RU2769550C1 - Способ достроения измеренной от поверхности моря части профиля вертикального распределения скорости звука до дна - Google Patents

Способ достроения измеренной от поверхности моря части профиля вертикального распределения скорости звука до дна Download PDF

Info

Publication number
RU2769550C1
RU2769550C1 RU2021109009A RU2021109009A RU2769550C1 RU 2769550 C1 RU2769550 C1 RU 2769550C1 RU 2021109009 A RU2021109009 A RU 2021109009A RU 2021109009 A RU2021109009 A RU 2021109009A RU 2769550 C1 RU2769550 C1 RU 2769550C1
Authority
RU
Russia
Prior art keywords
sound
speed
profile
typical
measured
Prior art date
Application number
RU2021109009A
Other languages
English (en)
Inventor
Игорь Иванович Микушин
Александр Александрович Щербаков
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова"
Priority to RU2021109009A priority Critical patent/RU2769550C1/ru
Application granted granted Critical
Publication of RU2769550C1 publication Critical patent/RU2769550C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Использование: изобретение относится к области гидроакустических измерений и может быть использовано для формирования полного профиля вертикального распределения скорости звука (ВРСЗ) в воде от поверхности моря до дна. Сущность: производят измерение гидрофизических параметров водной среды судовой аппаратурой и формируют фрагмент ВРСЗ, который не характеризует поле скорости звука в глубинном и придонном слоях моря. Используя набор градиентов скорости звука для типовых слоев толщи морской воды определенного морского района и текущего сезона года в виде климатической базы данных и типовую кривую ВРСЗ в придонном слое, последовательно достраивают последнюю измеренную по глубине точку скорости звука с первой точкой скорости звука типовой кривой, расположенной на горизонте сопряжения, с учетом характерной градиентной структуры водной среды. Технический результат - повышение точности решения практических задач, требующих наличия полного профиля ВРСЗ, за счет повышения достоверности цифровой модели канала распространения акустической энергии в водной среде. 1 ил.

