RU2764038C1 - Способ изготовления радиационно-стойких волоконных световодов - Google Patents

Способ изготовления радиационно-стойких волоконных световодов Download PDF

Info

Publication number
RU2764038C1
RU2764038C1 RU2021114225A RU2021114225A RU2764038C1 RU 2764038 C1 RU2764038 C1 RU 2764038C1 RU 2021114225 A RU2021114225 A RU 2021114225A RU 2021114225 A RU2021114225 A RU 2021114225A RU 2764038 C1 RU2764038 C1 RU 2764038C1
Authority
RU
Russia
Prior art keywords
core
layers
radiation
optical fibers
deposition
Prior art date
Application number
RU2021114225A
Other languages
English (en)
Inventor
Данила Ренатович Деветьяров
Михаил Артемьевич Ероньян
Алексей Юрьевич КУЛЕШ
Иван Сергеевич Никитин
Александр Александрович Печёнкин
Александр Александрович Реуцкий
Евгений Евгеньевич Татаринов
Юрий Константинович Чаморовский
Original Assignee
Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" filed Critical Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор"
Priority to RU2021114225A priority Critical patent/RU2764038C1/ru
Application granted granted Critical
Publication of RU2764038C1 publication Critical patent/RU2764038C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

Изобретение относится к модифицированному методу химического парофазного осаждения для изготовления радиационно-стойких световодов с фторсиликатной оболочкой и сердцевиной из кварцевого стекла, обедненного кислородом. Заявленный способ изготовления радиационно-стойких волоконных световодов включает изготовление MCVD методом трубчатой заготовки, с осаждением слоев фторсиликатной оболочки и сердцевины из чистого кварцевого стекла, при высокотемпературном сжатии которой ее внутренний канал продувают сухим азотом или аргоном с содержанием примесного кислорода не более 10-4 об.%. При этом слои оболочки и сердцевины наносят двухстадийным способом, состоящим из осаждения пористого слоя при встречном направлении горелки и потока газовой смеси внутри трубки с последующим остекловыванием пористых слоев при попутном с движением горелки направлении потока газовой смеси, содержащей влагу, и кислорода не более 10-4 об.%. Технический результат - повышение радиационной стойкости кварцевых фторсиликатных волоконных световодов. 2 ил.

