RU2758793C1 - Адаптивная стартер-генераторная система - Google Patents

Адаптивная стартер-генераторная система Download PDF

Info

Publication number
RU2758793C1
RU2758793C1 RU2021108233A RU2021108233A RU2758793C1 RU 2758793 C1 RU2758793 C1 RU 2758793C1 RU 2021108233 A RU2021108233 A RU 2021108233A RU 2021108233 A RU2021108233 A RU 2021108233A RU 2758793 C1 RU2758793 C1 RU 2758793C1
Authority
RU
Russia
Prior art keywords
phase
converter
output
starter
terminals
Prior art date
Application number
RU2021108233A
Other languages
English (en)
Inventor
Регина Юрьевна Сараханова
Сергей Александрович Харитонов
Андрей Сергеевич Харитонов
Светлана Владимировна Воробьева
Анатолий Васильевич Сапсалев
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет»
Priority to RU2021108233A priority Critical patent/RU2758793C1/ru
Application granted granted Critical
Publication of RU2758793C1 publication Critical patent/RU2758793C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Изобретение относится к области электротехники и силовой электроники и может быть использовано при построении стартер-генераторных систем для автономных объектов.
Адаптивная стартер-генераторная система содержит m-фазный синхронный генератор с возбуждением от постоянных магнитов, m-фазный по входным зажимам преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты, выход которого подключён к трехфазной нагрузке переменного тока и к зажимам трехфазного АС-DC преобразователя, построенного на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключён к зажимам двунаправленного DC-DC преобразователя, последовательно соединенного с аккумуляторной батареей и нагрузкой постоянного тока. К выходным зажимам синхронного генератора подключён m-фазный АС-DC преобразователь, построенный на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключен параллельно к выходным зажимам в звене постоянного тока трехфазного АС-DC преобразователя. Включение в состав стартер-генераторной системы m-фазного АС-DC преобразователя позволяет уменьшить массу синхронного генератора за счёт уменьшения величины неактивной мощности, потребляемой от него, а также повысить коэффициент полезного действия в режиме электростартерного запуска от сети постоянного тока и повысить надежность обеспечения режимов генерирования и электростартерного запуска за счет реализации адаптивного характера построения системы. 1 ил.

