RU2767951C1 - Способ оценки свойств полимерной мембраны - Google Patents

Способ оценки свойств полимерной мембраны Download PDF

Info

Publication number
RU2767951C1
RU2767951C1 RU2021111878A RU2021111878A RU2767951C1 RU 2767951 C1 RU2767951 C1 RU 2767951C1 RU 2021111878 A RU2021111878 A RU 2021111878A RU 2021111878 A RU2021111878 A RU 2021111878A RU 2767951 C1 RU2767951 C1 RU 2767951C1
Authority
RU
Russia
Prior art keywords
polymer
deposition
polymer solution
layer
solution
Prior art date
Application number
RU2021111878A
Other languages
English (en)
Inventor
Татьяна Сергеевна Анохина
Илья Леонидович Борисов
Алексей Владимирович Волков
Original Assignee
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) filed Critical Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority to RU2021111878A priority Critical patent/RU2767951C1/ru
Application granted granted Critical
Publication of RU2767951C1 publication Critical patent/RU2767951C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к физико-химическим методам исследования полимерных растворов и может быть использовано в процессе изготовления пористых полимерных пленок и полых волокон. Способ оценки свойств полимерной мембраны путем определения скорости осаждения полимерного раствора для получения пористой полимерной пленки путем контакта с осадителем с помощью диффузионной ячейки и оценки пористой структуры мембраны включает визуальное наблюдение процесса осаждения через оптический микроскоп и регистрации на видеокамеру, при этом используют диффузионную ячейку, представляющую собой канал, заполненный раствором полимера глубиной 100-1000 мкм и образованный двумя параллельными прозрачными пластинами, установленными на расстоянии 10-500 мкм, так, что канал с одной стороны ограничен перегородкой, а с другой стороны контактирует с атмосферой и служит для введения осадителя, измеряют общую толщину осажденного полимерного слоя, при этом скорость осаждения слоя раствора полимера рассчитывают из отношения общей толщины осажденного полимерного слоя (d, мкм) ко времени его осаждения (t, с) как среднее значение на основании 5 измерений для полимерного раствора, а по заранее определенной зависимости проницаемости от скорости осаждения оценивают проницаемость мембраны. Техническим результатом является возможность использовать малое количество полимерного раствора и сокращение количества стадий исследования для определения оптимального состава формовочного раствора. 1 з.п. ф-лы, 6 ил., 10 табл.