Description

Изобретение относится к волоконной оптике, в частности, к изготовлению радиационно-стойких волоконных световодов (ВС) для разного рода оптоэлектронных систем, работающих в условиях повышенного радиационного фона в атомной энергетике, космической и военной технике. Широко используемые для передачи информации волоконно-оптические системы используют сегодня кварцевые ВС, легированные диоксидом германия. Однако из-за наличия атомов германия под действием радиации в световодах возникает большое количество дефектов, приводящих к недопустимо высокому уровню оптических потерь как в видимой области спектра, так и в спектральном диапазоне особой прозрачности кварцевого стекла (1,3-1,6 мкм).
Из уровня техники известен фторсиликатный волоконный световод (ФВС) с повышенной радиационной стойкостью (РС), в котором сердцевина состоит из чистого кварцевого стекла, а оболочка легирована фтором с целью снижения величины показателя преломления [Аксенов В.А., Волошин В.В., Воробьев И.Л., Долгов И.И., Иванов Г.А., Исаев В.А., Колосовский А.О., Моршнев С.К., Чаморовский Ю.К., Яковлев М.Я. Одномодовые оптические волокна с кварцевой сердцевиной и фторсиликатной оболочкой, обладающие повышенной радиационной стойкостью. // Радиотехника. 2005. № 12. С. 51-56].
Наведенные радиацией оптические потери (НРОП) в ФВС существенно ниже, чем в германосиликатными аналогах. РС ВС с сердцевиной из чистого кварцевого стекла, зависит от содержания в ней примесного хлора и ОН-групп [Nagasawa K., Tanabe M., Yahagi K. Gamma-ray-induced absorption bands in pure-silica-core fibers // Jpn. J. Appl. Phys., 1984, vol. 23, pp. 1608–1613].
В методе модифицированного химического парофазного осаждения (MCVD) при изготовлении ФВС для повышения РС хлор можно нейтрализовать высокотемпературной обработкой стекла сердцевины в водородсодержащей среде [Okishev A.V., Boni R., Millechia M., Jaanimagi P.A., Donaldson W.R., Keck R.L., SekaW., Dukelsky K.V., Eronyan M.A., Shevandin V.S., Ermolaeva G.M., Nikolaev G.V., Shilov V.B. Unique High-Bandwidth, UV Fiber Delivery System for OMEGA Diagnostics Applications IEEE J. Select.Topics Quant. Electron., V. 7, p. 471, 2001]. Однако это техническое решение приводит к увеличению содержания ОН-групп, которые имеют полосы поглощения излучения с максимумами на длинах волн 0,95 и 1,38 мкм.
Уменьшить содержание примесного хлора в сердцевине ФВС без увеличения содержания ОН-групп можно посредством снижения давления паров тетрахлорида кремния (SiCl4) в реакционной парогазовой смеси при осаждении слоев чистого кварцевого стекла сердцевины при изготовлении ВС MCVD методом [патент РФ №2537523].
Однако такой технологический прием не устраняет другие наведенные радиацией дефекты, такие как немостиковый кислород (НК), которые поглощают излучение на длине волны 0,65 мкм. Образование таких дефектов приводит локально к деструкции кварцевого стекла, появлению оптических неоднородностей. Поэтому НРОП обусловлены как поглощением, так и рассеянием излучения [J. Wen, G.-D. Peng, W. Luo, Z. Xiao, Z. Chen and T. Wang, Gamma irradiation effect on Rayleigh scattering in low water peak single-mode optical fibers, (2011) V. 19, No. 23, Optics Express 23278].
Дефицит кислорода в кварцевом стекле сердцевины исключает возможность образования дефектов типа НК, обеспечивая тем самым высокий уровень РС ФВС [Tomashuk A. L., Dianov E. M., Golant K. M., Khrapko R. R., and Spinov D. E. “Performance of special radiation-hardened optical fibers intended for use in the telecom spectral windows at a megagray level,” IEEE Trans. Nucl. Sci., vol. 45, no. 3, pp. 1566–1569, Jun. 1998].
Дефицит кислорода в ФВС реализован в способе [патент РФ №2639560], включающем изготовление ФВС методом MCVD, в котором уменьшение содержания кислорода в сердцевине обеспечивается высокотемпературной обработкой стеклообразного ее слоя в атмосфере сухого азота или аргона.
Недостаток этого способа, принятого за прототип предлагаемого технического решения, заключается в том, что в процессе этой обработки примесный хлор полностью не устраняется даже из тонкой сердцевины одномодовых ФВС и, тем более, из фторсиликатной оболочки (далее - оболочки), что существенно снижает эффективность такого способа повышения РС световодов. Особо остро эта проблема проявляется для многомодовых ВС, в которых только центральная зона сердцевины очищается от хлора и обедняется кислородом.
Решаемая техническая проблема настоящего изобретения заключается в снижении содержания хлора и кислорода как в сердцевине, так и в оболочке оптического волокна.
Достигаемый технический результат - повышение радиационной стойкости кварцевых фторсиликатных волоконных световодов.
Поставленная задача решается предлагаемым способом изготовления ФВС, включающим изготовление MCVD методом трубчатой заготовки, с осаждением слоев фторсиликатной оболочки и сердцевины из чистого кварцевого стекла, при высокотемпературном сжатии которой ее внутренний канал продувают сухим азотом или аргоном с содержанием примесного кислорода не более 10-4 об. %, отличающимся от известного способа тем, что слои оболочки и сердцевины наносят двухстадийным методом, состоящим из осаждения пористого слоя при встречном направлении горелки и потока газовой смеси внутри трубки с последующим остекловыванием пористых слоев при попутном с движением горелки направлении потока газовой смеси, содержащей влагу и кислорода не более 10-4 об. %.
Сущность изобретения заключается в том, что предлагаемый двухстадийный метод осаждения слоев оболочки и сердцевины исключает внедрение хлора в стекло, а процесс высокотемпературного остекловывания пористых слоев в газовой смеси, содержащей влагу и кислорода не более 10-4 об. %, обеспечивает необходимый дефицит кислорода в кварцевом стекле сердцевины и во фторсиликатной оболочке. Такой способ изготовления ФВС обеспечивает высокий уровень их РС за счет эффективного устранения приводящих к увеличению оптических потерь в световодах дефектов, возникающих в процессе радиационного воздействия.
Предлагаемое новое техническое решение реализовано экспериментально в следующих примерах MCVD способа изготовления световодов.