Description

Изобретение относится к области электротехники и силовой электроники и может быть использовано при построении стартер-генераторных систем для летательных аппаратов, дизель - генераторов и ветро-генераторов с переменной частотой вращения вала генератора, системы электроснабжения речных и морских судов, а также наземные транспортные средства различного назначения, в которых для достижения высокого качества генерируемой электрической энергии применяются статические преобразователи электрической энергии.
Как правило, это первичные системы электроснабжения (СЭС) с генерируемой мощностью сотни и тысячи киловатт с большой перегрузочной способностью и с высокими токами короткого замыкания. В таких СЭС перспективным представляется применение непосредственных преобразователей частоты с естественной коммутацией. Тиристоры с неполным управлением, используемые в этом типе преобразователя в качестве силовых ключей, обладают большой переключаемой мощностью и имеют большую перегрузочную способность. Сочетание в системе электроснабжения такой схемы преобразователя частоты с синхронным генератором, с возбуждением от постоянных магнитов, позволяет создавать мощные каналы генерирования электрической энергии переменного тока стабильной частоты со значительной перегрузочной способностью и возможностью генерирования больших токов короткого замыкания. При этом следует отметить, что мощность стартёрного запуска первичного двигателя в ряде применений не превышает 20% процентов от максимальной мощности в режиме генерирования.
При построении СЭС для автономных объектов важным является совмещение функций режима стартёрного запуска первичного двигателя и режима генерирования электрической энергии в одном агрегате.
Совмещённая стартер-генераторная система (СГС) позволяет повысить надёжность, а также улучшить массогабаритные показатели автономных объектов в целом за счёт отказа от большого числа быстро изнашиваемых частей оборудования автономных объектов. Такой уровень интеграции систем генерирования и электростартерного запуска позволяет наделить систему электроснабжения функциями адаптивных систем, появляются свойства так называемых «умных» электрических сетей («Smart Grid»).
Известна стартер-генераторная система [Стартер-генераторная система для вспомогательной силовой установки/Левин А.В., Халютин С.П., Давидов А.О., Жмуров Б.В. и др.//Научный вестник МГТУ ГА. - 2017. - № 05, Том 20. - С.50-66], содержащая синхронный генератор с возбуждением от постоянных магнитов, параллельный полупроводниковый преобразователь на базе последовательно соединённых двунаправленного DC-DC преобразователя, построенного на базе мостовой схемы с высокочастотным трансформатором, индуктивно-емкостным фильтром на выходе и ёмкостным делителем на входе DC-DC преобразователя, и двунаправленного AC-DC преобразователя, построенного на базе инвертора напряжения с широтно-импульсной модуляцией, индуктивно-ёмкостным фильтром на входе AC-DC преобразователя.
Данная система обладает недостатком, который заключается в том, что система не может работать от синхронного генератора с переменной частотой вращения вала.
Кроме того, известна стартер-генераторная система [Пат. 2713390 Российская Федерация, МПК H02J 7/34 Адаптивная стартер - генераторная система для летательных аппаратов/ Дубкова Р.Ю., Харитонов С.А., Жарков М.А., Коробков Д.В.; заявитель и патентообладатель Новосибирский Государственный Технический Университет. - № 2019115319,; заявл. 2019.05.20; опубл. 2020.02.05, Бюл. № 4.], которая является прототипом предлагаемого изобретения, содержащая m-фазный синхронный генератор с возбуждением от постоянных магнитов, m-фазный по входным зажимам преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты, выход которого подключён к трехфазной нагрузке переменного тока и к зажимам трехфазного AC-DC преобразователя, построенного на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключён к зажимам двунаправленного DC-DC преобразователя, последовательно соединённого с аккумуляторной батареей и нагрузкой постоянного тока.
Недостатком прототипа является то, что непосредственный преобразователь частоты с естественной коммутацией при работе от синхронного генератора с возбуждением от постоянных магнитов при переменной частоте вращения его вала имеет низкое значение входного коэффициента мощности [Харитонов С.А. Электромагнитные процессы в системах генерирования электрической энергии для автономных объектов: монография / С.А. Харитонов - Новосибирск: Изд-во НГТУ, 2011. - 536 с. (Серия «Монографии НГТУ»).]. Кроме этого, в режиме электростартерного запуска от сети постоянного тока система имеет большие электрические потери за счёт последовательного включения трёх преобразователей электрической энергии, что приводит к увеличению массы и габаритов синхронного генератора и источника постоянного тока.