Description

Изобретение относится к области применения физико-химических методов анализа, используемых для исследования свойств полимерных растворов, предназначенных для изготовления пористых полимерных плоских и половолоконных мембран.
Одним из способов получения пористых полимерных плоских и половолоконных мембран является метод "инверсии" фаз (non-solvent induced phase separation (NIPS)) из полимерных растворов. Поэтому процесс выбора оптимального состава формовочного раствора является очень трудоемким, так как включает определение морфологии, пористости, транспортных и механических свойств уже сформованных мембран.
Известен способ получения полых волокон на основе ПСФ (патент США № 5151227А, кл. МПК B01D 67/00; B01D 69/08; B01D 71/68; D01D 5/24; D01F 6/76; D01F 6/94, опубл. 29.09.1992) растворением полисульфона с добавкой поливинил пиррол идона при следующем соотношении (мас. %) компонентов в рабочем растворе: полисульфон 9÷18, поливинилпирролидон 15÷20, N-метилпирролидон - остальное, погружением полученного рабочего раствора в осадительную ванну, содержащую (мас. %) метилпирролидона - 60, воды - 20, изопропилового спирта - 20. Вместо поливинилпирролидона рабочий раствор может содержать до 20% полиэтиленгликоля с молекулярной массой порядка 30000 г/моль. Оптимальный состав формовочного раствора определяли путем исследования пористой структуры с помощью сканирующей электронной микроскопии (СЭМ) и транспортных свойств с помощью фильтрационных экспериментов уже готовых мембран.
Недостатком метода является использование большого количества полимерного раствора для получения полого волокна (200 г и более), а также сама стадия изготовления изделия и ее исследования с помощью дополнительного оборудования и инструментальных методов анализа.
Для того чтобы подобрать состав формовочного раствора в процессе получения пористых полимерных пленок методом NIPS, прибегают к исследованию самого раствора: определение вязкости, построение тройных фазовых диаграмм и исследование кинетики осаждения раствора [Y. Li, В. Сао, Р. Li // J. Membr. Sci. 544 (2017) 1-11; Tao Huang, Jianfeng Song, Hailong He, Yue-Biao Zhang, Xue-Mei Li, Tao He // Journal of Membrane Science 615 (2020) 118448; P.S.T. Machado, A.C Habert, CP. Borges // Journal of Membrane Science 155 (1999) 171-183].
Из литературы известен способ оптической микроинтерферометрии для оценки фазового состояния полимерных растворов и определения коэффициентов взаимодиффузии растворителя и осадителя [Makarova V., Kulichikhin V. 2012 Application of Interferometry to Analysis of Polymer- Polymer and Polymer-Solvent Interactions (InTech) ed I Padron p 395], осуществляемый с помощью специальной диффузионной ячейки с нанесенным на нее золотым покрытием толщиной 5 нм, оптического микроскопа, подсвечивающим под ячейкой диодным лазером и видеокамеры.
Недостатком способа является отсутствие возможности определить фактическое время формирования полимерной мембраны из-за использования "неограниченного" слоя полимера и спрогнозировать ее пористую структуру из-за золотого покрытия ячейки.
Известен способ измерения скорости осаждения твердой фазы вещества в растворах (патент на полезную модель RU № 23990 U1, кл. МПК G01N 33/14, опубл. 20.07.2002) с помощью оптико-электронного метода осаждения. Скорость осаждения полимерного раствора определяют путем измерения светопропускания, регистрируя изменения силы света во время осаждения с помощью установленного источника света и приемника, системы управления и регистрации.
Недостатком способа является отсутствие возможности спрогнозировать пористую структуру будущей полимерной мембраны, а также ее проницаемость.
Известен способ измерения скорости осаждения полимерного раствора путем центрифугирования полимерного раствора и определения скорости осаждения расчетом по формуле как отношения толщины слоя осажденного компонента к толщине слоя полимерного раствора (WO 2019230140 А1, кл. МПК C08F 214/22; C08F 214/28; C08L 27/16; C08L 27/20; Н01М 2/16; Н01М 4/62, опубл. 15.12.2019).
Недостатком способа является невозможность оценки свойств полимерной мембраны, получаемой методом NIPS, с помощью вычисляемой скорости осаждения из-за отсутствия фазового распада, протекающего при контакте полимерного раствора с осадителем.
Наиболее близким аналогом к предложенному способу (прототипом) является способ определения скорости осаждения полимерного раствора в "бесконечном" слое полимерного раствора (Gregory R. Guillen, Guy Z. Ramon, H. Pirouz Kavehpour, Richard B. Kaner, Eric M.V. Hoek // Journal of Membrane Science 431 (2013) 212-220).
Исследование кинетики осаждения полимерного раствора в "неограниченном" слое заключается в том, что каплю раствора полимера (10 мкл) помещали между предметным и покровным стеклами. Осадитель прикапывают с помощью пипетки Пастера, так, чтобы он затекал в щель между стеклами и контактировал с полимерным раствором. Процесс фазового распада полимерного раствора наблюдают в направлении перпендикулярном покровному стеклу с помощью оптического микроскопа и регистрируют на видеокамеру. Скорость осаждения была выражена как кажущийся коэффициент диффузии:
Figure 00000001
где х - некоторое расстояние в растворе полимера, a t - это время, за которое пальцевидная пора вырастет до расстояния х.
Недостаток описанного способа заключается в невозможности поддерживать постоянную толщину полимерного слоя между предметным и покровным стеклами.
Также диаметр капли полимерного раствора после сжатия между стеклами соответствует миллиметрам, что намного больше, чем типичная толщина пористой плоской мембраны или стенки половолоконной мембраны, равной сотни микрометров (<500 мкм). Вследствие чего происходит разбавление осадителя растворителем, что, в свою очередь, приводит к изменению скорости осаждения полимерного раствора, не характерной для скорости осаждения при изготовлении пористой полимерной плоской или половолоконной мембраны заданной толщины.
Задача изобретения заключается в устранении недостатков прототипа и разработке способа оценки свойств мембраны, позволяющего моделировать процесс формирования пористой мембраны, с возможностью заранее прогнозировать время формирования, морфологию пористой структуры и проницаемость конечного изделия.
Для решения поставленной задачи в способе оценки свойств полимерной мембраны путем определения скорости осаждения полимерного раствора для получения пористой полимерной пленки путем контакта с осадителем с помощью диффузионной ячейки и оценки пористой структуры мембраны путем визуального наблюдения процесса осаждения через оптический микроскоп и регистрации на видеокамеру, используют диффузионную ячейку, представляющую собой канал, заполненный раствором полимера глубиной 100-1000 мкм, и образованный двумя параллельными прозрачными пластинами, установленными на расстоянии 10-500 мкм, так, что канал с одной стороны ограничен перегородкой, а с другой стороны контактирует с атмосферой и служит для введения осадителя, измеряют общую толщину осажденного полимерного слоя, при этом скорость осаждения слоя раствора полимера рассчитывают из отношения общей толщины осажденного полимерного слоя (d, мкм) ко времени его осаждения (t, с) по формуле
