RU2763715C1 - Способ переработки отходов титанмагнетитовой руды - Google Patents

Способ переработки отходов титанмагнетитовой руды Download PDF

Info

Publication number
RU2763715C1
RU2763715C1 RU2021115605A RU2021115605A RU2763715C1 RU 2763715 C1 RU2763715 C1 RU 2763715C1 RU 2021115605 A RU2021115605 A RU 2021115605A RU 2021115605 A RU2021115605 A RU 2021115605A RU 2763715 C1 RU2763715 C1 RU 2763715C1
Authority
RU
Russia
Prior art keywords
temperature
hours
added
solution
processing
Prior art date
Application number
RU2021115605A
Other languages
English (en)
Inventor
Лилия Александровна Пасечник
Ирина Сергеевна Медянкина
Сергей Павлович Яценко
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2021115605A priority Critical patent/RU2763715C1/ru
Application granted granted Critical
Publication of RU2763715C1 publication Critical patent/RU2763715C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к технологии переработки техногенных отходов, в частности титанмагнетитовой руды, с получением продуктов, используемых в промышленности. Отходы титанмагнетитовой руды обрабатывают гидрофторидом аммония с последующей обработкой полученного продукта водным раствором аммиака. При этом добавляют кристаллический гидрофторид аммония при массовом соотношении 1:(1-3). Добавляют дистиллированную воду до получения 5-15%-ного раствора гидрофторида аммония, нагревают до температуры 80-90°С и выдерживают при перемешивании при этой температуре в течение 2,0-2,5 ч, фильтруют и к полученному раствору добавляют 10-25%-ный водный раствор аммиака до получения рН 6-8. Выдерживают при комнатной температуре в течение 8-12 ч. Полученный осадок отделяют, промывают дистиллированной водой и фильтруют в течение 1-1,5 ч при комнатной температуре. Добавляют активную известь СаО, полученную после предварительной прокалки при 1100-1200°С, при массовом соотношении исходного сырья к активной извести (3-4):1. Тщательно перемешивают и сушат при температуре 85-90°С, затем прокаливают при температуре 900-950°С в течение 2-2,5 ч. Способ обеспечивает расширение номенклатуры продукции, используемой в промышленности, а именно получение силиката кальция CaSiO3 со структурой волластонита. 2 пр.

