RU2753411C1 - Полимерные комплексы кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами и способ их получения - Google Patents

Полимерные комплексы кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами и способ их получения Download PDF

Info

Publication number
RU2753411C1
RU2753411C1 RU2020134252A RU2020134252A RU2753411C1 RU 2753411 C1 RU2753411 C1 RU 2753411C1 RU 2020134252 A RU2020134252 A RU 2020134252A RU 2020134252 A RU2020134252 A RU 2020134252A RU 2753411 C1 RU2753411 C1 RU 2753411C1
Authority
RU
Russia
Prior art keywords
tert
cobalt
oxazino
coordination
polymer complexes
Prior art date
Application number
RU2020134252A
Other languages
English (en)
Inventor
Евгений Петрович Ивахненко
Анастасия Андреевна Коваленко
Валерий Владимирович Ткачев
Сергей Михайлович Алдошин
Владимир Исаакович Минкин
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет» filed Critical федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»
Priority to RU2020134252A priority Critical patent/RU2753411C1/ru
Application granted granted Critical
Publication of RU2753411C1 publication Critical patent/RU2753411C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene

Abstract

Изобретение относится к новому классу соединений в ряду координационных полимеров переходных металлов с металл-органическим каркасом, а именно к полимерным комплексам кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами, общей формулы 1
Figure 00000009
,
где L = Acac (acac-ацетилацетонат), R = Cl; L = tfac (tfac-трифторацетилацетонат), R = H; L = hexfac (hexfac - гексафторацетилацетонат), R = Cl; t-Bu = трет-бутил. Также предложен способ получения указанных полимерных комплексов. Предложенные соединения обладают магнитными свойствами и могут быть использованы в таких областях, как хранение/разделение газа, магнетизм, молекулярные датчики, доставке лекарств и в качестве катализаторов. 2 н. и 2 з.п. ф-лы, 9 ил., 4 табл., 3 пр.

Description

Изобретение относится к новому классу соединений в ряду координационных полимеров переходных металлов с металл-органическим каркасом, конкретнее комплексам переходных металлов с органическими лигандами, а именно к комплексам кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами, общей формулы I,
Figure 00000001
где L = Acac (acac-ацетилацетонат), R = Cl; L = tfac (tfac-трифторацетилацетонат), R = H; L = hexfac (hexfac - гексафторацетилацетонат), R = Cl; t-Bu = трет-бутил. Соединения обладают магнитными свойствами и могут быть использованы в таких областях, как хранение/ разделение газа [1-3], магнетизм [4,5], молекулярные датчики [6-9], доставке лекарств [10] и в качестве катализаторов [11-13].
Важной задачей современной химии координационных соединений является развитие синтетических путей совершенствования высокоемких устройств памяти [14,15]. Одним из таких направлений является получение молекулярных магнитных материалов, обладающих бистабильностью, способностью существовать в двух термодинамически устойчивых таутомерных формах (в макроскопическом масштабе - в двух фазах), обратимый переход между которыми осуществляется под действием внешних источников энергии: тепла, электрического или магнитного полей, давления, света.
Молекулярные магнитные материалы на основе координационных полимеров переходных металлов характеризуются целым рядом полезных свойств: обладают высокими величинами магнитной восприимчивости и намагниченности, очень высокими коэрцитивными полями (до 1 - 2 Т), имеют малый удельный вес, удобны для механической обработки, прозрачны для видимого света. Главным потенциальным преимуществом таких молекулярных магнитных материалов является принципиальная возможность достижения на их основе максимально высокой плотности записи информации: один бит - одна молекула, что уже продемонстрировано на примере молекулярных магнитов - полиядерных кластеров координационных соединений металлов [16].
Координационные полимеры переходных металлов, содержащие электроактивные (неинноцентные) лиганды могут иметь близкие к вырожденным электронные состояния, возникающие за счет низко-барьерного термо- или фото-стимулированного внутримолекулярного переноса электронов между лигандом и ионом металла. Эти состояния (валентные таутомеры) характеризуются различными физическими свойствами, благодаря чему соединения (и материалы на их основе), проявляющие перегруппировки по типу спин-кроссовер и редокс-изомерии, представляют значительный интерес для технических приложений в качестве молекулярных переключателей и молекулярных устройств хранения памяти [17,18].
