вращения ротора экскаватора и наоборот, уменьшая первое, он уменьшает и второе. Подача на ковш и скорость вращения ротора находятся в функциональной связи. Это повышает надежность экскаватора, поскольку, в определенной степени, защищает привод тягача от перегрузок.
Вместе с тем прототип имеет и существенный недостаток: если водитель увеличит подачу на ковш экскаватора, увеличив скорость тягача, то перегрузка его привода может произойти из-за увеличения текущей плотности грунта разрабатываемой траншеи даже при параллельном росте скорости вращения ротора экскаватора. В результате может произойти авария. Таким образом оказывается, что надёжность экскаватора, защищенного авторским свидетельством – прототипом, не всегда достаточна.
Недостаточная надежность является проблемой, которую призвана разрешить предполагаемое изобретение.
Технически решение этой проблемы осуществляется путем того, что траншейный роторный экскаватор, содержащий ковшовый ротор с приводом его вращения, тягач с приводом подачи, отвальный конвейер с приводом перемещения грунта, выносимого из траншеи ротором и регулятор скорости, отличается от прототипа тем, что он снабжен первым и вторым блоками деления сигналов, блоком настройки средней паспортной подачи экскаватора на ковш, выход которого соединен с шиной ввода делимого первого блока деления, блоком настройки средней паспортной скорости вращения ротора, выход которого соединен с шиной ввода делителя первого блока деления, задатчиком среднего значения коэффициента разрыхления грунта траншеи, подлежащей разработке экскаватором, задатчиком текущей скорости вращения ротора, измерителем текущей плотности грунта, установленным на раме экскаватора между тягачом и ротором, блоком вычисления текущего значения коэффициента разрыхления грунта, вход которого соединен с выходом измерителя, сглаживающим фильтром, вход которого соединен с выходом блока вычисления текущего значения коэффициента разрыхления грунта, трехвходовым блоком умножения сигналов, первый вход которого соединен с выходом первого блока делением сигналов, второй вход соединен с задатчиком среднего значения коэффициента разрыхления грунта, а третий вход соединен с выходом задатчика текущей скорости вращения ротора, при этом выход блока умножения соединен с шиной ввода делимого второго блока деления, выход фильтра соединен с шиной ввода делителя второго блока деления, а регулятор скорости экскаватора выполнен в виде трех автономных блоков-регуляторов, вход первого из которых соединен с выходом задатчика текущей скорости вращения ротора, а выход – с приводом вращения ротора, вход второго соединен со выходом второго блока деления, а выход – с приводом подачи тягача, а третий выполнен в виде блока программирования, соединенного с приводом конвейера.
На фиг. 1 приведена блок-схема предлагаемого траншейного роторного экскаватора. Она содержит привод тягача 1 и блок-регулятор 2 подачи экскаватора, выход которого соединен с управляющим входом привода 1, первый 3 и второй 4 блоки деления сигналов, блок 5 настройки средней паспортной подачи экскаватора на ковш, выход которого соединен с шиной 6 ввода делимого первого блока деления 3, блок 7 настройки средней паспортной скорости вращения ротора, выход которого соединен с шиной 8 ввода делителя первого блока деления 3, задатчик 9 среднего значения коэффициента разрыхления грунта траншеи, подлежащей разработке экскаватором, задатчик 10 текущей скорости вращения ротора, измеритель текущей плотности грунта 11, установленный на раме экскаватора между тягачом и ротором, блок 12 вычисления текущего значения коэффициента разрыхления грунта, вход которого соединен с выходом измерителя 11, сглаживающий фильтр 13, вход которого соединен с выходом блока 12 вычисления текущего значения коэффициента разрыхления грунта, трехвходовой блок умножения сигналов 14, первый вход которого 15 соединен с выходом первого блока деления сигналов 3, второй вход 16 соединен с задатчиком 9 среднего значения коэффициента разрыхления грунта, а третий вход 17 соединен с задатчиком 10 текущей скорости вращения ротора. При этом выход блока умножения 14 соединен с шиной 18 ввода делимого второго блока деления 4, выход фильтра 13 соединен с шиной ввода 19 делителя второго блока деления 4, а регулятор скорости экскаватора выполнен в виде трех автономных блоков-регуляторов 20, 2 и 23, вход первого из которых (блока 20) соединен с выходом задатчика 10 текущей скорости вращения ротора, а выход – с приводом 21 вращения ротора 24, вход второго (блока 2) соединен со выходом второго блока деления 4, а выход – с приводом 1 подачи тягача 22, а третий (блока 23) выполнен в виде блока программирования привода 25 отвального конвейера 26.
Блоки 2, 3, 4, 7, 9, 10, 13 и др. построены на типовых элементах автоматики. Измеритель 11 представляет собой бесконтактный ультразвуковой плотномер, выполненный, например, согласно «Способу бесконтактного определения плотности почв», разработанному Л.Т. Филимоновым и др. и защищенному патентом ГДР № 289338 от 25.04.1991, или подобный описанным в работе А.А. Васильева и др. «Прменение ультразвука для определения плотности грунтов» (сайт ofmg.ru>index.php/ofmg/article/view/4553). Блок 12 выполнен в виде преобразователя, реализующего функцию k=f(x), где х – сигнал от измерителя 11, k – коэффициент разрыхления грунта.
При эксплуатации экскаватора вначале настраивают его автоматику. Для этого блоком 5 сначала вводят среднее паспортное значение подачи экскаватора на ковш
С ̅=(C_min+C_max)/2,
где C_max и C_min – наибольшее и наименьшее значения подачи экскаватора на ковш согласно паспорту экскаватора.
После этого блоком 7 вводят среднее паспортное значение скорости вращения ротора экскаватора
n ̅=(n_min+n_max)/2,
где n_max и n_min – наибольшее и наименьшее значения скорости ротора согласно паспорту экскаватора. Далее, основываясь на результатах геологических изысканий, задатчиком 9 вводят среднее значение коэффициента разрыхления грунта k ̅ траншеи, подлежащей разработке экскаватором. Программатором 23 задается целесообразная скорость работы привода 25 конвейера 26. На этом настройка автоматики заканчивается.
После ее завершения экскаватор может запускаться в действие.
Его работа происходит в соответствии с алгоритмом
С=(С ̅⋅k ̅)/(n ̅⋅k)⋅n,
где С – текущая подача экскаватора на ковш, n – текущая скорость вращения ротора экскаватора, k – текущий коэффициент разрыхления грунта траншеи. Запускается он водителем тягача путем ввода задатчиком 10 требуемого значения n. Ротор начинает вращаться, измеритель 11 выдает сигнал, соответствующий текущей плотности грунта траншеи, этот сигнал блоком 12 преобразуется в k, а последнее освобождается от случайных флуктуаций фильтром 13. На шину 18 блока 4 поступает сигнал, отображающий С ̅⋅k ̅⋅n/n ̅, а на шину 19 этого блока – сигнал, отображающий k. На выходе блока 4 появляется сигнал, отображающий С, который, поступая на блок-регулятор 2 и далее на привод тягача 22, заставляет последний двигаться со скоростью, соответствующей С. Если водитель изменит скорость вращения ротора n или изменится текущее значение k, то автоматически изменится и подача на ковш, которую осуществляет тягач экскаватора.
Техническим результатом предложения является повышение надежности экскаватора и, как следствие, предотвращение аварий, вызванных неравномерностью плотности грунта разрабатываемой траншеи.