Задача (технический результат) изобретения - снижение массы синхронного генератора за счёт уменьшения величины неактивной мощности потребляемой от него, а также повышение коэффициента полезного действия в режиме электростартерного запуска от сети постоянного тока, повышение надежности обеспечения режимов генерирования и электростартерного запуска за счет реализации адаптивного характера построения системы.
Задача достигается тем, что в известной стартер-генераторной системе, содержащей m-фазный синхронный генератор с возбуждением от постоянных магнитов, m-фазный по входным зажимам преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты, выход которого подключён к трёхфазной нагрузке переменного тока и к зажимам трехфазного AC-DC преобразователя, построенного на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключён к зажимам двунаправленного DC-DC преобразователя, последовательно соединённого с аккумуляторной батареей и нагрузкой постоянного тока, к выходным зажимам синхронного генератора подключён m-фазный AC-DC преобразователь, построенный на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключён параллельно к выходным зажимам в звене постоянного тока трехфазного AC-DC преобразователя.
Схема предлагаемой адаптивной стартер-генераторной системы приведена на чертеже. Адаптивная стартер-генераторная система включает синхронный генератор с возбуждением от постоянных магнитов (СГ) (1), статический двунаправленный полупроводниковый преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты (2), трехфазный двунаправленный инвертор напряжения (3), m-фазный двунаправленный инвертор напряжения (4), двунаправленный DC-DC преобразователь (5), аккумуляторную батарею (АБ) (6), нагрузку постоянного тока (7), нагрузку переменного тока (8).
Выводы m фаз синхронного генератора (1) с переменной частотой вращения вала (n = var) соединены с m входами непосредственного преобразователя частоты с естественной коммутацией (2). Непосредственный преобразователь частоты с естественной коммутацией (2) формирует трёхфазное напряжение и состоит из трёх одинаковых по топологии вентильных комплектов (ВК А, ВК B, ВК C), m входов каждого из вентильных комплектов соединены с одноименными m выходами синхронного генератора (1). Выходы непосредственного преобразователя частоты с естественной коммутацией (2) соединены с выходами трехфазного двунаправленного инвертора напряжения (3) и нагрузкой переменного тока (8). Трехфазный двунаправленный инвертор напряжения (3) содержит три одинаковых по топологии стойки вентилей с обратными диодами. Выход трехфазного двунаправленного инвертора напряжения в звене постоянного тока соединён с аналогичным выходом m-фазного инвертора напряжения (4) и с выходом двунаправленного DC-DC преобразователя (5). m-фазный двунаправленный инвертор (4) содержит m одинаковых по топологии стойки вентилей с обратными диодами, выход каждой из которых соединён с одноименными m выводами синхронного генератора (1). Входные зажимы DC-DC преобразователя (5) соединены с зажимами аккумуляторной батареи (6) и с нагрузкой постоянного тока (7).
Предлагаемая система функционирует следующим образом.
Существует два основных (штатных) режима функционирования: 1) режим электростартерного запуска первичного двигателя (ПД) с помощью синхронного генератора, переведённого в двигательный режим; 2) режим генерирования электрической энергии. В этом режиме нагрузка переменного тока получает электрическую энергию от синхронного генератора, предварительно преобразованную до необходимых качественных показателей, с помощью непосредственного преобразователя частоты.
Режим электростартерного запуска синхронного генератора в предложенной адаптивной стартер-генераторной системе осуществляется от источника постоянного или переменного тока. В первом варианте режима электростартерного запуска электроэнергия отбирается от АБ через двунаправленный DC-DC преобразователь и m-фазный инвертор напряжения, который формирует m-фазное выходное напряжение, переменное по величине и частоте, таким образом, чтобы синхронный генератор работал в режиме электродвигателя. Электроэнергия поступает на якорную обмотку стартера, функцию которого выполняет СГ. При этом двунаправленный DC-DC преобразователь формирует постоянное напряжение Ud и ток Id , требуемые для электростартерного запуска.
