RU2771886C1 - Способ получения защитных супергидрофобных покрытий на сплавах алюминия - Google Patents

Способ получения защитных супергидрофобных покрытий на сплавах алюминия Download PDF

Info

Publication number
RU2771886C1
RU2771886C1 RU2021119106A RU2021119106A RU2771886C1 RU 2771886 C1 RU2771886 C1 RU 2771886C1 RU 2021119106 A RU2021119106 A RU 2021119106A RU 2021119106 A RU2021119106 A RU 2021119106A RU 2771886 C1 RU2771886 C1 RU 2771886C1
Authority
RU
Russia
Prior art keywords
carried out
uptfe
sodium
peo
coating
Prior art date
Application number
RU2021119106A
Other languages
English (en)
Inventor
Сергей Васильевич Гнеденков
Сергей Леонидович Синебрюхов
Владимир Сергеевич Егоркин
Игорь Евгеньевич Вялый
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)
Application granted granted Critical
Publication of RU2771886C1 publication Critical patent/RU2771886C1/ru

Links

Abstract

Изобретение относится к получению на конструкциях и сооружениях из сплавов алюминия, преимущественно содержащих магний, защитных супергидрофобных покрытий, препятствующих контакту с коррозионной средой и образованию корки льда с высокой прочностью адгезии к поверхности конструкций. Способ включает обработку поверхности сплава путем плазменно-электролитического оксидирования (ПЭО) в режиме плазменных микроразрядов при переменной поляризации обрабатываемой поверхности в электролите, содержащем гидроксид калия и натриевое жидкое стекло, последующее нанесение на сформированное ПЭО-покрытие слоя фторполимера путем погружения в дисперсию ультрадисперсного политетрафторэтилена УПТФЭ в органическом растворителе с последующей сушкой, при этом в ходе анодной поляризации значение напряжения первоначально повышают со скоростью 0,78-0,88 В/с от 30 до 500-560 В и дальнейший процесс ПЭО проводят при достигнутом значении напряжения, а в катодной фазе процесс осуществляют гальваностатически при плотности тока 0,10-0,15 А/см2, при этом электролит дополнительно содержит фторид натрия и тетраборат натрия, г/л: Na2SiO3 (n=2,5) 10-50; КОН 1-5; NaF 1-5; Na2B4O7⋅10Н2О 10-30, а погружение в дисперсию проводят в течение 4-5 с, причем дисперсия содержит поливинилиденфторид ПВДФ (C2H2F2-)n в количестве 5-8 мас. %, УПТФЭ в расчетном количестве, обеспечивающем весовое соотношение ПВДФ:УПТФЭ=1:(1-5), и N-метил-2-пирролидон (C5H9NO)n в качестве органического растворителя. Технический результат - повышение коррозионной устойчивости и улучшение антиобледенительных свойств композиционных фторполимерсодержащих покрытий на сплавах алюминия путем формирования многоуровневой шероховатости поверхности фторполимерного слоя и уменьшения площади контакта упомянутой поверхности с агрессивной средой. 1 з.п. ф-лы, 1 табл., 5 пр.