Figure 00000002
как среднее значение на основании 5 измерений для каждого полимерного раствора, а по заранее определенной зависимости проницаемости от скорости осаждения оценивают проницаемость мембраны.
Предпочтительно в качестве полимера используют полисульфон или полиэфирсульфон, или полифениленсульфон, или полиакрилонитрил, или полиамидную кислоту, или поливинилиденфторид, или целлюлозу, в качестве растворителя полимера - N-метилпирролидон, диметилформамид, диметилацетамид, диметилсульфоксид, ионную жидкость или их смесь, в качестве осадителя - воду, водный раствор растворителя полимера или спирт.
На Фиг. 1 представлена зависимость проницаемости полимерных мембран, изготовленных из полимерных растворов методом NIPS, от скорости осаждения соответствующих полимерных растворов, измеренной в "неограниченном" слое в соответствии с прототипом.
Из Фиг. 1 видно, что, несмотря на то, что скорости осаждения различных полимерных растворов отличаются, проницаемости полученных из этих полимерных растворов мембран могут совпадать. В связи с этим, оценка проницаемости получаемых мембран, определяемая скоростью осаждения полимерного раствора в "неограниченном" слое не позволяет верно оценить проницаемость полученной из этого же раствора полимерной мембраны.
На Фиг. 2 представлена зависимость проницаемости полимерных мембран, изготовленных из полимерных растворов методом NIPS, от скорости осаждения соответствующих полимерных растворов, измеренной в "ограниченном" слое в соответствии с изобретением.
Скорость осаждения полимерного раствора коррелирует с проницаемостью полимерной мембраны, полученной из этого же раствора, чем меньше скорость осаждения, тем меньше проницаемость мембран и наоборот.
На Фиг. 3 изображена фотография полимерного слоя толщиной 300 мкм, осажденного в диффузионной ячейке методом "ограниченного" слоя в соответствии с изобретением.
Так, из Фиг. 3 видно, что уже на стадии осаждения полимерного слоя в диффузионной ячейке методом "ограниченного" слоя по изобретению сформировались несквозные пальцевидные поры, характеризующиеся длиной примерно от 35 до 270 мкм и диаметром пор у основания 3,5 мкм, при этом пористость составила примерно 55%. Стенки пальцевидных пор губчатые.
На Фиг. 4 изображена фотография СЭМ готовой полимерной половолоконной мембраны с толщиной стенки 300 мкм, полученной из осажденного в диффузионной ячейке методом "ограниченного" слоя по изобретению полимерного слоя толщиной 300 мкм. Мембрана получена из того же раствора, что и полимерный слой, изображенный на Фиг. 3.
На Фиг. 5 изображена фотография СЭМ готовой полимерной половолоконной мембраны, полученной из осажденного в диффузионной ячейке методом "неограниченного" слоя.
На Фиг. 6 представлена схема установки для осуществления способа оценки.
Изображения готовой полимерной мембраны и осажденного в диффузионной ячейке методом "ограниченного" слоя полимерного слоя, представленные на фиг. 3 и 4, визуально идентичны: полученная полимерная мембрана также имеет несквозные пальцевидные поры с губчатыми стенками, длина пор составляет примерно 50-250 мкм, диаметр пор у основания около 5 мкм, при этом пористость составила примерно 65%. Полученные сопоставимые значения по типу пор, их размеру и величине пористости говорят о схожести пористой структуры, сформированной в ограниченном полимерном слое и пористой мембране, полученные из одного и того же раствора.
Таким образом, визуализация с помощью оптического микроскопа и видео камеры процесса осаждения полимерного раствора в "ограниченном" слое, сформированном в диффузионной ячейке, позволяет получить изображения формирующейся пористой структуры и оценить ее, а именно: тип пористой структуры (сплошная, пальцевидная или губчатая), величину пористости (0-85%) и размер пор (больше 1 мкм) в образовавшемся полимерном слое, как показано на Фиг. 3, что соответствует типу пористой структуры, (сплошная, пальцевидная или губчатая), величине пористости (0-85%) и размеру пор (больше 1 мкм) в полимерной мембране, изготовленной из этого же раствора, как показано на фотографии сканирующего электронного микроскопа (СЭМ) (Фиг. 4).
При этом недостатком прототипа является несоответствие пористой структуры, формирующейся в "неограниченном" полимерном слое, пористой структуре полимерной мембраны, сформированной из этого же полимерного раствора (Фиг. 5). На Фиг. 5 изображен осажденный неограниченный слой того же полимерного раствора, который использовали для осаждения полимерного слоя (Фиг. 3) и получения полимерной половолоконной мембраны (Фиг. 4). Толщина осажденного фронта составила 300 мкм, при этом в слое при осаждении сформировались как сквозные, так и несквозные пальцевидные поры с толстыми губчатыми стенками. Минимальная длина составила 60 мкм, диаметр пор 10 мкм, пористость примерно 40%.
Полученная в прототипе пористая структура значительно отличается от пористой структуры, сформированной в половолоконной мембране. Отличие в диаметре пор соответствовало 50%, в пористости 40%.
Для расчета скорости осаждения полимерного раствора экспериментально определяют время осаждения.
В качестве полимеров используют различные термопласты: полисульфон (ПСФ), полиэфирсульфон (ПЭС), полифениленсульфон (ПФС), полиакрилонитрил (ПАН), полиамид (ПА), полиимид (ПИ), полиамидную кислоту (ПАК), полиэфир-эфиркетон (ПЭЭК), поликарбонат (ПК), поливинилиденфторид, полисахариды: целлюлозу, хитозан.
В качестве растворителей для полимеров применяют, в частности, ацетон, тетрагидрофуран (ТГФ), N-метилпирролидон (МП), диметилформамид (ДМФА), диметилацетамид (ДМАА), диметилсульфоксид (ДМСО), N-метилморфолин-N-оксид, церен, ионные жидкости или их смеси. В качестве осадителей - воду, водные растворы органических растворителей полимеров, спирты. Выбор растворителей и осадителей обусловлен природой полимера, и результаты заявленного способа будут достигнуты при применении любых растворителей, пригодных для растворения выбранного полимера, и любых осадителей, которые вызывают его осаждение - их замена не скажется на результатах оценки.
В полимерном растворе могут присутствовать водорастворимые порообразователи: полиэтиленгликоль (ПЭГ), поливинилпирролидон (ПВП), поливиниловый спирт (ПВС) и др. и различные наночастицы: наноцеллюлоза, углеродные нанотрубки, наночастицы металлов и др.
Технический результат, который может быть достигнут при использовании предлагаемого изобретения, заключается:
- в возможности определения скорости осаждения полимерного раствора, которая коррелирует с проницаемостью полимерных мембран, так как предлагаемое изобретение за счет наличия диффузионной ячейки позволяет смоделировать слой полимерного раствора между стеклом и раклей при получении полимерной плоской мембраны или слой полимерного раствора, сформированного в кольцевой фильере, при получении половолоконной мембраны;