Исключение из контура электростартерного запуска непосредственного преобразователя частоты с естественной коммутацией позволяет уменьшить электрические потери, т.о. повышается КПД режима электростартерного запуска по сравнению с аналогичным режимом, реализованном в прототипе. Это позволяет уменьшить энергоёмкость АБ или увеличить количество попыток электростартерного запуска, что либо уменьшает массу и габариты СГС, либо повышает надёжность электростартерного запуска первичного двигателя.
В случае режима электростартерного запуска от источника переменного тока используется специальный источник трёхфазного переменного тока, который не входит в состав автономного объекта. Этот источник подключается к зажимам непосредственного преобразователя частоты с естественной коммутацией, работающий в обращённом режиме и выполняющий функцию частотного регулирования синхронного генератора, переведённого в двигательный режим работы.
После запуска двигателя стартер-генератор автоматически переключается в режим генерирования электрической энергии и работает как источник электроэнергии автономного объекта. Непосредственный преобразователь частоты с естественной коммутацией выполняет функцию стабилизации выходного напряжения по амплитуде и частоте для потребителей переменного тока автономного объекта.
В режиме генерирования электрической энергии m-фазный двунаправленный инвертор напряжения и двунаправленный DC-DC преобразователь работают параллельно с бортовой электросетью постоянного тока, например, 27 В и осуществляют заряд аккумуляторной бортовой батареи до требуемого уровня напряжения. В случае отказа аккумуляторной батареи обеспечивается электропитание нагрузок постоянного тока. В этом случае трехфазный двунаправленный инвертор напряжения выполняет функцию активного выпрямителя.
Адаптационный характер стартер-генераторной системы, повышающий надежность обеспечения режимов генерирования и электростартерного запуска, определяется тем, что в нештатных ситуациях, т.е. при отказе некоторых устройств СГС электроснабжение нагрузок переменного и постоянного тока сохраняется за счёт перенаправления потоков энергии.
Так, в случае отказа непосредственного преобразователя частоты, электропитание нагрузок переменного тока осуществляется с помощью трехфазного и m-фазного двунаправленных инверторов напряжения. Источником электроэнергии является синхронный генератор. При этом трехфазный двунаправленный инвертор работает в режиме инвертирования, а m-фазный в режиме активного выпрямления.
При отказе синхронного генератора, частичное электропитание нагрузок переменного тока сохраняется, при этом источником электроэнергии является аккумуляторная батарея. В этом случае поток энергии направлен от АБ через двунаправленный DC-DC преобразователь и трехфазный двунаправленный инвертор напряжения, который формирует трехфазное напряжение
При отказе АБ электропитание нагрузок постоянного тока осуществляется путём отбора мощности от синхронного генератора с помощью m-фазного двунаправленного инвертора напряжения и DC-DC преобразователя - основной сценарий электропитания в данном нештатном режиме. Однако есть и второй сценарий электропитания при отказе m-фазного двунаправленного преобразователя. В этом случае энергия постоянного тока генерируется с помощью трехфазного двунаправленного инвертора напряжения и DC-DC преобразователя, путём преобразования электрической энергии переменного тока, поступающей от непосредственного преобразователя частоты.
Адаптация СГС возможна и в режиме электростартерного запуска ПД. Так, в случае отказа m-фазного двунаправленного преобразователя, электростартерный запуск возможен с использованием энергии АБ путём её преобразования в переменный ток с помощью трехфазного двунаправленного инвертора напряжения. В этом случае на выходные зажимы непосредственного преобразователя частоты подаётся трёхфазное напряжение переменного тока со входа трехфазного двунаправленного инвертора напряжения. Непосредственный преобразователь частоты в этом случае работает в обращённом режиме и выполняет функцию частотного регулирования синхронного генератора, работающего в режиме электрического двигателя.
Таким образом, включение в состав стартер-генераторной системы непосредственного преобразователя частоты с естественной коммутацией и двух двунаправленных инверторов напряжениям с двунаправленным DC-DC преобразователем позволяет расширить функциональные возможности и надежность стартер-генераторных систем для автономных объектов. Это придает им адаптивный характер за счет обеспечения генерации переменного тока постоянной частоты и постоянного тока, при переменной частоте вращения вала синхронного генератора, и осуществления электростартерного запуска, как от сети постоянного, так и переменного тока.