Description

Изобретение относится к области гидроакустических измерений и может быть использовано для формирования полного профиля вертикального распределения скорости звука (ВРСЗ) в воде от поверхности моря до дна.
Для решения множества задач гидроакустики: расчет дальностей обнаружения погруженных целей, угловых и временных характеристик принятого антенной многолучевого сигнала для классификации целей, средней горизонтальной скорости распространения зондирующего сигнала для обеспечения режима измерения дистанции до цели и т.д., необходимо знание полного профиля ВРСЗ от поверхности моря до дна [1-3]. Современная судовая аппаратура измеряет значения гидролого-акустических параметров (скорость распространения звука, температура, электропроводность или соленость воды) до глубин не более 500 метров [4].
Известны способы получения полного профиля ВРСЗ от поверхности до дна на основе измеренного его фрагмента корабельной аппаратурой. Так в способе, изложенном в патенте [5], осуществляется достроение полного профиля ВРСЗ на основе текущего замера ВРСЗ с привлечением априорной информации из базы данных многолетних измерений ВРСЗ, представленной в статистической форме. Для измеренного фрагмента ВРСЗ находится максимально правдоподобное априорное ВРСЗ из базы данных, после чего происходит достраивание точек ВРСЗ для глубин, лежащих выше и ниже границ замера ВРСЗ. При этом производится коррекция априорного профиля с учетом текущей глубины района плавания и, в случае необходимости, линейная интерполяция реперных точек на интересующие глубины.
Недостатком способа является низкая точность получаемого полного профиля ВРСЗ относительно фактического, обусловленная использованием для дальнейшей обработки измеренного фрагмента скорости звука только одного «максимально правдоподобного» профиля ВРСЗ из всего многообразия, имеющихся в базе данных статистических измерений, атласах и других источниках информации, описывающих климатические наблюдения гидрологических характеристик морей и океанов за большой промежуток времени. При этом функция правдоподобия основана на сравнении части единичного профиля ВРСЗ из базы данных многолетних измерений и измеренного участка фрагмента ВРСЗ, распространена на полный профиль ВРСЗ и не учитывает характерные особенности приводного и придонного слоя в данном районе моря для конкретного сезона.
Наиболее близким (прототип) по совокупности признаков к предполагаемому изобретению является способ, изложенный в патенте [6] и заключающийся в измерении фрагмента кривой ВРСЗ, расчете значения скорости звука на поверхности моря на основе анализа приповерхностного слоя скорости звука, расчете области возможного нахождения подводного звукового канала и средневзвешенных значений скорости звука на стандартных горизонтах на основе набора вероятностных кривых ВРСЗ климатического масштаба района производства измерений гидрофизических параметров для текущего сезона года и построения полного профиля ВРСЗ от поверхности до дна.
Недостатками известного способа является то, что отсутствие информации о измеренных значениях скорости звука в приповерхностном слое и на поверхности моря приводит к неточности построения профиля ВРСЗ, что влечет к значительным ошибкам в расчете дальности обнаружения погруженных объектов и снижению эффективности средств освещения подводной обстановки.
Для устранения недостатков приведенных способов получения кривой ВРСЗ от поверхности моря до дна с использованием измеренного массива данных, предлагается способ достроения измеренной от поверхности моря части профиля ВРСЗ судовой аппаратурой до дна с использованием массива статистических данных по слоисто-градиентной структуре поля скорости звука и типовой кривой ВРСЗ в придонном слое для конкретного района Мирового океана.
Целью изобретения является повышение точности решения практических задач гидроакустики, требующих наличия полного профиля ВРСЗ, за счет повышения достоверности представления цифровой модели канала распространения акустической энергии в водной среде.
Поставленная цель достигается тем, что способ достроения измеренной от поверхности части профиля вертикального распределения скорости звука до дна, заключающийся в измерении судовой аппаратурой приповерхностного фрагмента кривой ВРСЗ и последовательном приближении слоистой и градиентной структуры поля скорости звука последнего измеренного значения скорости звука к скорости звука на глубинном горизонте сопряжения для заданного района Мирового океана и периода года, при этом параметры градиентов скорости звука по слоям и типовые кривые ВРСЗ от горизонта сопряжения до дна для конкретных районов моря и сезонов года сведены в климатические базы данных.
Рассмотрим работу предлагаемого способа. Весь массив многолетних данных по скорости звука А для конкретного района Мирового океана разбивается на подмассивы Аij, которые описывают градиентную изменчивость поля скорости звука в i-м слое, j-м районе и имеют для данного района характерную типовую кривую ВРСЗ в придонном слое. Эта информация представляет собой исходную климатическую базу данных, используемую для достроения измеренного фрагмента ВРСЗ до дна.
Сущность изобретения поясняется фигурой 1, на которой приведен пример, поясняющий предлагаемый способ.
Для решения поставленной задачи производится измерение фрагмента профиля ВРСЗ от поверхности моря (Сп,0) до предельной глубины (Сизмизм). При этом предельная глубина измерения глубина ВРСЗ может быть минимальной. Формируется измеренная часть профиля ВРСЗ (Сп,0:, Cизм,Hизм), которую необходимо достроить до дна моря. Дополнительно фиксируются географические координаты положения носителя измерительной аппаратуры (ϕ, λ) и измерение глубины места (Hдн).
Используя географические координаты места проведения измерений в исходной климатической базе данных, выбираем подмассив многолетних наблюдений Аij за текущий сезон с присущими градиентами скорости звука для набора слоев, характеризующих данный морской район. Для примера, приведенного на фиг. 1, выбранный район характеризуется 3-мя градиентными слоями (отрезки 1-2, 2-3, 3-4). Для данного района из этой же климатической базы данных выбираем типовую кривую ВРСЗ в придонном слое, которая начинается с глубины горизонта сопряжения (СГСГС) и заканчивается на глубине места (Сдндн).
Для сопряжения последней измеренной точки (Сизмизм) с точкой на горизонте сопряжения (СГСГС), выбранный из подмассива Аij градиент для I слоя графически опускаем на горизонт сопряжения и получаем точку (ГСIсл), из которой проводим прямую до последней измеренной точки (Сизмизм). Ограничиваясь глубиной I слоя (HIсл), получаем точку (СIсл,HIсл,), которая будет входить в построенный профиль ВРСЗ.
Далее, используя градиент для II слоя, графически опускаем на горизонт сопряжения и получаем точку (ГСIIсл), из которой проводим прямую до последней полученной при достроении точки (СIсл,HIсл). Ограничиваясь глубиной II слоя (НIIсл), получаем точку (СIIсл,HIIсл), которая будет входить в построенный профиль ВРСЗ.
Последнюю полученную при достроении точку (СIIсл,HIIсл) соединяем с точкой скорости звука типовой кривой ВРСЗ в придонном слое (СГСГС), расположенной на горизонте сопряжения. В результате предложенного способа измеренная часть профиля ВРСЗ (Сп,0; Сизмизм) достраивается до дна профилем (Сизмизм; СIслIcл; СIIслIIсл; СГСГС; Сдндн).
Предложенный способ достроения измеренной от поверхности части профиля ВРСЗ позволяет автоматизировать процесс обработки измерительной информации на судне. К достоинствам данного способа стоит отнести: проведение обработки измерительной информации без участия оператора, что позволит минимизировать вносимые погрешности; при достроении измеренной части профиля до полной кривой ВРСЗ учитываются слоисто-градиентные особенности поля скорости звука района наблюдений; способ применим как при получении минимальной части по глубине измерения профиля ВРСЗ, так и при измерении скорости звука только на поверхности моря, получаемой, например, с авиационных или космических носителей.
Таким образом, заявленный способ достроения измеренной от поверхности части профиля ВРСЗ в воде до дна позволит в значительной степени повысить точность и оперативность получения отдельных характеристик гидрофизических параметров морской среды с целью решения практических задач гидроакустики, требующих учета полного профиля ВРСЗ.
СПИСОК БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ
1. Урик Роберт Дж. Основы гидроакустики / пер. с англ. - Л. Судостроение, 1978 - 448 с.
2. Машошин А.И. Оптимизация маневрирования подводной лодки с использованием гидроакустических расчетов. // Морская радиоэлектроника. 2012. №4(42). с. 24-27.
3. Матвиенко В.Н., Тарасюк Ю.Ф. Дальность действия гидроакустических средств. 2-е изд. - Л.: Судостроение, 1983. 205 с.
4. Комляков В.А. Корабельные средства измерения скорости звука и моделирования акустических полей в океане. СПб.: Наука. 2003. 357 с.
5. Патент на изобретение №2498354. G01V 1/38, G01Η 5/00. Способ оценки полного профиля вертикального распределения скорости звука / Машошин А.И., Соловьева О.Б., Шафранюк А.В. Опубл. 10.11.2013.
6. Патент на изобретение №2618599. G01S 15/00. Способ достроения измеренной части профиля вертикального распределения скорости звука в воде до поверхности и до дна. / Микушин И.И. Опубл. 04.05.2017.