- в получении при исследования осаждаемого слоя со структурой, близкой к структуре готовой мембраны;
- в возможности в режиме реального времени оценить пористую структуру мембраны, а именно тип пористой структуры, размер пор и пористость будущей полимерной мембраны уже на стадии формирования полимерного слоя при осаждении полимерного раствора в диффузионной ячейке согласно изобретению;
- в возможности избежать разбавления осадителя растворителем за счет проведения исследования кинетики осаждения полимерного раствора в ограниченном полимерном слое.
Предлагаемый способ реализуется с помощью установки, представленной на Фиг. 6.
1 - первая прозрачная пластина;
2 - вторая прозрачная пластина;
3 - перегородка;
4 - канал;
5 - оптический микроскоп;
6 - предметное стекло;
7 - пипетка Пастера;
8 - видеокамера.
Способ определения скорости осаждения полимерных растворов осуществляют следующим образом.
Между двумя прозрачными пластинами (1) и (2) с помощью перегородки (3) формируют открытый с одной стороны к атмосфере канал (4) глубиной 100-1000 мкм и толщиной 10-500 мкм, заполняют канал полимерным раствором. Так получают диффузионную ячейку. Препарат с полимерным раствором фиксируют на предметном стекле (6). С помощью пипетки Пастера (7) с открытой к атмосфере стороны к полимерному раствору прикапывают осадитель, наблюдают процесс фазового распада полимерного раствора с помощью оптического микроскопа (5) и фиксируют его на видеокамеру (8).
Визуально оценивают пористую структуру (тип пористой структуры, пористость и размер пор), которая соответствует пористой структуре готовой мембраны. Измеряют толщину осажденного полимерного слоя. После осаждения очищают канал от осадка, остатков полимерного раствора и осадителя и повторяют исследование, начиная с заполнения канала полимерным раствором, еще 4 раза.
Рассчитывают скорость осаждения слоя раствора полимера рассчитывают из отношения общей толщины осажденного полимерного слоя (d, мкм) ко времени его осаждения (t, с) по формуле
Figure 00000003
как среднее значение на основании 5 измерений для каждого полимерного раствора.
По заранее определенной зависимости проницаемости мембраны от скорости осаждения полимерного раствора, представленной в виде графика или таблицы, оценивают проницаемость мембраны
Предлагаемый способ иллюстрируется примерами, представленными ниже.
Примеры 1-3. Исследование кинетики осаждения 20 мас. %-го раствора полисульфона ПСФ/N-метилпирролидон (NMП) в воде, этаноле и 50 мас. %-ом водном растворе NMП.
С помощью нового способа "ограниченного" слоя полимерного раствора были определены скорости осаждения 20 мас. %-го раствора ПСФ в NМП с различных осадителях: воде, этаноле и 50 мас. %-ом NMП.
Исследование кинетики осаждения 20 мас. %-го раствора ПСФ/NМП в "ограниченном" слое раствора полимера осуществляют следующим образом: С помощью двух прозрачных пластин и перегородки формируют канал с глубиной (d) 300-320 мкм, с одной стороны открытый к атмосфере. Расстояние между пластинами составляет 200 мкм. Затем канал заполняют 20 мас. %-ым раствором ПСФ в NMП. Препарат с полимерным раствором фиксируют на предметном стекле. С помощью пипетки Пастера с открытой к атмосфере стороны к полимерному раствору прикапывают осадители: вода, этанол, 50 мас. %-ый водный раствор NMП и наблюдают процесс фазового распада исследуемого раствора с помощью микроскопа и фиксируют его на видеокамеру.
Определяют скорость осаждения слоя раствора полимера заданной толщины как отношение общей толщины осажденного полимерного слоя (d, мкм) ко времени его осаждения (t, с), по представленной ниже формуле
Figure 00000004
Скорость осаждения вычисляют как среднее значение на основании 5 измерений для каждого полимерного раствора.
Для осадителя - воды:
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
По результатам пяти измерений определяют:
Figure 00000010
Figure 00000011
Для осадителя - этанола:
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
По результатам пяти измерений определяют:
Figure 00000017
Figure 00000018
Для 50 % мас. NМП в воде:
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
По результатам пяти измерений определяют:
Figure 00000024
Figure 00000025
Морфологию и пористость пленки - пористую структуру - определяют визуально по фотографиям и видео, полученным с помощью микроскопа и видеокамеры.
Результаты исследования кинетики осаждения по примерам 1-3 представлены в таблице 1.
Figure 00000026
Пример 4. Исследование пористой структуры осажденного слоя из 20 мас. %-го раствора ПСФ в NMП с помощью способов "неограниченного" и "ограниченного" слоя полимерного раствора и сравнение с морфологией половолоконного ПСФ волокна, полученного из этого же раствора.
Процесс фазового распада 20 мас. %-го раствора полиамидной кислоты в НМП при контакте с водой изучают двумя способами в "неограниченном" и "ограниченном" слое. Способ, реализуемый в "неограниченном" слое раствора полимера заключается в том, что каплю раствора полимера (10 мкл) помещают между предметным и покровным стеклами. Воду прикапывают с помощью пипетки Пастера, так, чтобы она затекала в щель между стеклами и контактировал с полимерным раствором. Процесс фазового распада раствора ПСФ наблюдают в направлении перпендикулярном покровному стеклу с помощью оптического микроскопа Микромед Р-1 и регистрируют на видеокамеру (HiROCAM МА88).
Расстояние между прозрачными пластинами - 120 мкм.
Из исследуемого 20 мас. %-го раствора ПСФ в NMП получают половолоконные мембраны с помощью кольцевой фильеры методом сухо-мокрой инверсии фаз в варианте «свободного прядения» полого волокна на воздухе с подачей внутреннего осадителя внутрь жидкого капилляра полимерного раствора, при котором сформованное полое волокно под собственным весом поступает в приемную ванну, где самопроизвольно сматывается в бухту. Внешний диаметр фильеры равнялся 1700 мкм, ширина кольцевого канала, куда подают формовочный раствор, составляет 450 мкм. Формование проводят в следующих условиях: Твнутреннего осадителя = 70°С, рнад раствором = 250 кПа, рнад осадителем = 10 кПа, величина воздушного зазора - 1 м. Полученные образцы половолоконных мембран отмывают последовательно водопроводной водой и сушили.
Морфологию образцов исследуют на сканирующем электронном микроскопе (СЭМ) "Hitachi ТМ3030". Для этого в среде жидкого азота получают сколы образцов половолоконных ПСФ мембран, которые затем с помощью напылителя DSR1 ("Nanostructured Coatings Co.") покрывают слоем золота толщиной около 5-15 нм.
Фотографии осажденных полимерных ПСФ слоев, полученных из 20 мас. %-го раствора ПСФ в NMQ с помощью способов исследования кинетики в "неограниченном" и "ограниченном" слое, а также СЭМ фотографии половолоконной ПСФ мембраны, представлены на Фиг. 3, 4, и 5.