Description

Изобретение относится к способам получения защитных покрытий на изделиях и конструкциях из сплавов алюминия, содержащих магний. Сплавы алюминия являются перспективными конструкционными материалами для машиностроения, автомобилестроения, аэрокосмической техники, электро- и радиотехники, для производства компьютерной аппаратуры и других отраслей промышленности. Они отличаются малой удельной плотностью и высокой прочностью, а также легкостью механической обработки, при этом алюминиевые сплавы, содержащие магний, при достаточно высокой прочности к тому же обладают высокой коррозионной устойчивостью.
Однако на практике при эксплуатации сооружений и конструкций из упомянутых алюминиевых сплавов в коррозионной, например, в морской среде, а также при гололедно-изморозевых явлениях в условиях минусовых температур их стойкость к коррозии оказывается недостаточно высокой, существенно ограничивая их применение.
На сегодняшний день актуальной является разработка способов, обеспечивающих защиту сооружений и конструкций из сплавов алюминия посредством нанесения на их поверхность гидрофобных и супергидрофобных покрытий, препятствующих как ее контакту с коррозионной средой, так и образованию на ней ледяной корки с прочной адгезией при эксплуатации в условиях низких температур.
Известен (RU2567776, опубл. 2015.11.10) способ получения защитных супергидрофобных покрытий на сплавах алюминия путем плазменно-электролитического оксидирования в электролите, содержащем тартрат калия и фторид натрия, в гальваностатических условиях при плотности монополярного тока, равной 0,5-1,0 А/см2 с последующей обработкой нанесенного покрытия в течение 20-70 мин в плазме озона с одновременным ультрафиолетовым облучением, после чего на обработанной таким образом поверхности формируют супергидрофобное покрытие путем осаждения дисперсии наночастиц диоксида кремния и фторсилоксанового гидрофобного агента в безводном декане. С помощью известного способа получают супергидрофобные покрытия, которые обеспечивают эффективное снижение скорости коррозионных процессов при эксплуатации конструкций и сооружений из сплавов алюминия в атмосфере с высокой влажностью и в агрессивной среде. Однако режим оксидирования, используемый в известном способе, является энергозатратным, при этом для равномерного нанесения гидрофобного агента и обеспечения стабильности содержащего его покрытия требуется сложная предварительная подготовка поверхности ПЭО-покрытий, что ведет к усложнению способа и его дополнительному удорожанию.
Известен способ (DE4124730, опубл. 1996.09.12) получения гомогенного покрытия, устойчивого к износу, с хорошими антипригарными свойствами, предусматривающий внедрение частиц фторированного мономера либо олигомера, предпочтительно ПТФЭ, размером 1-50 нм, предпочтительно 1-10 нм, в поверхностные микропоры, образованные путем анодного окисления изделий из сплава магния и алюминия, при этом полная или частичная полимеризация частиц проводится непосредственно в присутствии металлического объекта, на который наносится покрытие, с последующим спеканием частиц путем нагревания. Используемый в известном способе метод нанесения фторполимерного слоя требует особой подготовки подложки, при этом слой, полученный анодным окислением, не обеспечивает достаточно прочной адгезии фторполимерного слоя, устойчивости гидрофобного состояния поверхности в эксплуатационных условиях и, следовательно, покрытие в целом не препятствует образованию корки льда с высокой прочностью адгезии к поверхности.
Известен (CN101423945, опубл. 2010.10.27) способ получения на поверхности изделия из легкого металла покрытия, обладающего супергидрофобными свойствами (угол контакта поверхности с водой от 153 до 170°), коррозионной и износостойкостью. Согласно известному способу, на поверхности изделия путем анодного окисления формируют пористый слой, который подвергают низкотемпературной плазменной обработке; а затем химической модификации с формированием супергидрофобной поверхности. Недостатком известного способа является его производственная и экологическая небезопасность, обусловленная тем, что для обеспечения хорошей адгезии наносимого анодного покрытия требуется предварительная очистка оксидируемой поверхности, в частности, с помощью органических растворителей, экологически опасных и вредных для здоровья, при этом электролиты анодирования содержат высокие концентрации кислот. Необходимость применения специальных, причем затратных, мер по обеспечению безопасности производства в значительной мере усложняет и удорожает известный способ.