Claims (1)

  1. Адаптивная стартер-генераторная система, содержащая m-фазный синхронный генератор с возбуждением от постоянных магнитов, m-фазный по входным зажимам преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты, выход которого подключен к трёхфазной нагрузке переменного тока и к зажимам трехфазного AC-DC преобразователя, построенного на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключен к зажимам двунаправленного DC-DC преобразователя, последовательно соединенного с аккумуляторной батареей и нагрузкой постоянного тока, отличающаяся тем, что к выходным зажимам синхронного генератора подключён m-фазный AC-DC преобразователь, построенный на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключён параллельно к выходным зажимам в звене постоянного тока трехфазного AC-DC преобразователя.
RU2021108233A 2021-03-29 2021-03-29 Адаптивная стартер-генераторная система RU2758793C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021108233A RU2758793C1 (ru) 2021-03-29 2021-03-29 Адаптивная стартер-генераторная система

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021108233A RU2758793C1 (ru) 2021-03-29 2021-03-29 Адаптивная стартер-генераторная система

Publications (1)

Publication Number Publication Date
RU2758793C1 true RU2758793C1 (ru) 2021-11-01

Family

ID=78466880

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021108233A RU2758793C1 (ru) 2021-03-29 2021-03-29 Адаптивная стартер-генераторная система

Country Status (1)

Country Link
RU (1) RU2758793C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132604A (en) * 1989-04-04 1992-07-21 Honda Giken Kogyo Kabushiki Kaisha Engine starter and electric generator system
EP1484832B1 (en) * 2003-06-06 2010-10-06 Fanuc Ltd Motor driving apparatus
RU2566826C1 (ru) * 2011-09-23 2015-10-27 Энзикем Лайфсайенсиз Корпорейшн Способ получения 1-пальмитоил-3-ацетилглицерина и способ получения 1-пальмитоил-2-линолеоил-3-ацетилглицерина с использованием этого соединения
RU2681839C1 (ru) * 2016-12-16 2019-03-13 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") Автономная система электроснабжения
RU2713390C1 (ru) * 2019-05-20 2020-02-05 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Адаптивная стартер-генераторная система для летательных аппаратов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132604A (en) * 1989-04-04 1992-07-21 Honda Giken Kogyo Kabushiki Kaisha Engine starter and electric generator system
EP1484832B1 (en) * 2003-06-06 2010-10-06 Fanuc Ltd Motor driving apparatus
RU2566826C1 (ru) * 2011-09-23 2015-10-27 Энзикем Лайфсайенсиз Корпорейшн Способ получения 1-пальмитоил-3-ацетилглицерина и способ получения 1-пальмитоил-2-линолеоил-3-ацетилглицерина с использованием этого соединения
RU2681839C1 (ru) * 2016-12-16 2019-03-13 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") Автономная система электроснабжения
RU2713390C1 (ru) * 2019-05-20 2020-02-05 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Адаптивная стартер-генераторная система для летательных аппаратов

Similar Documents

Publication Publication Date Title
Wei et al. Power balancing investigation of grid-side series-connected current source inverters in wind conversion systems
Xu et al. Four-switch single-phase common-ground PV inverter with active power decoupling
KR20160012381A (ko) 모듈형 멀티레벨 컨버터를 포함하는 하이브리드 hvdc컨버터
Muntean et al. A new conversion and control system for a small off-grid wind turbine
RU2713390C1 (ru) Адаптивная стартер-генераторная система для летательных аппаратов
CN106356889A (zh) 永磁风力发电机组
RU2758793C1 (ru) Адаптивная стартер-генераторная система
Rahman et al. Low noise inverter for poly phase microgrid system
Tafti et al. Low-voltage ride-through capability of cascaded H-bridge multilevel converters for large-scale photovoltaic power plants
RU2596218C1 (ru) Пускорегулирующее устройство для асинхронного двигателя
Hussein et al. Load power management control for a stand alone wind energy system based on the state of charge of the battery
Khalid et al. Review of thyristor based grid tied inverters for solar PV applications
Manjunatha Design and development of fly-back converter with buck-boost regulator for DC motor used in electric vehicle for the application of renewable energy
Sathya et al. Enhancement of low voltage ride through capability for PMSG based wind energy conversion system with super capacitor
RU2256284C1 (ru) Преобразователь частоты дьякова (варианты)
Ahmed et al. Fault tolerant multi-kW DC transformer structure for wind farms
RU2609770C1 (ru) Устройство гарантированного электропитания
Balagurov et al. The Regulation, Protection and Control System for Magnetoelectric Generator with Combined Excitation
Rao et al. A fault tolerant dual inverter configuration for islanded mode photovoltaic generation system
Zaleskis et al. Self-Excitation System for Synchronous Generator
RU177678U1 (ru) Автономная система электроснабжения с электрозапуском силовой установки
Mohammed et al. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications
CN108123610B (zh) 一种用于六相电机的变换电路
Amirabadi et al. AC‐Link Universal Power Converters: A New Class of Power Converters for Renewable Energy and Transportation
Khodabakhsh et al. A Single-Stage Converter for Integration of Induction Wind Energy Conversion Systems into Multilevel Stand-Alone DC Nanogrids