RU2713390C1 - Адаптивная стартер-генераторная система для летательных аппаратов - Google Patents

Адаптивная стартер-генераторная система для летательных аппаратов Download PDF

Info

Publication number
RU2713390C1
RU2713390C1 RU2019115319A RU2019115319A RU2713390C1 RU 2713390 C1 RU2713390 C1 RU 2713390C1 RU 2019115319 A RU2019115319 A RU 2019115319A RU 2019115319 A RU2019115319 A RU 2019115319A RU 2713390 C1 RU2713390 C1 RU 2713390C1
Authority
RU
Russia
Prior art keywords
converter
starter
output
generator
bidirectional
Prior art date
Application number
RU2019115319A
Other languages
English (en)
Inventor
Регина Юрьевна Дубкова
Сергей Александрович Харитонов
Максим Андреевич Жарков
Дмитрий Владиславович Коробков
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет"
Priority to RU2019115319A priority Critical patent/RU2713390C1/ru
Application granted granted Critical
Publication of RU2713390C1 publication Critical patent/RU2713390C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Изобретение относится к области электротехники и силовой электроники и может быть использовано при построении стартер-генераторных систем для летательных аппаратов, в которых для достижения качественных показателей выходной энергии применяются статические преобразователи электрической энергии. Стартер-генераторная система летательного аппарата, содержащая синхронный генератор с возбуждением от постоянных магнитов, параллельный полупроводниковый преобразователь на базе последовательно соединенных двунаправленного dc-dc преобразователя, построенного на базе мостовой схемы с высокочастотным трансформатором, индуктивно-емкостным фильтром на выходе и емкостным делителем на входе dc-dc преобразователя, и двунаправленного ac-dc преобразователя, построенного на базе инвертора напряжения с широтно-импульсной модуляцией, индуктивно-емкостным фильтром на входе ac-dc преобразователя, при этом к выходу синхронного генератора с возбуждением от постоянных магнитов подключается преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты, выход которого подключен к трехфазной нагрузке переменного тока и к зажимам ac-dc преобразователя, построенного на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключен к зажимам двунаправленного dc-dc преобразователя, последовательно соединенного с аккумуляторной батареей и нагрузкой постоянного тока. Таким образом, включение в состав стартер-генераторной системы непосредственного преобразователя частоты с естественной коммутацией позволяет расширить функциональные возможности стартер-генераторных систем для летательных аппаратов и придает им адаптивный характер (Smart Grid), за счет обеспечения генерации переменного тока постоянной частоты при переменной частоте вращения вала синхронного генератора, а также осуществления электростартерного запуска, как от сети постоянного, так и переменного тока. 1 ил.