В настоящее время известно большое число, разнообразных по строению, связывающих линкеров (органических лигандов), являющихся основой для образования координационных полимеров [19]. Их структурные формулы представлены на рис.1.
Известны комплексные соединения кобальта с линкерами (органическими лигандами) гетеропентаценов формулы [Co(3,5-dbdiox)2(azpy)] (1) и [(cis)trans-Co(3,5-dbdiox)2(1,3-bpp)] (2), где (azpy): 4,4′-транс-азопиридин, (1,3-bpp): 1,3-бис(4-пиридил)пропан, (3,5-dbdiox): 3,5-ди-трет-бутилдиоксален. Соединения обладают магнитными свойствами (3.00 см3моль-1 K и 4.6 см3моль-1 K при 340 К). Способ их получения заключается в смешении ацетонитрильного раствора 3,5-dbcatH2 и 1,2-bpe, с последующим наслаиванием над водным раствором Co(OAc)2·4H2O, получают зеленые пластинчатые кристаллы через несколько недель. [20, 21].
Известно также комплексное соединение кобальта формулы [Co(3,5-dbdiox)2(1,2-bpe)] (3), где (1,2-bpe): 1,2-бис(4-пиридил)этан, (3,5-dbdiox): 3,5-ди-трет-бутилдиоксален. Соединение обладает магнитными свойствами (2.47 см3моль-1 K при 360 К). Способ его получения заключается в смешивании этанольного раствора 3,5-dbcatH2 и 1,2-bpe, с последующим наслаиванием над водным раствором Co(OAc)2·4H2O и разделением буферным слоем этилацетата. Через 5 дней получают голубые пластинчатые кристаллы [20, 21].
Не известны комплексные соединения кобальта, содержащие в качестве линкера п-дииминовые органические лиганды, включенные в пентациклическую трифенодиоксазиновую систему, обладающие магнитными свойствами.
Figure 00000002
Figure 00000003
Техническим результатом являются соединения нового класса в ряду комплексных соединений переходных металлов с органическими лигандами, содержащие в своем составе п-дииминовые линкеры (органические лиганды), включенные в пентациклическую трифенодиоксазиновую систему, обладающие магнитными свойствами.
Технический результат достигается соединением I, а также способом его получения.
Полученные координационные полимеры отличаются от уже известных тем, что содержат в своем составе n-дииминовые линкеры (органические лиганды), включенные в пентациклическую трифенодиоксазиновую систему. Отвечающие за образование координационных связей два атома азота n-дииминового фрагмента, встроены в жесткую пентациклическую систему связанную π-сопряжением, что существенным образом отличает их от используемых, в настоящее время, сшивающих лигандов.
Привлечение авторами, в качестве сшивающих линкеров, гетеропентаценов обусловлено тем, что такие соединения, составляют новую еще практически неизученную группу люминесцентных красителей, способных выступать в качестве сшивающих лигандов для получения металлоорганических координационных полимеров.
Способ получения соединений I заключается во взаимодействии лигандов общей формулы 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинов (II) с ацетилацетонатами Со(II) в среде неполярных растворителей (например, гептан, о-ксилол).
Figure 00000004
Соединение наименее стабильное в растворе, поэтому при его получении используется трехкратный, а не двухкратный, как в случае соединений Ib и , избыток комплекса Co(II) для смещения равновесия реакции в сторону образования координационного полимера с большим выходом продукта (83%, а не 72%).
Соединения Ib и стабильны как в растворе, так и в твердом виде. Однако для получения координационного полимера использован в качестве растворителя о-ксилол, а не гептан, поскольку для образования связей N·····Co необходима более высокая температура проведения синтеза.
Figure 00000005
Figure 00000006
Figure 00000007
Предлагаемый способ отличается от способов-аналогов. Он проводится в неполярных растворителях (гексан, о-ксилол); нет необходимости использовать плохо расслаивающиеся смеси полярных растворителей; достаточно использования минимальных временных затрат (30-70 минут в отличие от 5-14 дней); имеет высокие выходы целевых координационных полимеров (60-83% в отличие от 18-30%) [20, 21].
Ниже приведены примеры получения соединений.
Пример 1. Комплексное соединение кобальта с 2,4-ди-трет-бутил-9-хлорбензо[5,6][1,4]оксазино[2,3-b]феноксазином, (). В общей структурной формуле R = Cl, L = AcAc (ацетилацетонат).