Claims (1)

  1. Способ достроения измеренной от поверхности моря части профиля вертикального распределения скорости звука до дна, заключающийся в измерении судовой аппаратурой фрагмента кривой вертикального распределения скорости звука (ВРСЗ), выборе из климатической базы данных для конкретного морского района и сезона года набора градиентов скорости звука для типовых слоев толщи морской воды и типовой кривой ВРСЗ в придонном слое, последовательном достраивании последней измеренной по глубине точки скорости звука с первой точкой скорости звука типовой кривой, расположенной на горизонте сопряжения, с учетом характерной градиентной структуры водной среды, отличающийся тем, что в достроении используют минимальную по глубине измеренную часть вертикального распределения скорости звука или скорость звука на поверхности моря, а также климатическую базу данных, описывающую градиенты скорости звука по типовым слоям и типовую кривую ВРСЗ в придонном слое.
RU2021109009A 2021-04-01 2021-04-01 Способ достроения измеренной от поверхности моря части профиля вертикального распределения скорости звука до дна RU2769550C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021109009A RU2769550C1 (ru) 2021-04-01 2021-04-01 Способ достроения измеренной от поверхности моря части профиля вертикального распределения скорости звука до дна

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021109009A RU2769550C1 (ru) 2021-04-01 2021-04-01 Способ достроения измеренной от поверхности моря части профиля вертикального распределения скорости звука до дна

Publications (1)

Publication Number Publication Date
RU2769550C1 true RU2769550C1 (ru) 2022-04-04

Family

ID=81076134

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021109009A RU2769550C1 (ru) 2021-04-01 2021-04-01 Способ достроения измеренной от поверхности моря части профиля вертикального распределения скорости звука до дна

Country Status (1)

Country Link
RU (1) RU2769550C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307714A (zh) * 2022-10-12 2022-11-08 中国海洋大学 基于跨时空声速剖面聚类的声速分布快速估计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1481698A1 (ru) * 1987-03-30 1989-05-23 Институт Океанологии Им.П.П.Ширшова Способ определени скорости звука в морских осадках
RU2456554C2 (ru) * 2010-07-20 2012-07-20 Игорь Иванович Микушин Способ измерения распределения скорости звука в жидкой среде
RU2477498C1 (ru) * 2011-11-25 2013-03-10 Учреждение Российской академии наук Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения РАН (ТОИ ДВО РАН) Метод мониторинга вертикального распределения скорости звука в условиях мелководных акваторий
RU2613485C2 (ru) * 2015-06-29 2017-03-16 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Способ измерения вертикального распределения скорости звука в воде
RU2618599C2 (ru) * 2015-07-20 2017-05-04 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Способ достроения измеренной части профиля вертикального распределения скорости звука в воде до поверхности и до дна