Пример № 1. MCVD методом изготовлена заготовка одномодового ФВС при нагреве исходной вращающейся трубки кислородно-водородной горелкой, совершающей возвратно-поступательные движения. На внутреннюю поверхность метровой трубы из кварцевого стекла марки F 300 с наружным диаметром 25 и толщиной стенки 3 мм наносили 40 слоев оболочки из кварцевого стекла, легированного фтором и 4 слоя сердцевины из чистого кварцевого стекла. Осаждение слоев осуществляли двухстадийным методом, состоящем из осаждения пористого слоя при встречном направлении горелки и потока газовой смеси внутри трубки с последующим остекловыванием пористых слоев при попутном с движением горелки направлении потока газовой смеси, не содержащей хлора и кислорода. Парогазовую смесь при осаждении слоев оболочки (0,2 SiCl4 + 0,7 O2 + 0,1 SiF4) нагревали до 1500°С при встречном направлении движения горелки и охлаждении потоком воздуха трубки в зоне осаждения частиц. Остекловывание слоев оболочки проводили при температуре 2100°С и попутном направлении движения горелки и потока газовой смеси (0,5 N2 + 0,5 SiF4) внутри трубки. Парогазовую смесь при осаждении пористых слоев сердцевины (0,2 SiCl4 + 0,7 O2) нагревали до 1700°С при встречном направлении движения горелки и охлаждении потоком воздуха трубки в зоне осаждения частиц. Остекловывание слоев сердцевины проводили при температуре 2150°С и попутном направлении движения горелки и потока азота внутри трубки. Процесс сжатия трубки производили за четыре прохода горелки при нагреве трубки до 2300°С. Во внутренний канал трубки в процессе этой операции подавали 300 мл/мин азота. В работе использовали азот высокой чистоты с содержанием основных примесей кислорода и влаги не более 10-4 об. % По данным радиального профиля показателя преломления (ПП), измеренного на рефрактометре Р-101, разность ПП оболочки и сердцевины из чистого кварцевого стекла равна 0,0085. Соотношение средних арифметических значений диаметров сердцевины и фторсиликатной оболочки равно 9, при диаметре сердцевины, равном 0,92 мм.
Из полученной таким образом заготовки вытягивали одномодовый ФВС № 1 диаметром 125 мкм и длиной 5 км. В процессе вытягивания волокно покрывали слоем эпоксиакрилатного полимера толщиной 60 мкм. Световод наматывали на катушку диаметром 160 мм.
Спектр исходных оптических потерь волокон (фиг. 1), измеренный методом обрыва с использованием анализатора оптического спектра марки «Yokogawa AQ6370C» показал, что поглощение ОН группами в ФВС на длине волны 1,38 мкм равно 1,9 дБ/км, а затухание на длинах волн 1,3 и 1,55 мкм, соответственно, 0,3 и 0,2 дБ/км. Длина волны отсечки высшей моды ≈ 1,2 мкм.
НРОП в световоде, измеренные прибором марки «FOD-1208 Optical Tester» на длине волны 1,3 и 1,55 мкм не превышали соответственно 0,7 и 0,4 дБ/км при облучении гамма-источником 60Со дозой 1 кГр и мощностью 1 Гр/с. Мощность зондирующего излучения была на уровне 5 мкВт. НРОП такого ФВС на длине волны 1,3 мкм (0,7 дБ/км) в два раза меньшие по сравнению с аналогичными ФВС фирмы «Fujikura», являющейся мировым лидером по производству радиационно-стойких световодов [T. Wijnands, L.K. De Jonge, J. Kuhnhenn, S.K. Hoeffgen, U. Weinand, Optical absorption in commercial single mode optical fibers in a high energy physics radiation field // IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2216-2222, 2008].
ФВС обладает хорошей способностью восстанавливать оптические потери после облучения. Световоды после облучения дозой 1 кГр при мощности в 3 Гр/с почти полностью восстанавливаются через 10 минут релаксации при комнатной температуре (фиг. 2).
Пример № 2. Методом MCVD изготовлен ФВС по аналогии с примером № 1. Оптические потери световода длиной 200 м измеряли в спектральной области видимого света на длине волны 0,65 мкм, при которой режим распространения излучения является маломодовым. При этом использовали источник лазерного излучения F2H VLS-8 и приемника излучения PD-300R фирмы «Ophir Optronics». Исходные оптические потери ФВС, измеренные методом обрыва, были на уровне 13 дБ/км.
ФВС облучали гамма-источником 60Со дозой 200 Гр при мощности 100 Гр/ч.
НРОП, измеренные по изменению мощности проходящего по ВС излучения в процессе облучения, не превышали 14 дБ/км., что в 2,5 раза меньше, чем у изготовленных по известной технологии ФВС [Sanada K, Shamoto T and Inada K. Radiation resistance characteristics of graded index fiber with a core of Ge-F-doped or B and F- codoped SiO2 glass. J. Non-Cryst. Solids, 1995, v. 189, pp. 283-290].
НРОП в ФВС на длине волны 0,65 мкм исчезают полностью за сутки при выдержке волокна при комнатной температуре.
Низкий уровень РС известных ФВС аналогов обусловлен возникновением дефектов в виде НК с полосой поглощения на длине волны 0,65 мкм. Предлагаемое техническое решение устраняет условия образования таких дефектов.
В отличие от известных ФВС изготовленные по новому техническому решению ВС хорошо восстанавливают оптические свойства после прекращения облучения, обеспечивая возможность их многократного использования.
Пример № 3. По аналогии с примером №1 изготовлен контрольный образец одномодового ФВС, отличающийся тем, что осаждения слоев оболочки и сердцевины осуществляли одностадийным методом, в котором происходили одновременно процессы осаждения частиц и их спекания.
Из полученной таким образом заготовки по аналогии с примером № 1 вытягивали 1 км одномодового световода с длиной волны отсечки, равной 1,2 мкм.
Свойства такого световода оказались хуже по сравнению с примером № 1. Исходные оптические потери, измеренные методом обрыва, показали поглощение ОН группами в ВС на длине волны 1,38 мкм, равное 15 дБ/км, а затухание на длине волны 1,3 и 1,55 мкм, соответственно, 0,9 и 0,5 дБ/км.
Радиационная стойкость такого ВС существенно уступала ФВС первого примера. При аналогичных условиях радиационного воздействия НРОП на длине волны 1,3 и 1,55 мкм были более, чем в 6 раз выше по сравнению с примером № 1 и равны 8 и 2,5 дБ/км. НРОП таких световодов соответствуют свойствам ФВС, полученных MCVD методом при одностадийном способе осаждения слоев стекла сердцевины и оболочки [A. L. Tomashuk, M. Yu. Salgansky, P. F. Kashaykin, V. F. Khopin, A. I. Sultangulova, K. N. Nishchev, S. E. Borisovsky, A. N. Guryanov, E. M. Dianov, “Enhanced radiation resistance of silica optical fibers fabricated in high O2 excess conditions,” J. Lightw. Technol., vol. 32, no. 2, pp 213-219, Jan 2014].
Таким образом заявленный технический результат достигнут.