Description

Изобретение относится к области электротехники и силовой электроники и может быть использовано при построении стартер-генераторных систем (СГС) для летательных аппаратов, в которых для достижения высокого качества генерируемой электрической энергии применяются статические преобразователи электрической энергии.
При построении СГС для летательных аппаратов важным является совмещение функций режима стартерного запуска газотурбинных двигателей и режима генерации электрической энергии в одном агрегате. Совмещенная СГС позволяет повысить надежность, а также улучшить массогабаритные показатели авиационных систем за счет отказа от большого числа быстро изнашиваемых частей оборудования летательных аппаратов. Кроме этого, совмещенная СГС дает возможность совместить функции генерирования электрической энергии переменного и постоянного тока, а также осуществлять перетоки электрической энергии между этими системами генерирования. В этом случае открывается возможность стартерного запуска газотурбинного двигателя, как от сети переменного, так и постоянного тока. Такой уровень интеграции систем генерирования и электростартерного запуска позволяет наделить систему электроснабжения функциями адаптивных систем, появляются свойства так называемых «умных» электрических сетей («smart grid»). Адаптивный характер системы электроснабжения существенно повышает живучесть летательного аппарата.
Известна стартер-генераторная система, состоящая из синхронного генератора и машины постоянного тока [Ханахмедова С.А., Стартер-генератор на борту подвижных установок/С.А. Ханахмедова//ЕЛЕКТРООТЕХНIКА. - 2012. - №2. - С. 34-37], содержащая электрическую машину с двумя последовательно соединенными якорными обмотками, пускопереключающее устройство в виде редуктора, позволяющее переводит систему в стартерный или генераторный режим работы и расположенное между электрической машиной и шкивом ременной передачи, ременную передачу, создающую связь между валом пускопереключающего устройства и коленчатым валом двигателя внутреннего сгорания, пусковое реле, дающее команды на включение, автоматизацию и сигнализацию режима.
Данная система обладает рядом недостатков. Коллектор и щетки электрической машины образуют скользящий контакт, через который осуществляется связь между вращающейся обмоткой якоря и неподвижной внешней цепью машины. В рабочем режиме наблюдается искрение под щетками и на коллекторе машины постоянного тока, что может быть связано с механическими или коммутационными причинами. Искрение под щетками электрической машины приводит к чрезмерному нагреву коллектора и щеток и к их разрушению, что значительно снижает надежность и рабочий ресурс системы.
К недостаткам следует отнести также и то, что абсолютная температура нагрева обмоток и щеток машины постоянного тока достигает величин порядка 200°С, что вызывает необходимость использования для их изготовления материалы повышенной теплостойкости.
Кроме того, известна стартер-генераторная система [Стартер-генераторная система для вспомогательной силовой установки/Левин А.В., Халютин С.П., Давидов А.О., Жмуров Б.В. и др.//Научный вестник МГТУ ГА. - 2017. - №05, Том 20. - С. 50-66], которая является прототипом предлагаемого изобретения, содержащая синхронный генератор с возбуждением от постоянных магнитов, параллельный полупроводниковый преобразователь на базе последовательно соединенных двунаправленного DC/DC преобразователя, построенного на базе мостовой схемы с высокочастотным трансформатором, индуктивно-емкостным фильтром на выходе и емкостным делителем на входе DC/DC преобразователя, и двунаправленного AC/DC преобразователя, построенного на базе инвертора напряжения с широтно-импульсной модуляцией, индуктивно-емкостным фильтром на входе AC/DC преобразователя.
Недостатком прототипа является невозможность еге работы от синхронного генератора с переменной частотой вращения вала.
Задача изобретения (технический результат) - расширение функциональных возможностей стартер-генераторных систем для летательных аппаратов, а также осуществление электростартерного запуска, как от сети постоянного, так и переменного тока.
Задача достигается тем, что в известной стартер-генераторной системе, содержащей синхронный генератор с возбуждением от постоянных магнитов, параллельный полупроводниковый преобразователь на базе последовательно соединенных двунаправленного dc-dc преобразователя, построенного на базе мостовой схемы с высокочастотным трансформатором, индуктивно-емкостным фильтром на выходе и емкостным делителем на входе dc-dc преобразователя, и двунаправленного ac-dc преобразователя, построенного на базе инвертора напряжения с широтно-импульсной модуляцией, индуктивно-емкостным фильтром на входе ac-dc преобразователя, к выходу синхронного генератора с возбуждением от постоянных магнитов подключается преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты, выход которого подключен к трехфазной нагрузке переменного тока и к зажимам ac-dc преобразователя, построенного на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключен к зажимам двунаправленного dc-dc преобразователя, последовательно соединенного с аккумуляторной батареей и нагрузкой постоянного тока.
Схема предлагаемой стартер-генераторной системы приведена на чертеже.
Стартер-генераторная система включает синхронный генератор с возбуждением от постоянных магнитов (СГ) (1), статический двунаправленный полупроводниковый преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты (2), двунаправленный инвертор напряжения (3), двунаправленный dc-dc преобразователь (4), аккумуляторную батарею (АБ) (5), нагрузку постоянного тока (6), нагрузку переменного тока (7).
Выводы синхронного генератора (1) с переменной частотой вращения вала n=var соединены со входами непосредственного преобразователя частоты с естественной коммутацией (2). Непосредственный преобразователь частоты с естественной коммутацией (2) содержит три одинаковых по топологии вентильных комплекта (ВК А, ВК В, ВК С), входы каждого из вентильных комплектов соединены с одноименными выходами синхронного генератора (1). Выходы вентильных комплектов непосредственного преобразователя частоты с естественной коммутацией (2) соединены с выходами двунаправленного инвертора напряжения (3) и нагрузкой переменного тока (7). Двунаправленный инвертор напряжения (3) содержит три одинаковых по топологии пары вентилей с обратными диодами. Вход двунаправленного инвертора напряжения соединен с выходом двунаправленного dc-dc преобразователя (4). Вход dc-dc преобразователя соединен с выходом аккумуляторной батареи (5). Вход аккумуляторной батареи соединен с нагрузкой постоянного тока (6).
Предлагаемая система функционирует следующим образом.