К раствору 100 мг (0.23 ммоль) 2,4-ди-трет-бутил-9-хлорбензо[5,6][1,4]оксазино[2,3-b]феноксазина IIa в 10 мл гептана, прибавляли трехкратный избыток безводного ацетилацетоната Co(II) в гептане. Реакционную смесь кипятили с обратным холодильником в течение 70 минут. Началом образования координационного полимера считается изменение окраски раствора с желто-зеленого на красно-зеленый с последующим выпадением осадка. Выпавшие кристаллы отфильтровывали, сушили и отмывали горячей водой от остатка непрореагировавшего ацетилацетоната. Затем осадок сушили и получили коричневые кристаллы с выходом 190 мг (83%). Т.пл.: 248-250°C.
ИК (см−1): 3399.9, 2952.0, 2907.46, 2868.6, 1581.8, 1561.6, 1518.7, 1440.1, 1391.4, 1376.9, 1361.5, 1266.1, 1240.5, 1176.4, 1018.2, 930.0, 866.4, 800.3, 767.5, 581.4.
Пример 2. Комплексное соединение кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазином, (Ib). В общей структурной формуле R = H, L = Tfac (трифторацетилацетонат).
К раствору 100 мг (0.25 ммоль) 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазина IIb в 10 мл гептана, прибавляли двухкратный избыток безводного трифторацетилацетоната Co(II) в гептане. Реакционную смесь кипятили с обратным холодильником в течение 30 минут. Началом образования координационного полимера считается изменение окраски раствора с красного на зеленый с последующим выпадением осадка. Выпавшие кристаллы отфильтровывали, сушили и отмывали горячей водой от остатка непрореагировавшего трифторацетилацетоната. Получили красно-коричневые кристаллы с выходом 200 мг (70%). Т.пл.: 272-274°C.
ИК (cм−1): 3108.2, 2955.9, 2869.6, 1553.9, 1515.8, 1463.2, 1389.5, 1359.6, 1295.0, 1223.6, 1182.2, 1135.9, 857.7, 774.3, 756.4, 743.0.
Пример 3. Комплексное соединение кобальта с 2,4-ди-трет-бутил-9-хлорбензо[5,6][1,4]оксазино[2,3-b]феноксазином, (Ic). В общей структурной формуле R = Cl, L = Hexfac (гексафторацетилацетонат).
К раствору 100 мг (0.23 ммоль) 2,4-ди-трет-бутил-9-хлорбензо[5,6][1,4]оксазино[2,3-b]феноксазина IIa в 10 мл о-ксилола, прибавляли двухкратный избыток безводного гексафторацетилацетоната Co(II). Реакционную смесь кипятили с обратным холодильником в течение 40 минут. Началом образования координационного полимера считается изменение окраски раствора с красного на фиолетовый с последующим выпадением осадка. Выпавшие кристаллы отфильтровывали, сушили и отмывали горячей водой от остатка непрореагировавшего гексафторацетилацетоната. Затем осадок сушили и получили светло-коричневые кристаллы с выходом 195 мг (61%). Т.пл. > 275°C.
ИК (см−1): 3483.3, 3368.1, 3275.5, 1637.8, 1563.5, 1536.5, 1477.7, 1252.1, 1200.0, 1139.3, 1093.0, 804.7, 673.5, 588.7.
Строение координационных полимеров (ацетилацетонатный “ac” комплекс), Ib (трифторацетилацетонатный “tfac” комплекс), Ic (гексафторацетилацетонатный “hfac” комплекс) было установлено с использованием синхротронного излучения при температуре 100K, проведенного на монокристаллах в дифрактометре ‘Belok’ beamline Национального исследовательского центра «Курчатовский институт» (Москва, Россия) с использованием детектора Rayonix SX165 при λ = 0.79272 (для () и (Ib)), 0,78790 (для (Ic)) Å. Данные были проиндексированы и интегрированы с помощью утилиты iMOSFLM в CCP4 программе [22], а затем масштабированы с поправкой на поглощение с помощью программы Scala [23]. Структуры расшифрованы прямым методом [24]. Позиции и температурные параметры неводородных атомов уточнены в анизотропном приближении полноматричным МНК [24]. Позиции всех атомов водорода рассчитаны геометрически и в дальнейшем уточнялись с наложением ограничений по модели «всадника». Все расчеты выполнены с использованием комплекса программ SHELXTL [25, 26].