Description

Изобретение относится к технологии переработки техногенных отходов, в частности титанмагнетитовой руды, с получением продуктов, используемых в промышленности.
Известен способ переработки титаномагнетитового рудного сырья, включающий дробление исходной руды с последующим выделением ванадийсодержащего концентрата. Исходную руду дополнительно измельчают до крупности 3-0 мм. Железный и титанованадиевый концентраты выделяют с помощью кучного и/или агитационного выщелачивания титана и ванадия раствором, содержащим ионы аммония ((NH4)+) и фтора (F-) при варьировании рН и концентрации ионов аммония ((NH4)+) от 0 до 13,62
Figure 00000001
и фтора (F-) от 0 до 13,62
Figure 00000002
Оптимальные концентрация ионов аммония и фтора в растворе, уровень рН, температуру и время осуществления процесса выбирают так, чтобы селективность выделения титана из сырья была максимальной. В случае агитационного выщелачивания соотношение Т:Ж варьируют в интервалах от 1:2,5 до 1:4 (патент RU 2649208; МПК С22В 3/04, С22В 34/12, С22В 34/22, С01В 15/00, В03В 7/00; 2018 год).
Известный способ обеспечивает получение железного концентрата с повышенной массовой долей железа за счет более полного выделения из него титано-ванадиевого концентрата, однако переработка не предполагает извлечение и отделения от железного концентрата кремния, содержащегося в титаномагнетитовой руде, который в качестве примеси загрязняет конечный продукт.
Известен способ переработки титаномагнетитовых рудных материалов, включающий стадии: взаимодействия титаномагнетитового сырья с фторирующим агентом для получения фторированного продукта, термообработки указанного фторированного продукта для получения сублимированного продукта, содержащего соединение фтортитаната аммония, соединение фторсиликата аммония и избыток фторирующего агента, а также первый твердый остаток, охлаждение указанного продукта сублимации до первой температуры сублимации для получения первого продукта сублимации, содержащего соединение (соединения) фтортитаната аммония и первый газообразный остаток, охлаждение указанного первого газообразного остатка до второй температуры сублимации ниже указанной первой температуры сублимации для получения второго продукта сублимации, содержащего соединение фторсиликата аммония, и второго газообразного остатка. При этом продукт
сублимации, содержащий соединение фторсиликата аммония, обрабатывают водным раствором аммиака с получением гидратированного диоксида кремния (патент СН 713944; МПК С01В 7/00, C01G 49/00, С22В 34/12; 2019 год) (прототип).
Однако недостатком известного способа является его сложность, связанная с технологическими особенностями процесса сублимации. Кроме того, получаемый в качестве конечного продукта гидратированный диоксид кремния для дальнейшего его масштабного использования в промышленности требует дегидратации.
Таким образом, перед авторами стояла задача разработать простой и технологичный способ переработки отходов титанмагнетитовой руды с получением продуктов, используемых в промышленности, что обеспечивает расширение номенклатуры и ассортимента продукции, получаемой в результате переработки техногенных отходов.
Поставленная задача решена в предлагаемом способе переработки отходов титанмагнетитовой руды, включающем обработку исходного сырья гидрофторидом аммония с последующей обработкой полученного продукта водным раствором аммиака, в котором к исходному сырью добавляют кристаллический гидрофторид аммония при массовом соотношении, равном 1:(1-3), соответственно, затем добавляют дистиллированную воду до получения 5-15%-ного раствора гидрофторида аммония, нагревают до температуры 80-90°С и выдерживают при перемешивании при этой температуре в течение 2,0-2,5 часов, фильтруют и к полученному раствору добавляют 10-25%-ный водный раствор аммиака до получения рН, равного 6-8, выдерживают при комнатной температуре в течение 8-12 часов, отделяют полученный осадок, промывают дистиллированной водой и фильтруют в течение 1-1,5 часов при комнатной температуре, после чего добавляют активную известь СаО, полученную после предварительной прокалки при 1100-1200°С, при массовом соотношении исходного сырья к активной извести, равном (3-4):1, тщательно перемешивают и сушат при температуре 85-90°С, затем прокаливают при температуре 900-950°С в течение 2-2,5 часов.
В настоящее время из патентной и научно-технической литературы не известен способ переработки отходов титанмагнетитовой руды путем обработки исходного сырья водными растворами гидрофторида аммония и аммиака при соблюдении определенных условий с последующим добавлением активной извести СаО, полученной после предварительной прокалки при 1100-1200°С, и прокаливании полученной смеси.
Исследования, проводимые авторами предлагаемого технического решения, были направлены не только на разработку способа переработки техногенных отходов, но и на расширение номенклатуры продукции, широко используемой в промышленности. Обработка отходов титаномагнетитовой руды, содержащих кремний, сначала водным раствором гидрофторида аммония, а затем водным раствором аммиака с последующим фильтрованием позволяет получить в качестве промежуточного продукта 85-90%-ный по влажности гидратированный кремнезема, что обусловлено условиями гидрохимической обработки исходного сырья без использования высоких температур и специального оборудования. При этом, увеличение концентрации раствора гидрофторида аммония более 15% приводит к появлению растворимых примесей из состава отходов от переработки титаномагнетитовой руды одновременно осаждающихся при нейтрализации кремнийсодержащего раствора аммиаком, что приведет к значительному загрязнению конечного продукта. Снижение концентрации водного раствора гидрофторида аммония менее 5% приводит к снижению количества извлекаемого из отходов кремния. Обработка 10-25%-ным раствором аммиака при рН 6-8 с последующим фильтрованием в течение 1-1,5 часов при комнатной температуре обеспечивает получение гидратированного кремнезема с влажностью 85-90%. Получение кремнезема определенной влажности связано с тем, что увеличение влажности более 95% приводит к снижению содержания в нем кремния, а при уменьшении влажности менее 80% последующая реакция с известью будет смещена в сторону твердофазного процесса, что требует увеличения температуры последующей прокалки компонентов. Взаимодействие полученного в качестве промежуточного продукта кремнезема с влажностью 80-95% и активной извести, взятых в стехиометрическом соотношении, что обусловлено массовым соотношением исходного сырья к активной извести, равном (3-4):1, обеспечивает с одной стороны отсутствие необходимости введения щелочного компонента, дополнительного фильтрования и промывки конечного продукта от посторонних примесей, а, с другой стороны, позволяет значительно снизить температуру спекания (до 900-950°С с 1300-1400°С при использовании сухого кремнезема) при образовании целевого продукта - силиката кальция со структурой волла-стонита. Силикат кальция со структурой волластонита широко используется, как компонент красок и пигментов, цементов и штукатурных смесей.
Предлагаемый способ может быть осуществлен следующим образом. К отходам титанмагнетитовой руды, содержащим кремний, добавляют кристаллический гидрофторид аммония при массовом соотношении, равном 1:(1-3), соответственно,
затем добавляют дистиллированную воду до получения 5-15%-ного раствора гидрофторида аммония, нагревают до температуры 80-90°С и выдерживают при перемешивании при этой температуре в течение 2,0-2,5 часов, фильтруют и к полученному раствору добавляют 10-25%-ный водный раствор аммиака до получения рН, равного 6-8, выдерживают при комнатной температуре в течение 8-12 часов, отделяют и промывают полученный осадок дистиллированной водой и фильтруют в течение 1-1,5 часов при комнатной температуре, после чего добавляют активную известь СаО, полученную после предварительной прокалки при 1100-1200°С, при массовом соотношении исходного сырья к активной извести, равном (3-4):1, тщательно перемешивают и сушат при температуре 85-90°С до получения неизменного значения массы, затем прокаливают при температуре 900-950°С в течение 2-2,5 часов. Полученный продукт анализируют рентгенофазовым анализом.
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1. Навеску 5 г отходов обогащения титанмагнетитов, содержащих, масс. %: 48,0 SiO2, 20,2 СаО, 14,5 MgO, 6,8 Al2O3, 6,5 Fe общ., 0,7 TiO2 и др. тщательно перемешивают в тефлоновом стакане с 5 г кристаллического гидрофторида аммония, что соответствует массовому соотношению отход: реагент 1:1, затем добавляют 1000 мл дистиллированной воды для получения 5% раствора гидрофторида аммония, нагревают и выдерживают при перемешивании при температуре 90°С в течение 2 часов. Затем фильтруют и в полученный после фильтрации раствор вводят раствор аммиака до рН 6, выдерживают при комнатной температуре в течение 12 ч., затем осадок отделяют, промывают дистиллированной водой и фильтруют в течение 1 часа при комнатной температуре. Затем добавляют активную известь СаО в количестве 1,25 г (что соответствует массовому соотношению исходное сырье: СаО 4:1), сушат при перемешивании при температуре 85°С до получения неизменного значения массы и прокаливают при температуре 900°С в течение 2 часов. Получают силикат кальция CaSiO3 со структурой волластонита, что подтверждено методом РФА.
Пример 2. Навеску 5 г отходов обогащения титанмагнетитов, содержащих, масс. %: 48,0 SiO2, 20,2 СаО, 14,5 MgO, 6,8 Al2O3, 6,5 Fe общ., 0,7 TiO2 и др. тщательно перемешивают в тефлоновом стакане с 15 г кристаллического гидрофторида аммония, что соответствует массовому соотношению отход: реагент 1:3, затем добавляют 1000 мл дистиллированной воды для получения 15% раствора гидрофторида аммония, нагревают и выдерживают при перемешивании
при температуре 80°С в течение 2,5 часов. Затем фильтруют и в полученный после фильтрации раствор вводят раствор аммиака до рН 8, выдерживают при комнатной температуре в течение 8 часов, затем осадок отделяют, промывают дистиллированной водой и фильтруют в течение 1,5 часов при комнатной температуре. Затем добавляют активную известь СаО в количестве 1,7 г (что соответствует массовому соотношению отход: СаО 3:1), сушат при перемешивании при температуре 90°С до получения неизменного значения массы и прокаливают при температуре 950°С в течение 2,5 часов. Получают силикат кальция CaSiO3 со структурой волластонита, что подтверждено методом РФА.
Таким образом, авторами предлагается простой технологически способ переработки техногенных отходов титанмагнетитовой руды, обеспечивающий расширение номенклатуры продукции, используемой в промышленности, а именно получение силиката кальция CaSiO3 со структурой волластонита.