Известен способ получения супергидрофобных покрытий на изделиях из сплавов алюминия, содержащих магний (RU2747434, опубл. 2021.05.05), согласно которому проводят плазменно-электролитическое оксидирование изделия при его анодной поляризации в электролите, содержащем тартрат калия и фторид натрия, в гальваностатическом режиме при плотности анодного тока 150-160 А/дм2 и росте анодного напряжения от 10-30 до 330-340 В течение 1,5-3,0 мин. Изделие с ПЭО-покрытием в течение 1-3 мин выдерживают в сушильном шкафу при температуре 250-280°С, после чего погружают на 1-2 минуты в расплав ультрадисперсного политетрафторэтилена при температуре 310-330°С на границе его перехода в твердое состояние; вынутое из расплава изделие сушат при температуре 250-280°С и в течение 1,5-2,0 часов снижают температуру до комнатной. Известным способом получают покрытия, обеспечивающие уменьшение коррозии при эксплуатации конструкций и сооружений из сплавов алюминия, легированных магнием, в атмосфере с высокой влажностью и препятствующие их обледенению в условиях минусовых температур. Недостатком известного способа является его небезопасность для рабочего персонала и окружающей среды, обусловленная использованием расплавленного ультрадисперсного политетрафторэтилена. Высокая температура и вредные испарения расплавленного УПТФЭ требуют средств защиты, обеспечивающих безопасность производства, что повышает требования к используемому технологическому оборудованию и значительно удорожает способ.
В качестве наиболее близкого к предлагаемому выбран способ (RU2707458, опубл. 2019.11.26) получения защитных супергидрофобных покрытий с антиобледенительными и влагозащитными свойствами на поверхности изделий и конструкций из сплавов алюминия, который предусматривает обработку упомянутой поверхности путем ее плазменно-электролитического оксидирования в биполярном режиме с постоянной амплитудной плотностью анодного и катодного токов 0,3-0,5 А/см2, при частоте поляризующих импульсов 200-300 Гц в течение 3000-3600 с в электролите, содержащем, г/л: гидроксид калия KOH 1,5-2,5 и силикат натрия Na2SiO3 15-25, с последующим нанесением на обработанную поверхность ультрадисперсного политетрафторэтилена из его дисперсии в изопропиловом спирте путем кратковременного погружения от 1 до 3 раз с сушкой и термообработкой при 340-350°С в течение 10-15 мин после каждого погружения. Композиционные полимерсодержащие покрытия, полученные известным способом, обеспечивают долговременную защиту различных конструкций и сооружений из сплавов алюминия от гололедно-изморозевых отложений и сопутствующей коррозии.
Однако нанесение УПТФЭ из его дисперсии в изопропиловом спирте не обеспечивает достаточно равномерной толщины формируемого фторполимерного покрытия, что может быть вызвано неравномерным распределением частиц УПТФЭ в дисперсии, а также их седиментацией с различной скоростью. Для нанесения равномерного полимерного слоя достаточной толщины необходимо повторное (до трех раз) погружение обрабатываемого сплава в дисперсию УПТФЭ, каждый раз сопровождающееся сушкой и термообработкой, что увеличивает энерго- и трудозатраты, удорожает известный способ. Кроме того, при формировании ПЭО-покрытия в указанных в описании известного способа условиях процесса оксидирования его структура не обеспечивает высокой адгезионной прочности и коррозионной устойчивости, требуемых для получения композиционных полимерсодержащих покрытий, обладающих достаточно высокими гидрофобными и защитными, в том числе, антиобледенительными, свойствами.
Задачей изобретения является разработка обладающего высокими технико-экономическими показателями способа получения на сплавах алюминия, преимущественно содержащих магний, защитных супергидрофобных покрытий, обладающих антиобледенительными свойствами и коррозионной устойчивостью.
Технический результат способа заключается в повышении коррозионной устойчивости и усилении гидрофобных и антиобледенительных свойств композиционных покрытий на сплавах алюминия путем формирования многоуровневой шероховатости поверхности фторполимерного слоя и уменьшении площади контакта упомянутой поверхности с агрессивной средой или ледяной коркой при одновременном уменьшении затрат на осуществление способа.
Указанный технический результат достигают способом получения защитных супергидрофобных покрытий с антиобледенительными свойствами на изделиях и конструкциях из сплавов алюминия, который предусматривает обработку поверхности путем электролитического оксидирования в режиме плазменных микроразрядов при переменной поляризации обрабатываемой поверхности в электролите, содержащем гидроксид калия и натриевое жидкое стекло, последующее нанесение на сформированное пористое ПЭО-покрытие слоя фторполимера путем кратковременного погружения в дисперсию ультрадисперсного политетрафторэтилена (-C2F4-)n (УПТФЭ) в органическом растворителе с последующей сушкой, в котором, в отличие от известного, в ходе анодной поляризации обрабатываемой поверхности значение напряжения повышают со скоростью 0,78-0,88 В/с от 30 до 500-560 В и в течение 10-50 мин проводят дальнейший процесс плазменно-электролитического оксидирования при достигнутом значении напряжения, в ходе ее катодной поляризации процесс осуществляют гальваностатически при плотности тока 0,10-0,15 А/см2, при этом электролит оксидирования дополнительно содержит фторид натрия и тетраборат натрия при следующем содержании компонентов, г/л:
натриевое жидкое стекло Na2SiO3 (n=2,5) 10-50
гидроксид калия KOH 1-5
фторид натрия NaF 1-5
тетраборат натрия Na2B4O⋅10H2O 10-30,
в качестве органического растворителя используют N-метил-2-пирролидон (C5H9NO)n,)n, в который вносят поливинилиденфторид (C2H2F2-)n (ПВДФ) в количестве 5-8 мас. % и, после его растворения, добавляют УПТФЭ в расчетном количестве, обеспечивающем весовое соотношение УПТФЭ:ПВДФ = 1:(1-5).
В предпочтительном варианте осуществления предлагаемого способа сушку нанесенного фторполимерного покрытия проводят при температуре 40-70°С в течение 2-3 часов.
Способ осуществляют следующим образом.
После стандартной подготовки (очистка, промывание, сушка) поверхности образца из сплава алюминия, преимущественно содержащего магний, осуществляют ее обработку методом плазменно-электролитического оксидирования (ПЭО) с формированием керамикоподобного слоя с микро- и нанопорами. Оксидирование осуществляют в условиях плазменных микроразрядов в биполярном режиме в электролите, содержащем, г/л: силикат натрия Na2SiO3 (n=2,5) (натриевое жидкое стекло с силикатным модулем 2,5) 10-50, гидроксид калия KOH 1-5, фторид натрия NaF 1-5 и тетраборат натрия Na2B4O7⋅10H2O⋅10-30.
Получаемые ПЭО-покрытия обладают высокой адгезией к поверхности из сплава алюминия, а также высокой коррозионной устойчивостью, при этом характеризуются высокими значениями прочности и износостойкости. Высокие значения перечисленных параметров обеспечиваются плотной структурой керамикоподобного слоя с микро- и наноразмерными порами. ПЭО-покрытия с оптимальными характеристиками формируются при проведении процесса оксидирования в определенных, экспериментально подбираемых, условиях, где важное место принадлежит скорости формирования покрытия.
В используемом предлагаемым способом биполярном режиме оксидирования в ходе анодной поляризации образца (обрабатываемой поверхности изделия или конструкции) из сплава алюминия для обеспечения необходимой, т.е. оптимальной, скорости формирования ПЭО-покрытия значение амплитудного напряжения в ходе процесса оксидирования повышают со скоростью 0,78-0,88 В/с от 30 до 500-560 В и продолжают процесс при достигнутом значении напряжения в течение 10-50 минут.
При катодной поляризации образца (обрабатываемой поверхности) процесс осуществляют гальваностатически при плотности тока j=0,10-0,15 А/см2.
Далее формируют композиционное покрытие путем нанесения фторполимерной пленки на сформированный керамикоподобный ПЭО-слой с микро- и нанопорами. Для этого образец сплава алюминия с нанесенным ПЭО-слоем окунают в приготовленный 5-8% раствор поливинилиденфторида (C2H2F2)n (ПВДФ) в растворителе N-метил -2-пирролидоне (C5H9NO), содержащий ультрадисперсный порошок ПТФЭ в количестве, которое обеспечивает весовое соотношение ПВДФ:УПТФЭ = 1:(1-5), и выдерживают в течение 4-5 с. Затем сушат при температуре 40-70°С в течение 2-3 часов.
За счет введения УПТФЭ в полимерную пленку в составе раствора ПВДФ в N-метил-2-пирролидоне упомянутая пленка, формируемая на предварительно полученном ПЭО-покрытии, имеет равномерную, причем достаточную, толщину. Раствор ПВДФ характеризуется стабильностью, отсутствием нерастворенных частиц и проявлений седиментации, что является существенным преимуществом при нанесении полимерной пленки в сравнении другими фторполимерами, в частности, с политетрафторэтиленом. Композитная полимерная ПВДФ/ПТФЭ пленка запечатывает поры на поверхности ПЭО-слоя, при этом прочно связанные с поверхностью ПВДФ-пленки микрочастицы УПТФЭ, в силу несколько различающихся размеров, формируют выраженную многоуровневую шероховатость, которая, в свою очередь, значительно увеличивает гидрофобные свойства поверхности.
Совместное использование ПВДФ и ПТФЭ в заявленном соотношении приводит также к улучшению показателей износостойкости и коррозионной устойчивости предлагаемого композиционного покрытия, усиливает адгезию полимерного слоя, а также значительно сокращает время его высушивания.
Поливинилиденфторид из всех фторполимеров обладает самой высокой твердостью; он отличается высокой чистотой, термической и химической стабильностью, а также хорошими трибологическими свойствами. Все вышеперечисленные параметры у политетрафторэтилена также являются высокими, при этом он относится к самым инертным полимерам.