В таблице 1 приведены кристаллографические данные и основные параметры уточнения. В таблице 2 приведены длины связей [Å] и углы [град.] для . В таблице 3 приведены длины связей [Å] и углы [град.] для Ib. В таблице 4 приведены длины связей [Å] и углы [град.] для Ia.
Таблица 1
Параметры Соединение Соединение Ib Соединение
Хим. формула C28.5H28.5ClCo0.25N12 C36H34CoF6N2O6 C36H27ClCoF12N2O6
Цвет кристалла красный красный пурпурный
Молекулярный вес, г/моль 499.82 763.58 905.98
Температура, K 100 100 100
Сингония моноклинная триклинная триклинная
Пространственная группа P 1 21/c 1 P -1 P -1
Размеры элементарной ячейки a = 20.251(4)Å;
b = 6.5960(13)Å;
с = 18.852(4) Å;
β = 91.14(3)°.
= 9.4160(2) Å;
b = 13.569(3) Å;
с = 14.140(3) Å;
α = 94.41(3)°
β = 96.193(11)°.
γ = 105.87(3)°
a = 9.511(2) Å;
b = 13.682(3) Å;
с = 14.743(3) Å;
α = 94.97(3)°.
β = 95.59(3)°.
γ = 104.55(3)°.
Объем (V), Å3 2517.7(9) 1711.2(6) 1806.0(6)
Z 1 2 2
Плотность расч.(ρ), г/см3 1.320 1.482 1.639
μ(МоКα), мм-1 0.462 0.785 0.869
Размер кристалла, мм 0.10×0.10×0.05 0.15×0.05×0.02 0.15×0.12×0.05
Тета - диапазон для сбора данных ≤ 31.01 ≤ 30.78
Измеренные отражения 32055 20422 30614
Независимые отражения >2Θ(I) 5738/3687 7564/5491 8321/6465
Индексные диапазоны -26<h<26
-8<k<8
-24<l<24
-12<h<12
-17<k<15
-18<l<18
-12<h<12
-17<k<17
-19<l<19
Количество уточненных параметров 337 616 557
Адекватность модели 1.032 1.007 1.037
Конечные R индексы R1 = 0.059 R1 = 0.054 R1 = 0.044
Таблица 2. Длины связей [Å] и углы [град.] для
Длины связей, Å Углы, град.
Co(1)-O(4) 2.033(2) O(4)-Co(1)-N(1) 90.76(6)
Co(1)-O(3) 2.051(2) O(3)-Co(1)-N(1) 94.39(7)
Co(1)-N(1) 2.357(2) O(5)-Co(2)-O(6) 88.30(7)
Co(2)-O(5) 2.015(2) O(5)-Co(2)-N(2) 92.37(6)
Co(2)-O(6) 2.023(2) O(6)-Co(2)-N(2) 91.18(6)
Co(2)-N(2) 2.447(2) C(1)-O(1)-C(7) 119.42(16)
Cl(1)-C(16) 1.737(2) C(4)-O(2)-C(13) 118.20(16)
O(1)-C(1) 1.352(2) C(27)-O(3)-Co(1) 127.57(14)
O(1)-C(7) 1.380(2) C(29)-O(4)-Co(1) 128.19(15)
O(2)-C(4) 1.356(2) C(32)-O(5)-Co(2) 126.27(14)
O(2)-C(13) 1.370(2) C(34)-O(6)-Co(2) 126.17(14)
O(3)-C(27) 1.249(3) C(2)-N(1)-C(8) 116.48(17)
O(4)-C(29) 1.249(3) C(2)-N(1)-Co(1) 122.75(13)
O(5)-C(32) 1.256(3) C(8)-N(1)-Co(1) 120.70(13)
O(6)-C(34) 1.252(3) C(5)-N(2)-C(14) 115.48(17)
N(1)-C(2) 1.327(3) C(5)-N(2)-Co(2) 123.91(13)
N(1)-C(8) 1.402(3) C(14)-N(2)-Co(2) 120.35(13)
N(2)-C(5) 1.332(3) O(1)-C(1)-C(6) 117.29(18)