Характеристики пористой структуры представлены в таблице 2.
Figure 00000027
Figure 00000028
Пример 5-6. Исследование морфологии и скорости осаждения 18 мас. %-го раствора полиамидной кислоты ПАК в N-метилпирролидоне, вычисленной с помощью способов "неограниченного" и "ограниченного" слоя полимерного раствора.
Процесс фазового распада 18 мас. %-го раствора полиамидной кислоты в НМП при контакте с водой изучают двумя способами в "неограниченном" и "ограниченном" слое. Способ, реализуемый в "неограниченном" слое раствора полимера осуществляют так же, как в примерах 4.
Способ исследования кинетики осаждения в "ограниченном" слое раствора полимера осуществляют так же, как в примерах 1-3, глубина канала составляет примерно 350 мкм, расстояние между прозрачными пластинами - 400 мкм.
Расчет для "ограниченного" слоя:
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
По результатам пяти измерений определяют:
Figure 00000034
Figure 00000035
Скорости осаждения, определенные с помощью способов "неограниченного" и "ограниченного" слоя полимерного раствора, представлены в таблице 3.
Figure 00000036
Пример 7 - 11. Исследование кинетики осаждения 12 мас. %-го раствора полиамидной кислоты в N-метилпирролидоне с помощью способов "ограниченного" слоя, сформированного в канале различной глубины, и "неограниченного" слоя.
Процесс фазового распада 12 мас. %-го раствора полиамидной кислоты в НМП при контакте с водой изучают двумя способами в "неограниченном" и "ограниченном" слое. Способ, реализуемый в "неограниченном" слое раствора полимера осуществляют так же, как в примерах 4.
Способ исследования кинетики осаждения в "ограниченном" слое раствора полимера осуществляют так же, как в примерах 1-3, глубина канала составляла 150, 300, 400, 800 мкм, расстояние между прозрачными пластинами - 50 мкм.
Расчет для глубины канала 150 мкм:
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
По результатам пяти измерений определяют:
Figure 00000042
Figure 00000043
Для глубины канала 300 мкм:
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
По результатам пяти измерений определяют:
Figure 00000049
Figure 00000050
Figure 00000051
Для глубины канала 400 мкм:
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
Figure 00000056
По результатам пяти измерений определяют:
Figure 00000057
Figure 00000058
Figure 00000059
Для глубины канала 800 мкм:
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
По результатам пяти измерений определяют:
Figure 00000065
Figure 00000066
Figure 00000067
Скорости осаждения, определенные с помощью способов "неограниченного" и "ограниченного" слоя полимерного раствора, представлены в таблице 4.
Figure 00000068
Примеры 12-15. Исследование кинетики осаждения растворов полиамидной кислоты в N-метилпирролидоне с различным содержанием полимера.
С помощью нового способа "ограниченного" слоя полимерного раствора определяют скорости осаждения растворов ПАК в NMП с различной концентрацией полимера от 12 до 18 мас. %. Способ исследования кинетики осаждения в "ограниченном" слое раствора полимера осуществляют так же, как в примерах 1-3, глубина канала составляет 330 мкм, расстояние между прозрачными пластинами - 150 мкм.
При концентрации 18% мас.:
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
По результатам пяти измерений определяют:
Figure 00000074
Figure 00000075
Figure 00000076
При концентрации 16%мас.:
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
По результатам пяти измерений определяют:
Figure 00000082
Figure 00000083
Figure 00000084
При концентрации 14%мас.:
Figure 00000085
Figure 00000086
Figure 00000087
Figure 00000088
Figure 00000089
По результатам пяти измерений определяют:
Figure 00000090
Figure 00000091
ПРи концентрации 12%мас.:
Figure 00000092
Figure 00000093
Figure 00000094
Figure 00000095
Figure 00000096
По результатам пяти измерений определяют:
Figure 00000097
Figure 00000098
Результаты исследования кинетики осаждения растворов с помощью способа "ограниченного" слоя представлены в таблице 5.
Figure 00000099
Пример 16-22. Исследование кинетики осаждения растворов полиамидной кислоты в N-метилпирролидоне с различным содержанием нерастворителя в полимерном растворе и формирующейся морфологии в полимерных слоях и мембранах, анализ зависимости проницаемости полимерной мембраны от скорости осаждения полимерного раствора.
С помощью способов "неограниченного" и "ограниченного" слоя полимерного раствора определяют скорости осаждения 12 мас. % раствора ПАК в NMП с различным содержанием этанола в растворе от 0 до 35 мас. %. Способы исследования кинетики осаждения в "неограниченном" и "ограниченном" слое раствора полимера осуществляют так же, как в примерах 1-3. В случае "ограниченного" слоя глубина канала составляла 300 мкм, расстояние между прозрачными пластинами - 140 мкм.
При содержании этанола 0 % мас.:
Figure 00000100
Figure 00000101
Figure 00000102
Figure 00000103
Figure 00000104
По результатам пяти измерений определяют:
Figure 00000105
Figure 00000106
При содержании этанола 5 % мас.:
Figure 00000107
Figure 00000108
Figure 00000109
Figure 00000110
Figure 00000111
По результатам пяти измерений определяют:
Figure 00000112
Figure 00000113
При содержании этанола 10 % мас.:
Figure 00000114
Figure 00000115
Figure 00000116
Figure 00000117
Figure 00000118
По результатам пяти измерений определяют:
Figure 00000119
Figure 00000120
При содержании этанола 15 % мас.:
Figure 00000121
Figure 00000122
Figure 00000123
Figure 00000124
Figure 00000125
По результатам пяти измерений определяют:
Figure 00000126
Figure 00000127
При содержании этанола 20 % мас.:
Figure 00000128
Figure 00000129
Figure 00000130
Figure 00000131
Figure 00000132
По результатам пяти измерений определяют:
Figure 00000133
Figure 00000134
При содержании этанола 30 % мас.:
Figure 00000135
Figure 00000136
Figure 00000137
Figure 00000138
Figure 00000139
По результатам пяти измерений определяют:
Figure 00000140
Figure 00000141
При содержании этанола 35 % мас.:
Figure 00000142
Figure 00000143
Figure 00000144
Figure 00000145
Figure 00000146
По результатам пяти измерений определяют:
Figure 00000147
Figure 00000148
Результаты исследования кинетики осажденных растворов по примерам 16-22 приведены в таблице 6.
Figure 00000149
Из исследуемых 12 мас. %-ых растворов ПАК в NMП с различным содержанием этанола формуют плоские ПАК мембраны и получают их проницаемости по воде.
Мембраны получают следующим образом. Приготовленные формовочные растворы ПАК с помощью ракли с зазором 300 мкм наносят на стеклянную подложку, после чего погружают ее в осадитель - воду. Сформированную мембрану промывают в изобутиловом спирте и затем помещают в ванну с чистым изобутиловым спиртом, в которой хранят мембраны до дальнейших исследований.
Морфологию образцов мембран исследуют так же, как в примере 4 (Фиг. 3).