Claims (1)

  1. Способ переработки отходов титанмагнетитовой руды, включающий обработку исходного сырья гидрофторидом аммония с последующей обработкой полученного продукта водным раствором аммиака, отличающийся тем, что к исходному сырью добавляют кристаллический гидрофторид аммония при массовом соотношении 1:(1-3), затем добавляют дистиллированную воду до получения 5-15%-ного раствора гидрофторида аммония, нагревают до температуры 80-90°С и выдерживают при перемешивании при этой температуре в течение 2,0-2,5 ч, фильтруют и к полученному раствору добавляют 10-25%-ный водный раствор аммиака до получения рН 6-8, выдерживают при комнатной температуре в течение 8-12 ч, отделяют полученный осадок, промывают дистиллированной водой и фильтруют в течение 1-1,5 ч при комнатной температуре, после чего добавляют активную известь СаО, полученную после предварительной прокалки при 1100-1200°С, при массовом соотношении исходного сырья к активной извести (3-4):1, тщательно перемешивают и сушат при температуре 85-90°С, затем прокаливают при температуре 900-950°С в течение 2-2,5 ч.
RU2021115605A 2021-06-01 2021-06-01 Способ переработки отходов титанмагнетитовой руды RU2763715C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021115605A RU2763715C1 (ru) 2021-06-01 2021-06-01 Способ переработки отходов титанмагнетитовой руды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021115605A RU2763715C1 (ru) 2021-06-01 2021-06-01 Способ переработки отходов титанмагнетитовой руды