N(2)-C(14) 1.411(3) O(1)-C(1)-C(2) 118.96(17)
C(1)-C(6) 1.363(3) C(6)-C(1)-C(2) 123.74(19)
C(1)-C(2) 1.457(3) N(1)-C(2)-C(3) 122.06(18)
C(2)-C(3) 1.425(3) N(1)-C(2)-C(1) 122.88(18)
C(3)-C(4) 1.352(3) C(3)-C(2)-C(1) 115.06(18)
C(4)-C(5) 1.458(3) C(4)-C(3)-C(2) 121.12(19)
C(5)-C(6) 1.427(3) C(3)-C(4)-O(2) 115.92(18)
C(7)-C(12) 1.401(3) C(3)-C(4)-C(5) 124.20(19)
C(7)-C(8) 1.402(3) O(2)-C(4)-C(5) 119.87(18)
C(8)-C(9) 1.403(3) N(2)-C(5)-C(6) 122.14(18)
C(9)-C(10) 1.382(3) N(2)-C(5)-C(4) 123.03(18)
C(10)-C(11) 1.406(3) C(6)-C(5)-C(4) 114.82(18)
C(10)-C(19) 1.534(3) C(1)-C(6)-C(5) 121.01(19)
C(11)-C(12) 1.389(3) O(1)-C(7)-C(12) 117.46(17)
C(12)-C(23) 1.536(3) O(1)-C(7)-C(8) 119.74(18)
C(13)-C(18) 1.381(3) C(12)-C(7)-C(8) 122.78(18)
C(13)-C(14) 1.398(3) N(1)-C(8)-C(7) 122.10(18)
C(14)-C(15) 1.402(3) N(1)-C(8)-C(9) 119.41(18)
C(15)-C(16) 1.384(3) C(7)-C(8)-C(9) 118.36(19)
C(16)-C(17) 1.389(3) C(10)-C(9)-C(8) 121.18(19)
C(17)-C(18) 1.383(3) C(9)-C(10)-C(11) 117.93(19)
O(4)-Co(1)-O(3) 86.48(6)
Таблица 3. Длины связей [Å] и углы [град.] для Ib
Длины связей, Å Углы, град.
Co(1)-O(3) 2.021(2) O(5)-Co(2)-N(2) 90.69(7)
Co(1)-O(4) 2.035(2) O(6)-Co(2)-N(2) 93.73(7)
Co(1)-N(1)
Co(2)-O(5)
2.387(2)
2.022(2)
C(32)-O(5)-Co(2)
C(34)-O(6)-Co(2)
127.14(17)
127.29(18)
Co(2)-O(6) 2.029(2) C(5)-N(2)-C(14) 115.8(2)
Co(2)-N(2) 2.363(2) C(5)-N(2)-Co(2) 120.37(15)
O(5)-C(32) 1.259(3) C(14)-N(2)-Co(2) 122.87(15)
O(6)-C(34) 1.255(3) C(4)-O(2)-C(13) 118.25(19)
N(2)-C(5) 1.324(3) C(1)-O(1)-C(7) 119.07(18)
N(2)-C(14) 1.403(3) C(29)-O(4)-Co(1) 127.15(19)
O(2)-C(4) 1.361(3) C(27)-O(3)-Co(1) 127.1(2)
O(2)-C(13) 1.373(3) C(2)-N(1)-C(8) 116.5(2)
O(1)-C(1) 1.350(3) C(2)-N(1)-Co(1) 122.03(16)
O(1)-C(7) 1.376(3) C(8)-N(1)-Co(1) 121.27(15)
O(4)-C(29) 1.253(3) C(13)-C(14)-C(15) 117.1(2)
O(3)-C(27) 1.251(3) C(13)-C(14)-N(2) 121.8(2)
N(1)-C(2) 1.325(3) C(15)-C(14)-N(2) 121.1(2)
N(1)-C(8) 1.407(3) C(16)-C(15)-C(14) 120.8(2)
C(14)-C(13) 1.397(3) C(15)-C(16)-C(17) 120.6(2)
C(14)-C(15) 1.401(3) C(18)-C(17)-C(16) 119.9(2)
C(15)-C(16) 1.378(4) C(17)-C(18)-C(13) 119.0(2)
C(16)-C(17) 1.391(4) O(2)-C(13)-C(18) 116.0(2)
C(17)-C(18) 1.380(4) O(2)-C(13)-C(14) 121.5(2)
C(18)-C(13) 1.383(3) C(18)-C(13)-C(14) 122.5(2)
C(4)-C(3) 1.353(3) C(3)-C(4)-O(2) 117.3(2)
C(4)-C(5) 1.460(3) C(3)-C(4)-C(5) 123.9(2)
C(3)-C(2) 1.425(3) O(2)-C(4)-C(5) 118.8(2)