Проницаемости полученных мембран определяют с помощью порометрии с вытеснением жидкость-жидкость (LLDP) с использованием порометра POROLIQ 1000 ML (Porometer). Измерения проводят при 25°С с использованием пары несмешивающихся жидкостей, полученных при расслоении смеси изобутанола и воды (1/1, об. / об.). Фазу, богатую спиртом, используют в качестве смачивающей жидкости, а фазу, богатую водой, используют в качестве вытесняющей жидкости. Из каждой мембраны вырезают по 5 образцов диаметром 2 см и помещают в емкость с смачивающей жидкостью по крайней мере на 2 часа при 20°С перед испытанием. Значения проницаемости представляют собой результат усреднения результатов, полученных для 5 исследованных образцов.
Затем строят зависимости проницаемости мембран от скоростей осаждения полимерных растворов, полученных в "ограниченном" и "неограниченном" слоях, и проводят корреляцию между свойствами. Результаты представлены на Фиг. 1 и Фиг. 2 соответственно.
Таким образом, предлагаемый способ исследования кинетики осаждения полимерных растворов в "ограниченном" слое позволяет провести корреляцию между скоростью осаждения полимерного раствора и проницаемостью мембраны, полученной из этого раствора (низкая скорость осаждения полимерного раствора свидетельствует о низкой проницаемости мембраны, и наоборот). При этом способ исследования кинетики осаждения полимерных растворов в "неограниченном" слое не дает провести такую корреляцию.
Вновь исследуют кинетику осаждения. Пользуясь построенной заранее зависимостью (корреляцией) проницаемости от скорости осаждения, оценивают проницаемость мембран.
Получают значение скорости осаждения 34 мкм/с и, пользуясь зависимостью, представленной на Фиг. 2, оценивают проницаемость мембраны как приблизительно 112 кг/м2⋅ч⋅атм.
Аналогично оценивают проницаемость мембран в других представленных примерах.
Пример 23-26. Исследование кинетики осаждения 26 мас. % растворов различных полимеров в NMП.
С помощью нового способа "ограниченного" слоя полимерного раствора определяют скорости осаждения 26 мас. %-ых растворов различных полимеров ПСФ, полиэфирсульфон (ПЭС), полифениленсульфон (ПФС), полиакрилонитрил (ПАН) в NMП. Способ исследования кинетики осаждения в "ограниченном" слое раствора полимера осуществляют так же, как в примерах 1-3, глубина канала составляла 400 мкм, расстояние между прозрачными пластинами - 100 мкм.
Для ПСФ:
Figure 00000150
Figure 00000151
Figure 00000152
Figure 00000153
Figure 00000154
По результатам пяти измерений определяют:
Figure 00000155
Figure 00000156
Для ПЭС:
Figure 00000157
Figure 00000158
Figure 00000159
Figure 00000160
Figure 00000161
По результатам пяти измерений определяют:
Figure 00000162
Figure 00000163
Для ПФС:
Figure 00000164
Figure 00000165
Figure 00000166
Figure 00000167
Figure 00000168
По результатам пяти измерений определяют:
Figure 00000169
Figure 00000170
Для ПАН:
Figure 00000171
Figure 00000172
Figure 00000173
Figure 00000174
Figure 00000175
По результатам пяти измерений определяют:
Figure 00000176
Figure 00000177
Результаты исследования кинетики примерам 23-26 приведены в таблице 7.
Figure 00000178
Figure 00000179
Пример 27-30. Исследование кинетики осаждения 20 мас. % растворов ПАН, приготовленных в различных растворителях.
С помощью нового способа "ограниченного" слоя полимерного раствора определяют скорости осаждения 20 мас. %-ых растворов ПАН в различных растворителях, NMП, диметилформамид (ДМФА), диметилацетамид (ДМАА), диметилсульфоксид (ДМСО). Способ исследования кинетики осаждения в "ограниченном" слое раствора полимера осуществляют так же, как в примерах 1-3, глубина канала составляла 350 мкм, расстояние между прозрачными пластинами - 120 мкм.
Для NMП:
Figure 00000180
Figure 00000181
Figure 00000182
Figure 00000183
Figure 00000184
По результатам пяти измерений определяют:
Figure 00000185
Figure 00000186
Для ДМФА:
Figure 00000187
Figure 00000188
Figure 00000189
Figure 00000190
Figure 00000191
По результатам пяти измерений определяют:
Figure 00000192
Figure 00000193
Для ДМАА:
Figure 00000194
Figure 00000195
Figure 00000196
Figure 00000197
Figure 00000198
По результатам пяти измерений определяют:
Figure 00000199
Figure 00000200
Для ДМСО:
Figure 00000201
Figure 00000202
Figure 00000203
Figure 00000204
Figure 00000205
По результатам пяти измерений определяют:
Figure 00000206
Figure 00000207
Результаты исследования кинетики примерам 27-30 приведены в таблице 8.
Figure 00000208
Пример 31-32. Исследование кинетики осаждения 24 мас. % растворов ПСФ в NMП с добавлением различных поробразователей.
С помощью нового способа "ограниченного" слоя полимерного раствора определяют скорости осаждения 24 мас. %-ых растворов ПСФ в NMП с добавлением 20 мас. % полиэтиленгликоля (ПЭГ400) и 5 мас. % поливинилпирролидона (ПВП). Способ исследования кинетики осаждения в "ограниченном" слое раствора полимера осуществляют так же, как в примерах 1-3, глубина канала составляла 250 мкм, расстояние между прозрачными пластинами - 50 мкм.
Для ПЭГ:
Figure 00000209
Figure 00000210
Figure 00000211
Figure 00000212
Figure 00000213
По результатам пяти измерений определяют:
Figure 00000214
Figure 00000215
Для ПВП:
Figure 00000216
Figure 00000217
Figure 00000218
Figure 00000219
Figure 00000220
По результатам пяти измерений определяют:
Figure 00000221
Figure 00000222
Результаты исследования кинетики по примерам 31-32 приведены в таблице 9.
Figure 00000223
Пример 31-32. Исследование кинетики осаждения 14 мас. % раствора целлюлозы в смеси ионной жидкости/ДМСО при контакте с различными осадителями.
С помощью нового способа "ограниченного" слоя полимерного раствора определяют скорости осаждения 14 мас. %-ых раствора целлюлозы в смеси ионной жидкости ацетат 1-этил-3-метилимидазолия [Emim]Ac/ДМСО при контакте с различными осадителями: вода, метанол (МеОН), этанол (EtOH), изопропанол (iPrOH), изобутанол (iBuOH). Способ исследования кинетики осаждения в "ограниченном" слое раствора полимера осуществляют так же, как в примерах 1-3, глубина канала составляла 300 мкм, расстояние между прозрачными пластинами - 70 мкм.
Для воды:
Figure 00000224
Figure 00000225
Figure 00000226
Figure 00000227
Figure 00000228
По результатам пяти измерений определяют:
Figure 00000229
Figure 00000230
Для МеОН:
Figure 00000231
Figure 00000232
Figure 00000233
Figure 00000234
Figure 00000235
По результатам пяти измерений определяют:
Figure 00000236
Figure 00000237
Для EtOH:
Figure 00000238
Figure 00000239
Figure 00000240
Figure 00000241
Figure 00000242
По результатам пяти измерений определяют:
Figure 00000243
Figure 00000244
Для iPrOH:
Figure 00000245
Figure 00000246
Figure 00000247
Figure 00000248
Figure 00000249
По результатам пяти измерений определяют:
Figure 00000250
Figure 00000251
Для iBuOH:
Figure 00000252
Figure 00000253
Figure 00000254
Figure 00000255
Figure 00000256
По результатам пяти измерений определяют:
Figure 00000257
Figure 00000258
Результаты исследования кинетики примерам 33-37 приведены в таблице 10.
Figure 00000259