Claims (1)

  1. Способ изготовления радиационно-стойких волоконных световодов, включающий изготовление MCVD методом трубчатой заготовки, с осаждением слоев фторсиликатной оболочки и сердцевины из чистого кварцевого стекла, при высокотемпературном сжатии которой ее внутренний канал продувают сухим азотом или аргоном с содержанием примесного кислорода не более 10-4 об.%, отличающийся тем, что слои оболочки и сердцевины наносят двухстадийным способом, состоящим из осаждения пористого слоя при встречном направлении горелки и потока газовой смеси внутри трубки с последующим остекловыванием пористых слоев при попутном с движением горелки направлении потока газовой смеси, содержащей влагу, и кислорода не более 10-4 об.%.
RU2021114225A 2021-05-20 2021-05-20 Способ изготовления радиационно-стойких волоконных световодов RU2764038C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021114225A RU2764038C1 (ru) 2021-05-20 2021-05-20 Способ изготовления радиационно-стойких волоконных световодов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021114225A RU2764038C1 (ru) 2021-05-20 2021-05-20 Способ изготовления радиационно-стойких волоконных световодов

Publications (1)

Publication Number Publication Date
RU2764038C1 true RU2764038C1 (ru) 2022-01-12

Family

ID=80040233

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021114225A RU2764038C1 (ru) 2021-05-20 2021-05-20 Способ изготовления радиационно-стойких волоконных световодов

Country Status (1)

Country Link
RU (1) RU2764038C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2396580C1 (ru) * 2009-03-20 2010-08-10 Федеральное государственное унитарное предприятие "Научно-исследовательский и технологический институт оптического материаловедения Всероссийского научного центра "Государственный оптический институт им. С.И. Вавилова" (ФГУП "НИТИОМ ВНЦ "ГОИ им. С.И. Вавилова") Способ изготовления одномодовых волоконных световодов, сохраняющих поляризацию излучения
RU2469363C2 (ru) * 2009-04-08 2012-12-10 Общество с ограниченной ответственностью "Фиберус" Радиационно стойкий волоконный световод с большим двулучепреломлением, поддерживающий линейную поляризацию (варианты)
RU2511023C1 (ru) * 2012-10-19 2014-04-10 Михаил Артемьевич Ероньян Способ изготовления анизотропных одномодовых волоконных световодов
RU2537523C1 (ru) * 2013-09-13 2015-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Радиационно-стойкий волоконный световод, способ его изготовления и способ повышения радиационной стойкости волоконного световода (варианты)
RU2576686C1 (ru) * 2015-03-02 2016-03-10 Михаил Артемьевич Ероньян Mcvd способ изготовления заготовок для одномодовых световодов
RU2639560C1 (ru) * 2017-02-16 2017-12-21 Михаил Артемьевич Ероньян MCVD способ изготовления одномодовых световодов с сердцевиной из чистого кварцевого стекла