Существует два основных режима функционирования: 1) режим электростартерного запуска синхронного двигателя; 2) режим генерации электрической энергии.
Электростартерный запуск синхронного генератора в предложенной стартер-генераторной системе осуществляется от источника постоянного или переменного тока. В режиме электростартерного запуска от звена постоянного тока электроэнергия отбирается от АБ (IАБ) и поступает на якорную обмотку стартера синхронного генератора через двунаправленный dc-dc преобразователь, который формирует постоянное напряжение Ud и ток Id требуемого уровня, инвертор напряжения, который формирует трехфазное переменное напряжение eu(A), eu(B), eu(C), которое поступает на выход непосредственного преобразователя частоты с естественной коммутацией, работающего в обращенном режиме. Непосредственный преобразователь частоты с естественной коммутацией выполняет функцию частотного регулирования синхронного генератора, работающего в режиме электрического двигателя.
Уменьшение количества зарядно-выпрямительных устройств за счет совмещения функций инвертора напряжения и двунаправленного dc-dc преобразователя, а также исключение из бортового электрооборудования летательного аппарата стартера на базе электродвигателя постоянного тока для вспомогательной силовой установки или устройств запуска маршевого двигателя с помощью сжатого воздуха, позволяют снизить массогабаритные показатели авиационных систем в целом и повысить надежность электропитания бортового оборудования.
В случае электростартерного запуска от источника переменного тока, которым служит аэродромный источник электропитания, последний подключается к зажимам непосредственного преобразователя частоты с естественной коммутацией, работающего в обращенном режиме и выполняющего функцию частотного регулирования синхронного генератора.
После запуска двигателя стартер-генератор автоматически переключается в генераторный режим и работает как источник электроэнергии на борту летательного аппарата. В режиме генерации электрической энергии непосредственный преобразователь частоты с естественной коммутацией, формирующий переменное выходное напряжение eu(A), eu(B), eu(C), выполняет функцию стабилизации выходного напряжения e2(А), e2(B), e2(С) по амплитуде и частоте для потребителей переменного тока на борту летательного аппарата (AC load) в соответствие с ГОСТ - 54073-2010. Двунаправленный инвертор напряжения работает параллельно с непосредственным преобразователем частоты с естественной коммутацией и выполняет функцию активного фильтра, компенсирует влияние высших гармонических составляющих в спектре выходного переменного напряжения системы. Также инвертор напряжения и двунаправленный dc-dc преобразователь работают параллельно с бортовой электросетью постоянного тока 27 В (DC load) и осуществляют заряд аккумуляторной бортовой батареи до требуемого уровня напряжения UАБ, а в случае отказа аккумуляторной батареи обеспечивают электропитание нагрузок постоянного тока (Iн dc).
Двунаправленный инвертор напряжения с высокочастотной широтно-импульсной модуляцией, выполняя функцию активного фильтра в режиме генерации электрической энергии, улучшает качество выходного напряжения стартер-генераторной системы, что уменьшает массу выходного фильтра непосредственного преобразователя частоты с естественной коммутацией и, как следствие, позволяет снизить массогабаритные показатели авиационной системы в целом.
Кроме этого, в режиме генерации электрической энергии в случае отказа синхронного генератора или непосредственного преобразователя частоты с естественной коммутацией, учитывая обратимость потока энергии в системе «инвертор напряжения -двунаправленный dc-dc преобразователь» инвертор напряжения может осуществлять электропитание ряда нагрузок переменного тока. Источником энергии в этом случае служит бортовая аккумуляторная батарея. Длительность электроснабжения потребителей переменного тока в этом случае определяется емкостью и уровнем заряда бортовой аккумуляторной батареи на момент отказа непосредственного преобразователя частоты с естественной коммутацией.
Таким образом, включение в состав стартер-генераторной системы непосредственного преобразователя частоты с естественной коммутацией позволяет расширить функциональные возможности стартер-генераторных систем для летательных аппаратов и придает им адаптивный характер за счет обеспечения генерации переменного тока постоянной частоты при переменной частоте вращения вала синхронного генератора, а также осуществления электростартерного запуска, как от сети постоянного, так и переменного тока.
Кроме того, включение в состав стартер-генераторной системы непосредственного преобразователя частоты с естественной коммутацией позволяет повысить надежность авиационных систем, поскольку силовая схема таких преобразователей имеет простую и надежную реализацию, содержит в своем составе попарно работающие тиристорные комплекты, которые обладают большой перегрузочной способностью и небольшими массогабаритными показателями. Также расширяются функциональные возможности системы за счет связи систем электроснабжения переменного и постоянного тока, по сути, система приобретает статус «умной» электрической сети («smart grid»). Непосредственный преобразователь частоты с естественной коммутацией не содержит в своем составе реактивных элементов, что также уменьшает массогабаритные показатели системы в целом. Поскольку непосредственный преобразователь частоты с естественной коммутацией может осуществлять двусторонний свободный обмен электроэнергии между сетью и нагрузкой, такой преобразователь удовлетворяет режиму электростартерного запуска синхронного генератора и режиму генерации электрической энергии для потребителей переменного тока.
Уменьшение массогабаритных показателей предложенной стартер-генераторной системы обусловлено также уменьшением количества зарядно-выпрямительных устройств за счет совмещения функций инвертора напряжения и двунаправленного dc-dc преобразователя, которые в генераторном режиме работы системы выполняют функцию активного фильтра и повышают качество выходного напряжения, а также работают параллельно с бортовой электросетью постоянного тока и осуществляют заряд аккумуляторной батареи. Кроме этого, применение инвертора напряжения с высокочастотной широтно-импульсной модуляцией позволяет уменьшить массу выходного фильтра непосредственного преобразователя частоты с естественной коммутацией, что также уменьшает массу и габариты системы в целом.
Предлагаемая стартер-генераторная система, имеющая в своем составе непосредственный преобразователь частоты с естественной коммутацией, позволяет интегрировать различные системы электроснабжения, приближая системы электропитания летательных аппаратов к адаптивным электрическим сетям, а именно «smart grid».