Claims (4)

1. Способ оценки свойств полимерной мембраны путем определения скорости осаждения полимерного раствора для получения пористой полимерной пленки путем контакта с осадителем с помощью диффузионной ячейки и оценки пористой структуры мембраны путем визуального наблюдения процесса осаждения через оптический микроскоп и регистрации на видеокамеру, отличающийся тем, что используют диффузионную ячейку, представляющую собой канал, заполненный раствором полимера глубиной 100-1000 мкм и образованный двумя параллельными прозрачными пластинами, установленными на расстоянии 10-500 мкм, так, что канал с одной стороны ограничен перегородкой, а с другой стороны контактирует с атмосферой и служит для введения осадителя, измеряют общую толщину осажденного полимерного слоя, при этом скорость осаждения слоя раствора полимера рассчитывают из отношения общей толщины осажденного полимерного слоя (d, мкм) ко времени его осаждения (t, с) по формуле
Figure 00000260
как среднее значение на основании 5 измерений для полимерного раствора, а по заранее определенной зависимости проницаемости от скорости осаждения оценивают проницаемость мембраны.
2. Способ по п. 1, отличающийся тем, что в качестве полимера используют полисульфон или полиэфирсульфон, или полифениленсульфон, или полиакрилонитрил, или полиамидную кислоту, или поливинилиденфторид, или целлюлозу, в качестве растворителя полимера – N-метилпирролидон, диметилформамид, диметилацетамид, диметилсульфоксид, ионную жидкость или их смесь, в качестве осадителя – воду, водный раствор растворителя полимера или спирт.
RU2021111878A 2021-04-26 2021-04-26 Способ оценки свойств полимерной мембраны RU2767951C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021111878A RU2767951C1 (ru) 2021-04-26 2021-04-26 Способ оценки свойств полимерной мембраны