Claims (1)

  1. Траншейный роторный экскаватор, содержащий ковшовый ротор с приводом его вращения, тягач с приводом подачи, отвальный конвейер с приводом перемещения грунта, выносимого из траншеи ротором, и регулятор скорости, отличающийся тем, что он снабжен первым и вторым блоками деления сигналов, блоком настройки средней паспортной подачи экскаватора на ковш, выход которого соединен с шиной ввода делимого первого блока деления, блоком настройки средней паспортной скорости вращения ротора, выход которого соединен шиной ввода делителя первого блока деления, задатчиком среднего значения коэффициента разрыхления грунта траншеи, подлежащей разработке экскаватором, задатчиком текущей скорости вращения ротора, измерителем грунта, установленным между тягачом и ротором, блоком вычисления текущего значения коэффициента разрыхления грунта, вход которого соединен с выходом измерителя, сглаживающим фильтром, вход которого соединен с выходом блока вычисления текущего значения коэффициента разрыхления грунта, трехвходовым блоком умножения сигналов, первый вход которого соединен с выходом первого блока делением сигналов, второй вход соединен с задатчиком среднего значения коэффициента разрыхления грунта, а третий вход соединен с выходом задатчика текущей скорости вращения ротора, при этом выход блока умножения соединен с шиной ввода делимого второго блока деления, выход фильтра соединен с шиной ввода делителя второго блока деления, регулятор скорости экскаватора выполнен в виде трех автономных блоков-регуляторов, вход первого из которых соединен с выходом задатчика текущей скорости вращения ротора, а выход – с приводом вращения ротора, вход второго соединен с выходом второго блока деления, а выход – с приводом подачи тягача, а третий выполнен в виде блока программирования, соединенного с приводом отвального конвейера.
RU2021127078A 2021-09-15 Траншейный роторный экскаватор RU2772810C1 (ru)