C(2)-C(1) 1.456(3) C(4)-C(3)-C(2) 120.7(2)
C(8)-C(9) 1.399(3) N(1)-C(2)-C(3) 122.5(2)
C(8)-C(7) 1.402(3) N(1)-C(2)-C(1) 122.2(2)
C(9)-C(10) 1.380(4) C(3)-C(2)-C(1) 115.3(2)
C(10)-C(11) 1.402(4) C(9)-C(8)-C(7) 117.8(2)
C(1)-C(6) 1.355(3) C(9)-C(8)-N(1) 119.8(2)
C(6)-C(5) 1.416(3) C(7)-C(8)-N(1) 122.3(2)
O(3)-Co(1)-O(4) 87.63(8) C(10)-C(9)-C(8) 121.0(2)
O(3)-Co(1)-N(1) 88.22(7) C(9)-C(10)-C(11) 118.7(2)
O(4)-Co(1)-N(1) 85.98(8)
O(5)-Co(2)-O(6) 87.57(8)
Таблица 4. Длины связей [Å] и углы [град.] для Ia
Длины связей, Å Углы, град.
Co(1)-O(3) 1.994(3) C(17)-C(16)-Cl(1) 118.73(17)
Co(1)-O(4) 1.997(3) C(18)-C(17)-C(16) 118.4(2)
Co(1)-N(1) 2.674(3) C(13)-C(18)-C(17) 119.4(2)
Cl(1)-C(16) 1.738(2) O(2)-C(13)-C(18) 116.94(19)
O(1)-C(1) 1.364(2) O(2)-C(13)-C(14) 120.79(19)
O(1)-C(7) 1.377(2) C(18)-C(13)-C(14) 122.3(2)
O(2)-C(4) 1.369(2) C(3)-C(4)-O(2) 117.66(18)
O(2)-C(13) 1.375(2) C(3)-C(4)-C(5) 123.41(19)
O(3)-C(29) 1.267(5) O(2)-C(4)-C(5) 118.92(18)
O(4)-C(27) 1.261(5) C(4)-C(3)-C(2) 120.41(18)
N(1)-C(2) 1.311(3) N(1)-C(2)-C(3) 121.06(17)
N(1)-C(8) 1.393(2) N(1)-C(2)-C(1) 123.06(18)
N(2)-C(5) 1.316(3) C(3)-C(2)-C(1) 115.88(18)
N(2)-C(14) 1.393(3) N(1)-C(8)-C(9) 119.15(17)
C(4)-C(3) 1.349(3) N(1)-C(8)-C(7) 122.22(18)
C(4)-C(5) 1.462(3) C(9)-C(8)-C(7) 118.63(18)
C(3)-C(2) 1.435(3) C(10)-C(9)-C(8) 121.19(18)
C(2)-C(1) 1.456(3) C(9)-C(10)-C(11) 117.79(19)
C(8)-C(9) 1.396(3) C(9)-C(10)-C(19) 120.82(17)
C(8)-C(7) 1.397(3) C(11)-C(10)-C(19) 121.37(18)
C(9)-C(10) 1.391(3) C(20)-C(19)-C(22) 108.6(2)
C(10)-C(11) 1.402(3) C(20)-C(19)-C(21) 108.7(2)
C(10)-C(19) 1.540(3) C(22)-C(19)-C(21) 108.01(18)
C(19)-C(20) 1.525(3) C(20)-C(19)-C(10) 110.47(17)
C(19)-C(22) 1.527(3) C(22)-C(19)-C(10) 112.67(17)
C(19)-C(21) 1.533(3) C(21)-C(19)-C(10) 108.33(18)
C(11)-C(12) 1.395(3) C(12)-C(11)-C(10) 123.48(19)
C(12)-C(7) 1.396(3) C(11)-C(12)-C(7) 116.19(17)
C(1)-C(6) 1.346(3) C(11)-C(12)-C(23) 122.50(18)
C(6)-C(5) 1.431(3) C(7)-C(12)-C(23) 121.31(18)
O(3)-Co(1)-N(1) 63.91(9) C(25)-C(23)-C(12) 111.52(18)
O(4)-Co(1)-N(1) 117.64(9) C(25)-C(23)-C(26) 107.92(18)
C(1)-O(1)-C(7) 119.50(15) C(12)-C(23)-C(26) 110.24(16)
C(4)-O(2)-C(13) 118.08(16) C(25)-C(23)-C(24) 107.17(18)
C(29)-O(3)-Co(1) 126.6(3) C(12)-C(23)-C(24) 109.27(17)
C(27)-O(4)-Co(1) 126.5(3) C(26)-C(23)-C(24) 110.68(18)
C(2)-N(1)-C(8) 117.13(16) O(1)-C(7)-C(12) 117.62(16)