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1481698A1 (ru) * 1987-03-30 1989-05-23 Институт Океанологии Им.П.П.Ширшова Способ определени скорости звука в морских осадках
RU2456554C2 (ru) * 2010-07-20 2012-07-20 Игорь Иванович Микушин Способ измерения распределения скорости звука в жидкой среде
RU2477498C1 (ru) * 2011-11-25 2013-03-10 Учреждение Российской академии наук Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения РАН (ТОИ ДВО РАН) Метод мониторинга вертикального распределения скорости звука в условиях мелководных акваторий
RU2613485C2 (ru) * 2015-06-29 2017-03-16 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Способ измерения вертикального распределения скорости звука в воде
RU2618599C2 (ru) * 2015-07-20 2017-05-04 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Способ достроения измеренной части профиля вертикального распределения скорости звука в воде до поверхности и до дна

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
В.А. Лисютин, А.А. Ярошенко. Влияние скорости звука на волноводное распространение акустических колебаний в мировом океане, акустический симпозиум Консонанс-2003, Киев, ИГМ НАН Украины, 1-3 Животня, 2003, стр. 109-114. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307714A (zh) * 2022-10-12 2022-11-08 中国海洋大学 基于跨时空声速剖面聚类的声速分布快速估计方法
CN115307714B (zh) * 2022-10-12 2023-02-03 中国海洋大学 基于跨时空声速剖面聚类的声速分布快速估计方法

Similar Documents

Publication Publication Date Title
CN110146895B (zh) 基于倒置式多波束回声仪的声速剖面反演方法
Thomson et al. Modeling AUV localization error in a long baseline acoustic positioning system
Chadwell et al. Acoustic ray-trace equations for seafloor geodesy
CN109543356A (zh) 考虑空间非平稳性的海洋内部温盐结构遥感反演方法
CN111142071B (zh) 一种结合半经验公式的单阵元匹配场爆炸声源定位方法
Mitchell Processing and analysis of Simrad multibeam sonar data
RU2769550C1 (ru) Способ достроения измеренной от поверхности моря части профиля вертикального распределения скорости звука до дна
CN111220146B (zh) 一种基于高斯过程回归学习的水下地形匹配定位方法
Hodgkiss et al. Direct measurement and matched-field inversion approaches to array shape estimation
Wang et al. Real-time stochastic model for precise underwater positioning
Titchenko et al. Peculiarities of the Acoustic Pulse Formation Reflected by the Water Surface: a Numerical Experiments and the Results of Long-term Measurements Using the" Kalmar" Sonar
CN110309581B (zh) 一种水下潜标位置综合校准测量点快速优化布局方法
Lien et al. Measurement of turbulent kinetic energy dissipation rate with a Lagrangian float
Garcia et al. Accuracy of Florida Current volume transport measurements at 27 N using multiple observational techniques
Cao et al. Illuminating centimeter-level resolution stratum via developed high-frequency sub-bottom profiler mounted on Deep-Sea Warrior deep-submergence vehicle
Thurnherr Vertical velocity from LADCP data
CN112147578B (zh) 一种高精度深水发射阵及多元垂直接收阵阵元定位系统与方法
RU2618599C2 (ru) Способ достроения измеренной части профиля вертикального распределения скорости звука в воде до поверхности и до дна
Ostrovsky Hydroacoustic assessment of fish abundance in the presence of gas bubbles
Zhidkova et al. The research of waters eutrophication of the gulf of Taganrog of the Sea of Azov for ecological monitoring purposes
CN113009417B (zh) 利用声场干涉特性的海底声学阵列阵形估计方法
Graupe et al. An automated framework for long-range acoustic positioning of autonomous underwater vehicles
RU2477498C1 (ru) Метод мониторинга вертикального распределения скорости звука в условиях мелководных акваторий
RU2498354C1 (ru) Способ оценки полного профиля вертикального распределения скорости звука
Taylor et al. Quantifying a manual triangulation technique for aquatic ultrasonic telemetry