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021111878A RU2767951C1 (ru) 2021-04-26 2021-04-26 Способ оценки свойств полимерной мембраны

Publications (1)

Publication Number Publication Date
RU2767951C1 true RU2767951C1 (ru) 2022-03-22

Family

ID=80819625

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021111878A RU2767951C1 (ru) 2021-04-26 2021-04-26 Способ оценки свойств полимерной мембраны

Country Status (1)

Country Link
RU (1) RU2767951C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151227A (en) * 1991-03-18 1992-09-29 W. R. Grace & Co.-Conn. Process for continuous spinning of hollow-fiber membranes using a solvent mixture as a precipitation medium
RU23990U1 (ru) * 2001-10-25 2002-07-20 Открытое акционерное общество "Новосибирский завод химконцентратов" Устройство для измерения скорости осаждения твердой фазы вещества в растворах
WO2019230140A1 (ja) * 2018-05-31 2019-12-05 株式会社クレハ ポリマー溶液、これを用いたフィルムの製造方法、および非水電解質二次電池用樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151227A (en) * 1991-03-18 1992-09-29 W. R. Grace & Co.-Conn. Process for continuous spinning of hollow-fiber membranes using a solvent mixture as a precipitation medium
RU23990U1 (ru) * 2001-10-25 2002-07-20 Открытое акционерное общество "Новосибирский завод химконцентратов" Устройство для измерения скорости осаждения твердой фазы вещества в растворах
WO2019230140A1 (ja) * 2018-05-31 2019-12-05 株式会社クレハ ポリマー溶液、これを用いたフィルムの製造方法、および非水電解質二次電池用樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GREGORY R. GUILLEN, GUY Z. RAMON, H. PIROUZ KAVEHPOUR, RICHARD B. KANER, ERIC M.V. HOEK, "DIRECT MICROSCOPIC OBSERVATION OF MEMBRANE FORMATION BY NONSOLVENT INDUCED PHASE SEPARATION", JOURNAL OF MEMBRANE SCIENCE, V. 431, PР. 212-220, 2013. *

Similar Documents

Publication Publication Date Title
Al Malek et al. Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone
Khayet et al. Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration
Shi et al. A support surface pore structure re-construction method to enhance the flux of TFC RO membrane
Tashvigh et al. Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates
Bottino et al. Novel porous poly (vinylidene fluoride) membranes for membrane distillation
US6884350B2 (en) Modified membranes
US20240149225A1 (en) Fabrication of filtration membranes
Agarwal et al. Neck-size distributions of through-pores in polymer membranes
CN105705536A (zh) 亲水-疏油的共聚物组合物及其用途
Lau et al. Effect of SPEEK content on the morphological and electrical properties of PES/SPEEK blend nanofiltration membranes
WO2013039456A1 (en) A thin film nanofiltration membrane
Zhang et al. Role of wettability in interfacial polymerization based on PVDF electrospun nanofibrous scaffolds
US20200122097A1 (en) Method of manufacturing porous polyvinylidene difluoride membrane
Li et al. Preparation of internally pressurized polyamide thin-film composite hollow fiber nanofiltration membrane with high ions selectivity by a facile coating method
Kao et al. Using coaxial electrospinning to fabricate core/shell-structured polyacrylonitrile–polybenzoxazine fibers as nonfouling membranes
CN109621751A (zh) 两亲性耐溶剂脂肪族聚酰胺超滤膜及其制备方法和用途
CN111644079B (zh) 一种高表面粗糙度的纳滤膜材料及其制备方法
Lang et al. The roles of alkali metal counter-ions of PFSA play in the formation of PVDF/PFSA-M hollow fiber membranes
AU2021430522A1 (en) Double-continuous high-pass polymer ultrafiltration membrane, preparation method therefor, and application thereof
RU2767951C1 (ru) Способ оценки свойств полимерной мембраны
Khulbe et al. Characterization of surface‐modified hollow fiber polyethersulfone membranes prepared at different air gaps
JP6620754B2 (ja) 分離膜および分離膜エレメントおよび分離膜モジュール
Mondal et al. Preparation, characterization, and performance of a novel hollow fiber nanofiltration membrane
Zhang et al. Novel organic–inorganic hybrid composite membranes for nanofiltration of acid and alkaline media
Khulbe et al. Pore size, pore size distribution, and roughness at the membrane surface