Claims (1)

  1. Стартер-генераторная система летательного аппарата, содержащая синхронный генератор с возбуждением от постоянных магнитов, параллельный полупроводниковый преобразователь на базе последовательно соединенных двунаправленного dc-dc преобразователя, построенного на базе мостовой схемы с высокочастотным трансформатором, индуктивно-емкостным фильтром на выходе и емкостным делителем на входе dc-dc преобразователя, и двунаправленного ac-dc преобразователя, построенного на базе инвертора напряжения с широтно-импульсной модуляцией, индуктивно-емкостным фильтром на входе ac-dc преобразователя, отличающаяся тем, что к выходу синхронного генератора с возбуждением от постоянных магнитов подключается преобразователь частоты с естественной коммутацией на базе непосредственного преобразователя частоты, выход которого подключен к трехфазной нагрузке переменного тока и к зажимам ac-dc преобразователя, построенного на базе двунаправленного инвертора напряжения, выход которого в звене постоянного тока подключен к зажимам двунаправленного dc-dc преобразователя, последовательно соединенного с аккумуляторной батареей и нагрузкой постоянного тока.
RU2019115319A 2019-05-20 2019-05-20 Адаптивная стартер-генераторная система для летательных аппаратов RU2713390C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019115319A RU2713390C1 (ru) 2019-05-20 2019-05-20 Адаптивная стартер-генераторная система для летательных аппаратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019115319A RU2713390C1 (ru) 2019-05-20 2019-05-20 Адаптивная стартер-генераторная система для летательных аппаратов

Publications (1)

Publication Number Publication Date
RU2713390C1 true RU2713390C1 (ru) 2020-02-05

Family

ID=69625394

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019115319A RU2713390C1 (ru) 2019-05-20 2019-05-20 Адаптивная стартер-генераторная система для летательных аппаратов