Publications (1)

Publication Number Publication Date
RU2772810C1 true RU2772810C1 (ru) 2022-05-25

Family

ID=

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU368375A1 (ru) * 1971-03-26 1973-01-26 Устройство для автоматического управления приводом поворота роторного экскаватора
SU876867A1 (ru) * 1980-02-20 1981-10-30 Киевский Институт Автоматики Им. Хху Съезда Кпсс Устройство дл автоматического управлени роторным экскаватором
SU899763A1 (ru) * 1980-06-06 1982-01-23 Киевский институт автоматики им.ХХУ съезда КПСС Устройство дл автоматического управлени роторным экскаватором
SU988987A1 (ru) * 1981-08-26 1983-01-15 Киевский институт автоматики им.ХХУ съезда КПСС Устройство дл автоматического управлени роторным экскаватором
SU1434039A1 (ru) * 1987-03-25 1988-10-30 Киевский институт автоматики им.ХХУ съезда КПСС Устройство дл автоматического управлени роторным экскаватором
SU1717731A1 (ru) * 1988-10-10 1992-03-07 Брянский Завод Ирригационных Машин "Ирмаш" Электропривод роторного экскаватора
CN105849338A (zh) * 2016-01-20 2016-08-10 株式会社小松制作所 混合动力作业机械的控制装置、混合动力作业机械、以及混合动力作业机械的控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU368375A1 (ru) * 1971-03-26 1973-01-26 Устройство для автоматического управления приводом поворота роторного экскаватора
SU876867A1 (ru) * 1980-02-20 1981-10-30 Киевский Институт Автоматики Им. Хху Съезда Кпсс Устройство дл автоматического управлени роторным экскаватором
SU899763A1 (ru) * 1980-06-06 1982-01-23 Киевский институт автоматики им.ХХУ съезда КПСС Устройство дл автоматического управлени роторным экскаватором
SU988987A1 (ru) * 1981-08-26 1983-01-15 Киевский институт автоматики им.ХХУ съезда КПСС Устройство дл автоматического управлени роторным экскаватором
SU1434039A1 (ru) * 1987-03-25 1988-10-30 Киевский институт автоматики им.ХХУ съезда КПСС Устройство дл автоматического управлени роторным экскаватором
SU1717731A1 (ru) * 1988-10-10 1992-03-07 Брянский Завод Ирригационных Машин "Ирмаш" Электропривод роторного экскаватора
CN105849338A (zh) * 2016-01-20 2016-08-10 株式会社小松制作所 混合动力作业机械的控制装置、混合动力作业机械、以及混合动力作业机械的控制方法

Similar Documents

Publication Publication Date Title
JP5244214B2 (ja) 作業機械のエンジン制御装置およびそのエンジン制御方法
JP5124033B2 (ja) 作業機械のエンジン制御装置およびそのエンジン制御方法
AU2013263703B2 (en) System and method for optimizing a cut location
CN101809231B (zh) 用于储存和施加流体产品的装置
DE112012000060B4 (de) Brennkraftmaschinensteuerungsvorrichtung einer Arbeitsmaschine und Brennkraftmaschinensteuerungsverfahren für die Maschine
CN103419782B (zh) 行走纠偏装置、行走纠偏方法及工程机械
KR101799660B1 (ko) 작업 기계의 엔진 제어 장치 및 그 엔진 제어 방법
CN104947732B (zh) 混合动力工程机械
KR101719090B1 (ko) 내연 기관의 제어 장치, 작업 기계 및 내연 기관의 제어 방법
DE102021201642A1 (de) System und verfahren zur laufzeitplanung eines mit einer elektrischen batterie betriebenen arbeitsfahrzeugs
RU2772810C1 (ru) Траншейный роторный экскаватор
EP3309377B1 (en) System and method for controlling engine operation
CN106121839A (zh) 作业机械的发动机控制装置及其发动机控制方法
WO2016027463A1 (ja) 液圧ポンプの駆動システム
US7246001B2 (en) Method for controlling the ground speed of a work machine
CN110720175B (zh) 用于可变直流链路电压的开关磁阻电动机功率估计补偿
CN106523445A (zh) 一种车辆的控制装置和控制方法
CN114616120A (zh) 直流总线调节的控制系统
JPH01193651A (ja) ブルドーザの履帯スリップ検知装置