В итоге сформированное предлагаемым способом композиционное покрытие обнаруживает высокие защитные и антиобледенительные свойства.
Примеры конкретного осуществления способа
Обработке подвергали образцы алюминиевых сплавов в виде пластинок квадратной формы размером 50×50×2 мм. Подаваемый от источника тока ТЕР4-100/460Н-2-2УХЛ4 поляризующий сигнал сформирован импульсами с длительностью 0,0033 с каждый, без временного интервала между ними.
Раствор поливинилиденфторида размешивали с использованием магнитной мешалки IKA-Werke RT15 Power IKAMAG (Германия) до введения микрочастиц УПТФЭ и вместе ними.
Морфологию ПЭО-покрытий исследовали с помощью сканирующей электронной микроскопии (СЭМ) на приборе Zeiss Gemini Sigma 300 (Carl Zeiss Group, Германия).
Электрохимические свойства были оценены с использованием системы VMC-4 (Princeton Applied Research, США) методами поляризационных кривых и импедансной спектроскопии. Измерения проводили в трехэлектродной ячейке, заполненной 3% водным раствором NaCl.
Исследование адгезионной прочности льда к исследуемым образцам проводили на испытательной разрывной машине AG-X Plus (Shimadzu, Япония) при скорости нагружения 0,01 мм/с, при этом использовали цилиндрический стальной индентор диаметром 5 мм.
Для формирования ледяных столбиков на образцах из сплава алюминия АМг3 размерами 50×50×2 мм использовали пластиковые флаконы диаметром 30 мм с толщиной стенки 1 мм, которые устанавливали по центру пластин на силиконовую смазку и прижимали сверху грузом 0,2 кг. Помещенные в холодильную камеру образцы охлаждали до 0°С, после чего в установленные на них флаконы заливали по 7 мл охлажденной до -10°С деионизированной воды и оставляли в морозильной камере на 16-20 ч до образования ледяных столбиков высотой 10 мм.
Перед испытаниями закрепленные в станке образцы выдерживали 20-30 мин в термокамере, охлаждающейся жидким азотом до температуры -20°С, для исключения подтаивания ледяных столбиков и отделения от поверхности исследуемых образцов. В термостатированной камере образец располагали вертикально в специальном удерживающем устройстве и нагружали столбик льда до начала его смещения, при этом за величину адгезии принимали величину усилия, зарегистрированного в момент его сдвига.
Все покрытия и образцы без покрытий были испытаны в трех опытах.
Пример 1
Образец алюминиевого сплава АМг3 (масс. %: Mg 2,6-3,6; Mn 0,5; Si 0,4; Fe 0,4; Cr 0,3; Zn 0,2; Ti 0,15; Cu 0,1; остальное - Al) оксидировали в электролите состава, г/л:
натриевое жидкое стекло (n=2,5) 10
гидроксид калия 1
фторид натрия 1
тетраборат натрия 10
Формирование ПЭО-слоя проводили в течение 60 мин в биполярном режиме. При анодной поляризации образца оксидирование осуществляли повышая напряжение со скоростью 0,78 В/с от 30 до 500 В, и при достигнутом напряжении продолжали процесс до его завершения. При катодной поляризации процесс осуществляли гальваностатически при плотности тока j=0,10 А/см2.
Было сформировано равномерное бездефектное ПЭО-покрытие белого цвета толщиной 84,6±5,5 мкм со следующими характеристиками: угол смачивания деионизированной водой 24,8°±2,5°; плотность тока свободной коррозии (1,1±0,3)×10-7 А/см2, видимая пористость покрытия 5,3±0,4%.
Композиционное гидрофобное покрытие формировали путем погружения образца с нанесенным ПЭО-покрытием в 8% раствор ПВДФ в N-метил-2-пирролидоне (C5H9NO), содержащий ультрадисперсный порошок УПТФЭ в весовом соотношении ПВДФ:УПТФЭ = 1:1, с выдержкой в течение 5 секунд. Вынутый из раствора образец помещали в сушильный шкаф при температуре 70°С и выдерживали в течение 3 ч. В результате получено покрытие общей толщиной 92,3±2,1 мкм со следующими характеристиками: видимая пористость - 0%, плотность тока коррозии (4,7±1,6)×10-9 А/см2, угол смачивания деионизированной водой - 48,3±0,8°; угол скатывания >90°; сдвиговая прочность адгезии льда - 97,2±6,8 кПа.
Пример 2
Образец алюминиевого сплава АМг6 (масс. %: Mg 5,8-6,8; Mn 0,5-0,8; Si 0,4; Fe 0,4; Zn 0,2; Cu 0,1; Ti 0,02-0,1; Al - остальное) оксидировали в электролите состава, г/л:
натриевое жидкое стекло (n=2,5) 50
гидроксид калия 2
фторид натрия 2
тетраборат натрия 10
ПЭО-слой формировали в течение 20 мин в биполярном режиме. При анодной поляризации оксидируемой поверхности сначала процесс вели потенциодинамически, повышая напряжение со скоростью 0,88 В/с от 30 до 560 В, и при достигнутом значении напряжения продолжали процесс оксидирования до его окончания. При катодной поляризации образца процесс осуществляли гальваностатически при плотности тока j=0,15 А/см2