Publications (1)

Publication Number Publication Date
RU2763715C1 true RU2763715C1 (ru) 2021-12-30

Family

ID=80040003

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021115605A RU2763715C1 (ru) 2021-06-01 2021-06-01 Способ переработки отходов титанмагнетитовой руды

Country Status (1)

Country Link
RU (1) RU2763715C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136771C1 (ru) * 1998-09-14 1999-09-10 Общество с ограниченной ответственностью "Долина В" Способ переработки титансодержащего минерального сырья
RU2339465C1 (ru) * 2007-04-04 2008-11-27 Сергей Павлович Каменев Способ утилизации магнийсодержащих твердых отходов
RU2377183C2 (ru) * 2004-03-22 2009-12-27 Бретон Спа Способ производства двуокиси титана
EP2617844B1 (en) * 2012-01-18 2014-07-23 Shenzhen Sunxing Light Alloys Materials Co., Ltd Technological method for preparing sponge titanium from sodium fluotitanate raw material
RU2623974C1 (ru) * 2016-05-04 2017-06-29 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук Способ переработки титансодержащего минерального сырья
WO2019012401A1 (en) * 2017-07-11 2019-01-17 Tenir Project Management Limited METHOD FOR PROCESSING TITANOMAGNETIC ORE MATERIALS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136771C1 (ru) * 1998-09-14 1999-09-10 Общество с ограниченной ответственностью "Долина В" Способ переработки титансодержащего минерального сырья
RU2377183C2 (ru) * 2004-03-22 2009-12-27 Бретон Спа Способ производства двуокиси титана
RU2339465C1 (ru) * 2007-04-04 2008-11-27 Сергей Павлович Каменев Способ утилизации магнийсодержащих твердых отходов
EP2617844B1 (en) * 2012-01-18 2014-07-23 Shenzhen Sunxing Light Alloys Materials Co., Ltd Technological method for preparing sponge titanium from sodium fluotitanate raw material
RU2623974C1 (ru) * 2016-05-04 2017-06-29 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук Способ переработки титансодержащего минерального сырья
WO2019012401A1 (en) * 2017-07-11 2019-01-17 Tenir Project Management Limited METHOD FOR PROCESSING TITANOMAGNETIC ORE MATERIALS

Similar Documents

Publication Publication Date Title
US4474736A (en) Treatment of aluminous materials
US4649031A (en) Process for recovering rare metals from the combustion residue of coal by digestion
KR870000541B1 (ko) 변성황산칼륨중의 미량의 염소분의 감소 처리방법
RU2763715C1 (ru) Способ переработки отходов титанмагнетитовой руды
WO2019015012A1 (zh) 一种酸化法从锂磷铝石中提取硫酸锂的工艺
NO750859L (ru)
CN1040553C (zh) 用稀盐酸处理高炉渣的方法
DE2700121A1 (de) Verfahren zur halogenierung von erz
Maqueda et al. Problems in the dissolution of silicates by acid mixtures
US4120940A (en) Direct production of coarse particle inorganic fluorides
RU2745771C1 (ru) Способ получения гипсового вяжущего из отходов металлургических производств
US3640679A (en) Process for recovery of columbium
RU2355639C2 (ru) Способ получения сульфата алюминия
RU2363742C1 (ru) Способ выделения ценных компонентов из угольных золошлаков
US2250186A (en) Manufacture of cement, alkali metal aluminate, and sulphur dioxide
RU2780207C1 (ru) Способ переработки полиметаллического шлака
RU2202516C1 (ru) Способ получения оксида алюминия
RU2801382C1 (ru) Способ переработки фосфатного сырья
RU2572119C1 (ru) Способ переработки алюминийсодержащего сырья
SU1181999A1 (ru) Способ получени порошкообразных пирониобатов кальци и стронци
KR830002841B1 (ko) 반토질 광물로부터 Al₂O₃를 추출하는 방법
US1166547A (en) Method of obtaining titanic oxid and the resulting product.
RU2798658C1 (ru) Способ получения фосфорной кислоты и сульфата кальция качества, подходящего для процесса получения клинкера для коммерческого и промышленного использования сульфата кальция
US2857243A (en) Dry alkali chlorotitanates and method of making the same
SU497823A1 (ru) Способ получени карбоната стронци