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2396580C1 (ru) * 2009-03-20 2010-08-10 Федеральное государственное унитарное предприятие "Научно-исследовательский и технологический институт оптического материаловедения Всероссийского научного центра "Государственный оптический институт им. С.И. Вавилова" (ФГУП "НИТИОМ ВНЦ "ГОИ им. С.И. Вавилова") Способ изготовления одномодовых волоконных световодов, сохраняющих поляризацию излучения
RU2469363C2 (ru) * 2009-04-08 2012-12-10 Общество с ограниченной ответственностью "Фиберус" Радиационно стойкий волоконный световод с большим двулучепреломлением, поддерживающий линейную поляризацию (варианты)
RU2511023C1 (ru) * 2012-10-19 2014-04-10 Михаил Артемьевич Ероньян Способ изготовления анизотропных одномодовых волоконных световодов
RU2537523C1 (ru) * 2013-09-13 2015-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Радиационно-стойкий волоконный световод, способ его изготовления и способ повышения радиационной стойкости волоконного световода (варианты)
RU2576686C1 (ru) * 2015-03-02 2016-03-10 Михаил Артемьевич Ероньян Mcvd способ изготовления заготовок для одномодовых световодов
RU2639560C1 (ru) * 2017-02-16 2017-12-21 Михаил Артемьевич Ероньян MCVD способ изготовления одномодовых световодов с сердцевиной из чистого кварцевого стекла

Similar Documents

Publication Publication Date Title
CA2240220C (en) Optical fiber having low loss at 1385 nm and method for making same
EP1845398B1 (en) Radiation resistant single-mode optical fiber and method of manufacturing thereof
US5509101A (en) Radiation resistant optical waveguide fiber and method of making same
EP1215179A2 (en) Method of fabricating a preform and optical fiber
US20090208760A1 (en) Energy-transmitting or ultraviolet light-transmitting optical fiber preform and production process thereof
US20120134376A1 (en) Radiation-Insensitive Optical Fiber Doped with Rare Earths
US4335934A (en) Single mode fibre and method of making
US20170203995A1 (en) Method for producing a tubular semifinished product from quartz glass, method for producing an optical component using the semifinished product, and semifinished product consisting of quartz glass doped with fluorine
CN102149648A (zh) 光纤母材的制造方法
RU2764038C1 (ru) Способ изготовления радиационно-стойких волоконных световодов
US8873915B2 (en) Low-loss optical fiber over wide wavelength range and method of manufacturing the same
KR100445046B1 (ko) 광섬유용 모재의 코어 유리, 코어 유리로부터 제조된 모재, 및 코어 유리와 광섬유의 제조 방법
US20240069272A1 (en) Microstructured optical fiber and preform for same
US9025922B2 (en) Optical fiber and method for manufacturing silica glass
Kashaykin et al. Gamma-radiation-induced attenuation of light in pure-silica core optical fiber in long-wavelength region
RU2462737C1 (ru) Способ изготовления световодов на основе кварцевого стекла с малыми оптическими потерями
CN114040894A (zh) 具有氢阻障层的石英光纤及其生产方法
US20130291602A1 (en) Optical fiber preform manufacturing method
US20150040616A1 (en) Optical fiber glass base material manufacturing method and optical fiber glass base material
EP1179514B1 (en) Silica optical fiber
JP2005181414A (ja) 光ファイバの製造方法
RU2537523C1 (ru) Радиационно-стойкий волоконный световод, способ его изготовления и способ повышения радиационной стойкости волоконного световода (варианты)
CN118330809A (zh) 新型的耐辐照光纤及其制备方法
Kashaykin et al. Drawing-and radiation-induced color centers in pure-silica-core optical fibers in the near-IR range
Zaurbekova PF Kashaykin2, 3, EA Pospelova 2, IE Kenzhina1, 5, Zh. A. Zaurbekova, SK Askerbekov, M. Yu. Salgansky 4, AA Shaimerdenov, AU Tolenova1, 5, AL Tomashuk2