Сформировано ПЭО-покрытие, аналогичное покрытию, полученному по примеру 1, толщиной 54,2±4,9 мкм, с углом смачивания деионизированной водой 25,8±2,5°; с плотностью тока свободной коррозии (3,9±1,4)×10-7 А/см2, видимой пористостью 7,0±0,3%. Композиционное гидрофобное покрытие формировали по примеру 1. Получено покрытие общей толщиной 59,6±3,2 мкм со следующими характеристиками: видимая пористость - 0%, плотность тока коррозии (7,8±0,9)×10-9 А/см2, угол смачивания деионизированной водой - 45,8±0,4°; угол скатывания >90°; сдвиговая прочность адгезии льда - 90,9±4,2 кПа.
Пример 3
Образец алюминиевого сплава АМг3 (масс. %: Mg 2,6-3,6; Mn 0,5; Si 0,4; Fe 0,4; Cr 0,3; Zn 0,2; Ti 0,15; Cu 0,1; остальное - Al) оксидировали в электролите состава, г/л:
натриевое жидкое стекло (n=2,5) 20
гидроксид калия 2
фторид натрия 2
тетраборат натрия 10
ПЭО-слой формировали в течение 20 мин в биполярном режиме, при этом в анодной фазе сначала осуществляли потенциодинамический режим, поднимая напряжение со скоростью 0,88 В/с от 30 до 560, и далее проводили процесс при достигнутом напряжении, равном 560 В. При катодной поляризации образца процесс осуществляли гальваностатически при j=0,15 А/см2.
Сформировано ПЭО-покрытие толщиной 59,2±2,7 мкм со следующими характеристиками: угол смачивания деионизированной водой 28,3±1,2°; плотность тока свободной коррозии (8,4±0,5)×10-8 А/см2, видимая пористость 2,9±0,3%. Композиционное гидрофобное покрытие формировали по примеру 1 при весовом соотношении ПВДФ и УПТФЭ, равном 1: 5, с выдержкой во фторполимерном растворе, содержащем УПТФЭ, в течение 5 секунд. Образец с покрытием в течение 2 часов сушили при 40°С. В результате получено покрытие общей толщиной 63,1±0,2 мкм со следующими характеристиками: видимая пористость покрытия - 0%, плотность тока коррозии (2,5±0,7)×10-12 А/см2, угол смачивания деионизированной водой - 160,5±3,8°; угол скатывания - 5,0±1,7°; сдвиговая прочность адгезии льда - 37,2±4,1 кПа.
Пример 4
Образец алюминиевого сплава Д16 (масс. %: Cu 4,59; Mg 1,40; Fe 0,47; Mn 0,42; Si 0,21; Zn 0,06; Cr 0,02; Ti 0,01; Al - остальное) оксидировали в электролите состава, г/л:
натриевое жидкое стекло (n=2,5) 20
гидроксид калия 5
фторид натрия 5
тетраборат натрия 10
ПЭО-слой формировали в течение 20 мин в биполярном режиме, при этом при анодной поляризации поверхности сначала повышали напряжение со скоростью 0,88 В/с от 30 В до 560 В. При катодной поляризации образца процесс осуществляли при постоянной плотности тока j=0,15 А/см2.
Сформировано ПЭО-покрытие, аналогичное полученным в предыдущих примерах, толщиной 51,1±1,8 мкм, характеризующееся углом смачивания деионизированной водой 26,6±2,0°; плотностью тока свободной коррозии (8,0±0,3)×10-8 А/см2, видимой пористостью покрытия 2,7±0,2%. Композиционное гидрофобное покрытие формировали по примеру 3. Получено покрытие общей толщиной 53,1±0,6 мкм со следующими характеристиками: видимая пористость покрытия - 0%, плотность тока коррозии (1,8±0,9)×10-12 А/см2, угол смачивания деионизированной водой - 154,4±2,0°; угол скатывания - 6,7±0,9°; сдвиговая прочность адгезии льда - 49,9±4,8 кПа.
Пример 5
Образец алюминиевого сплава В-1579 системы алюминий-магний-скандий (масс. %: Mg 6,78; Zn 0,62; Fe 0,15; Mn 0,30; Si 0,51; Cu 0,14; Zr 0,13; Sc 0,13; Cr 0,17; Ti 0,02; остальное - Al) оксидировали в электролите состава, г/л:
натриевое жидкое стекло (n=2,5) 30
гидроксид калия 3
фторид натрия 3
тетраборат натрия 30
ПЭО-слой формировали в течение 60 мин в биполярном режиме, при этом сначала при анодной поляризации образца осуществляли потенциодинамический режим, повышая напряжение от 30 В до 560 В со скоростью 0,88 В/с. в оставшееся время процесс продолжали при достигнутом напряжении. При катодной поляризации образца процесс проводили гальваностатически при j=0,10 А/см2. В результате обработки сформировано покрытие, аналогичное полученным в предыдущих примерах, толщиной 95,4±5,9 мкм со следующими характеристиками: угол смачивания деионизированной водой 28,1°±1,9°; плотность тока свободной коррозии (9,9±0,6)×10-8 А/см2, видимая пористость покрытия 3,9±0,3%. Композиционное гидрофобное покрытие формировали по примеру 3. Получено покрытие общей толщиной 101,3±1,2 мкм со следующими характеристиками: видимая пористость покрытия - 0%, плотность тока коррозии (1,3±0,4)×10-12 А/см2, угол смачивания деионизированной водой - 157,1±0,9°; угол скатывания - 5,9±0,5°; сдвиговая прочность адгезии льда - 60,2±7,9 кПа.
Ниже приведена таблица, в которой представлены результаты расчета поляризационных кривых и модуль импеданса для исходных образцов из сплава алюминия АМг3, образцов сплава с нанесенным ПЭО-слоем и образцов упомянутого сплава с композиционными покрытиями, полученными предлагаемым способом.
Figure 00000001