Country Status (1)

Country Link
RU (1) RU2713390C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741136C1 (ru) * 2020-09-03 2021-01-22 Общество с ограниченной ответственностью «ДИАМ-АЭРО» Система управления и передачи вращательного момента на винт(ы) в беспилотных летательных аппаратах (БПЛА), стартер-генератор, плата управления стартером-генератором и амортизатор для этой системы
RU2758793C1 (ru) * 2021-03-29 2021-11-01 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» Адаптивная стартер-генераторная система

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132604A (en) * 1989-04-04 1992-07-21 Honda Giken Kogyo Kabushiki Kaisha Engine starter and electric generator system
RU174731U1 (ru) * 2017-03-07 2017-10-30 Борис Яковлевич Тузов Гибридный экранолет
RU2658212C2 (ru) * 2015-07-29 2018-06-19 Айрбас Дефенс Энд Спейс Гмбх Гибридная электрическая силовая передача для беспилотных летательных аппаратов вертикального взлета и посадки
RU2681839C1 (ru) * 2016-12-16 2019-03-13 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") Автономная система электроснабжения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132604A (en) * 1989-04-04 1992-07-21 Honda Giken Kogyo Kabushiki Kaisha Engine starter and electric generator system
RU2658212C2 (ru) * 2015-07-29 2018-06-19 Айрбас Дефенс Энд Спейс Гмбх Гибридная электрическая силовая передача для беспилотных летательных аппаратов вертикального взлета и посадки
RU2681839C1 (ru) * 2016-12-16 2019-03-13 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") Автономная система электроснабжения
RU174731U1 (ru) * 2017-03-07 2017-10-30 Борис Яковлевич Тузов Гибридный экранолет

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741136C1 (ru) * 2020-09-03 2021-01-22 Общество с ограниченной ответственностью «ДИАМ-АЭРО» Система управления и передачи вращательного момента на винт(ы) в беспилотных летательных аппаратах (БПЛА), стартер-генератор, плата управления стартером-генератором и амортизатор для этой системы
RU2758793C1 (ru) * 2021-03-29 2021-11-01 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» Адаптивная стартер-генераторная система

Similar Documents

Publication Publication Date Title
US6169390B1 (en) Flywheel-microturbine system
US20030155893A1 (en) Electrical circuit for generating a three-phase alternating current
US8446024B2 (en) Electrical machines with integrated power and control and including a current source inverter
CN106208071B (zh) 混合式ac及dc分配系统和使用方法
RU2713390C1 (ru) Адаптивная стартер-генераторная система для летательных аппаратов
ATE389258T1 (de) Stromversorgungssystem und permanentmagnetischer generator für ein solches system
Omitola et al. Design and Construction of 1KW (1000VA) Power Inverter
RU78012U1 (ru) Система бесперебойного энергоснабжения
RU2606383C1 (ru) Инвертор для солнечных электростанций
RU2758793C1 (ru) Адаптивная стартер-генераторная система
CN111566888B (zh) 混合通用负载调节器
Grzesiak et al. Application of a permanent magnet machine in the novel hygen adjustable-speed load-adaptive electricity generating system
CN110234870A (zh) 具有辅助电源的风力涡轮机
RU2457612C1 (ru) Устройство для регулирования и стабилизации напряжения автономного многофункционального асинхронного генератора
RU2419957C1 (ru) Электроэнергетическая установка
RU2771475C1 (ru) Устройство для запуска и стабилизации частоты электроэнергетической установки
RU2791376C1 (ru) Энергоустановка
RU2256284C1 (ru) Преобразователь частоты дьякова (варианты)
RU2306664C1 (ru) Турбогенераторная установка
RU97227U1 (ru) Электроэнергетическая установка
Kurka et al. New generation of mobile electrical power sources
RU2588001C1 (ru) Автономная мультимодульная установка генерирования электрической энергии ограниченной мощности
RU89294U1 (ru) Двухагрегатная передвижная станция
RU2738159C1 (ru) Объединенная система пуска и сглаживания графиков нагрузок группы автономных газопоршневых и дизель-генераторных установок с использованием аккумуляторных батарей большой мощности
RU192527U1 (ru) Энергодар