C(2)-N(1)-Co(1) 18.64(10) O(1)-C(7)-C(8) 119.66(17)
C(8)-N(1)-Co(1) 98.50(11) C(12)-C(7)-C(8) 122.71(18)
C(5)-N(2)-C(14) 116.02(18) C(6)-C(1)-O(1) 117.71(17)
O(3)-C(29)-C(28) 124.1(4) C(6)-C(1)-C(2) 123.88(18)
N(2)-C(14)-C(13) 122.60(19) O(1)-C(1)-C(2) 118.41(17)
N(2)-C(14)-C(15) 119.54(19) C(1)-C(6)-C(5) 120.34(18)
C(13)-C(14)-C(15) 117.9(2) N(2)-C(5)-C(6) 120.36(19)
C(16)-C(15)-C(14) 119.4(2) N(2)-C(5)-C(4) 123.57(19)
C(15)-C(16)-C(17) 122.6(2) C(6)-C(5)-C(4) 116.07(18)
C(15)-C(16)-Cl(1) 118.66(18)
На рис.2 приведено строение координационного полиэдра в комплексе . На рис. 3 приведен способ образования цепочек в кристаллической структуре комплекса Ib (атомы водорода удалены). На рис. 4 приведен способ упаковки молекул в кристаллической структуре комплекса Ia. На рис. 5 приведен способ упаковки молекул в кристаллах лиганда II общей формулы 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазин (TPDO).
Комплексы Ib и Ic изоструктурны (табл. 1), несмотря на то, что в TPDO лиганде комплекса Ic один из атомов H в ароматическом кольце замещён на атом Cl. Атом Co имеет искаженную псевдо-октаэдрическую координацию. В экваториальной плоскости атом Co координирован двумя атомами кислорода O(3) и O(4) hfac и tfac лигандов, а в апикальной позиции - атомами N(1) и N(1А) двух TPDO лигандов, расположенных сверху и снизу экваториальной плоскости под углом 80,3° к экваториальной плоскости (рис.2). При этом атомы N(2) и N(2А) TPDO лигандов координируют с другими атомами Co, образуя полимерную цепочку ...Co...N(TPDO)N...Co...(рис.3). Таким образом, химическая структура комплексов Ib и Ic может быть представлена, как …[2(hfac)Со(TPDO)]… и …[2(tfac)Со(TPDO)]…. В комплексе Ic одна из CF3 -групп hfac-лиганда разупорядочена по двум позициям в соотношении 1:1, а в комплексе Ib взаимно-разупорядочены группы CH3 и CF3 tfac-лиганда в соотношении 1:1. Рентгеновская плотность Ic и Ib составляет 1.639 и 1.482 г/см3.
Кристаллические структуры комплексов и Ib образованы двумя независимыми координационными узлами Co(1) и Co(2), расположенными в центах инверсии, поэтому длины связей Co-N, Co-O и валентные углы при атомах Co(1) и Co(2) попарно эквивалентны. В структуре средние значения длин связей Co-O в центрах Co(1) и Co(2) равны 2,042Å и 2,019Å, а длины связей Co-N 2,357Å и 2,447Å. Усреднённые значения длин связей Co-O и Co-N 2,030Å и 2,402Å.