Claims (4)

1. Способ получения защитных супергидрофобных покрытий на сплавах алюминия, включающий обработку поверхности сплава путем плазменно-электролитического оксидирования в режиме плазменных микроразрядов при переменной поляризации обрабатываемой поверхности в электролите, содержащем гидроксид калия и натриевое жидкое стекло, последующее нанесение на сформированное ПЭО-покрытие слоя фторполимера путем погружения в дисперсию ультрадисперсного политетрафторэтилена УПТФЭ в органическом растворителе с последующей сушкой, отличающийся тем, что в ходе анодной поляризации обрабатываемой поверхности значение напряжения первоначально повышают со скоростью 0,78-0,88 В/с от 30 до 500-560 В и дальнейший процесс ПЭО проводят при достигнутом значении напряжения, а в катодной фазе процесс осуществляют гальваностатически при плотности тока 0,10-0,15 А/см2, при этом электролит оксидирования дополнительно содержит фторид натрия и тетраборат натрия при следующем содержании компонентов, г/л:
натриевое жидкое стекло Na2SiO3 (n=2,5) 10-50 гидроксид калия КОН 1-5 фторид натрия NaF 1-5 тетраборат натрия Na2B4O7⋅10Н2О 10-30,
погружение в дисперсию проводят в течение 4-5 с, причем дисперсия содержит поливинилиденфторид ПВДФ (C2H2F2-)n в количестве 5-8 мас. %, УПТФЭ в расчетном количестве, обеспечивающем весовое соотношение ПВДФ:УПТФЭ=1:(1-5), и N-метил-2-пирролидон (C5H9NO)n в качестве органического растворителя.
2. Способ по п. 1, отличающийся тем, что сушку нанесенного фторполимерного покрытия проводят при температуре 40-70°С в течение 2-3 часов.
RU2021119106A 2021-06-29 Способ получения защитных супергидрофобных покрытий на сплавах алюминия RU2771886C1 (ru)

Publications (1)

Publication Number Publication Date
RU2771886C1 true RU2771886C1 (ru) 2022-05-13

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784001C1 (ru) * 2022-06-24 2022-11-23 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения на сплавах алюминия защитных супергидрофобных покрытий с антистатическим эффектом

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423945B (zh) * 2007-11-02 2010-10-27 中国科学院宁波材料技术与工程研究所 一种轻质金属超疏水表面的制备方法
RU2567776C1 (ru) * 2014-10-24 2015-11-10 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения защитных супергидрофобных покрытий на сплавах алюминия
RU2707458C1 (ru) * 2019-07-01 2019-11-26 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения супергидрофобных покрытий с антиобледенительными свойствами на алюминии и его сплавах
RU2747434C1 (ru) * 2020-08-24 2021-05-05 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения супергидрофобных покрытий на магнийсодержащих сплавах алюминия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423945B (zh) * 2007-11-02 2010-10-27 中国科学院宁波材料技术与工程研究所 一种轻质金属超疏水表面的制备方法
RU2567776C1 (ru) * 2014-10-24 2015-11-10 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения защитных супергидрофобных покрытий на сплавах алюминия
RU2707458C1 (ru) * 2019-07-01 2019-11-26 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения супергидрофобных покрытий с антиобледенительными свойствами на алюминии и его сплавах
RU2747434C1 (ru) * 2020-08-24 2021-05-05 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения супергидрофобных покрытий на магнийсодержащих сплавах алюминия

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784001C1 (ru) * 2022-06-24 2022-11-23 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения на сплавах алюминия защитных супергидрофобных покрытий с антистатическим эффектом
RU2813900C1 (ru) * 2023-06-07 2024-02-19 Федеральное государственное учреждение науки Институт химии Дальневосточного отделения Российской академии наук Способ получения антикоррозионного покрытия на основе пористого ПЭО-слоя, импрегнированного ингибитором коррозии группы азолов

Similar Documents

Publication Publication Date Title
Ivanou et al. Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating
Feng et al. One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance
Lei et al. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process
RU2614917C1 (ru) Способ получения защитных композиционных покрытий на сплаве магния
RU2543580C1 (ru) Способ получения защитных покрытий на сплавах магния
Peng et al. Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte
Song et al. Performance of composite coating on AZ31B magnesium alloy prepared by anodic polarization and electroless electrophoresis coating
RU2771886C1 (ru) Способ получения защитных супергидрофобных покрытий на сплавах алюминия
RU2567776C1 (ru) Способ получения защитных супергидрофобных покрытий на сплавах алюминия
RU2569259C1 (ru) Способ получения защитных полимерсодержащих покрытий на металлах и сплавах
RU2534123C9 (ru) Способ получения защитных покрытий на вентильных металлах и их сплавах
JP3152960B2 (ja) 真空機器用アルミニウム又はアルミニウム合金材の製造法
EA015400B1 (ru) Способ анодирования изделий из алюминия или алюминиевых сплавов
Li et al. Effects of polyvinylidene fluoride sealing on micro-arc oxidation coating of 7075 aluminum alloy
CN104562141A (zh) 航空铝合金微弧氧化方法
RU2671311C2 (ru) Электролит для нанесения покрытия на вентильные металлы и их сплавы, способ нанесения покрытия и покрытие, полученное таким способом
US20170145581A1 (en) Method of treating surface of aluminum substrate to increase performance of offshore equipment
RU2617088C1 (ru) Способ получения антикоррозионного износостойкого покрытия на сплавах магния
Amiri et al. Corrosion behavior of aluminum oxide coatings created by electrolytic plasma method under different potential regimes
RU2734426C1 (ru) Способ получения защитных покрытий на магнийсодержащих сплавах алюминия
RU2704344C1 (ru) Способ формирования композиционных покрытий на магнии
Kajanek et al. EFFECT OF APPLIED CURRENT DENSITY OF PLASMA ELECTROLYTIC OXIDATION PROCESS ON CORROSION RESISTANCE OF AZ31 MAGNESIUM ALLOY.
RU2602903C1 (ru) Способ получения износостойких покрытий на изделиях из алюминия и его сплавов
RU2784001C1 (ru) Способ получения на сплавах алюминия защитных супергидрофобных покрытий с антистатическим эффектом
Wu et al. Novel structured anodic oxide films containing surface layers and porous sublayers showing excellent wear resistance performance