В структуре Ib средние значения длин связей Co-O для Co(1) и Co(2) равны 2,028Å и 2,026Å, а длины связей Co-N 2,387Å и 2,363Å (табл. 3). Усреднённые значения длин связей Co-O и Co-N 2,027 и 2,375 Å. Таким образом, длины связей Co-O в комплексах и Ib в пределах погрешностей одинаковы, а связь Co-N в комплексе длиннее, чем в комплексе Ib. (Все длины связей имеют погрешность 0,002Å). Поскольку атомы кобальта расположены в центрах инверсии, валентные углы между симметричными атомами в полиэдрах Co равны 180°, остальные углы в полиэдрах Co лежат в интервале 85- 94° .
Структура комплекса принципиально иная. По данным рентгеноструктурного анализа состав комплекса: 0,25[Co(AC)2]*(TPDO). В кристаллической структуре этого комплекса координационные узлы Co(AC)2 занимают только 50% своих кристаллографических позиций. Поскольку атомы Co не могут занимать соседние позиции, так как в этом случае AC-лиганды будут перекрывать друг друга, что физически невозможно и запрещено законами упаковки молекул в кристалле (рис.4), расстояние между позициями Со…Со = 6,596Å. Co(AC)2 координационные узлы расположены на оси симметрии 2 вдоль кристаллографической оси “b” в канале между упакованными в стопки лигандами TPDO. Плоско-квадратная координация Co дополняется до октаэдрической за счёт взаимодействия с атомами N соседних TPDO лигандов, также как в комплексах и Ib. Однако расстояния Co-N 2,674(3)Å оказываются гораздо длиннее, чем в комплексах 2,402Å и Ib 2,375Å, а длины связей Co-O 1,994(3) и 1,997(3)Å короче, чем в 2,030Å и Ib 2,027Å. Расстояние Co-N оказывается наиболее длинным из известных для комплексов Co(II), что указывает на плоско-квадратную координацию Co, дополненную слабыми взаимодействиями до квадратно-бипирамидальной 4+2. В кристаллической структуре Ia не образуется бесконечных цепочек типа ...N...Со...N... и комплекс имеет структуру Co(AC)2(TPDO)2. Не координирующей с атомом Co атом N(2) лиганда TPDO имеет ближайшие контакты N(2)…O(2’) и N(2)…O(2”) = 3,83 и 3,87Å с соседними молекулами. Вакансии не занятые Co(АС)-узлами остаются свободными. Межмолекулярные расстояния N….N между соседними молекулами TPDO составляют: N(2)...N(2') = 5,34, 5,408Å; N(2)…. N(1’) = 4,57, 4,68Å. Рентгеновская плотность кристаллов комплекса Ia равна 1.32 г/cм3, что гораздо ниже плотности кристаллов комплексов и Ib 1.639 и 1.482 г/cм3.
Для того чтобы выяснить, не определяется ли строение комплекса Ia кристаллической структурой лиганда TPDO, проведено рентгеноструктурное исследование кристаллов TPDO. Однако ни параметры кристаллической ячейки (табл.1), ни способ упаковки молекул в кристаллах лиганда TPDO (рис. 5) не соответствуют кристаллической структуре Ia.
Полученные данные свидетельствуют о том, что в образовании диацетилацетонатных комплексов Co(II) с TPDO лигандами существенную роль играют CF3-группы AC-лигандов, которые усиливают электроноакцепторные свойства и приводят к образованию различных по прочности Co-N связей и различному искажению координационного полиэдра атома Co. Искажение координационного полиэдра высокоспинового Co(II) должно приводить к различию в магнитных свойствах исследованных комплексов.
Исследование магнитных свойств
Данные магнитной восприимчивости полученые для соединений 1·2EtOH, 2·MeCN·H2O, 3·1,5MeCN·2H2O, и несольватированного 3 от 2 до 370 К. На рис.6 приведены графики зависимости χmT от T для (a) 3, (b) 3·1,5MeCN·2H2O, (c) 1·2EtOH и (d) 2· MeCN · H2O. Для 2·MeCN · H2O значения приведены для 2 моль, учитывая наличие двух структурно разных молекул (цис-транс).
Данные магнитной восприимчивости измерены в пяти циклах нагрев-охлаждение: от 10 до 300 К и от 190 до 320, 340, 360 и 370 К. Из графиков видно, что значение χmT плавно увеличивается, а затем в определенном коротком интервале температуры увеличивается резко, что указывает на начало валентного таутомерного перехода.
Выше 200 К происходит десольватация и становится возможен термически индуцированный валентный таутомерный переход. Высокотемпературные значения χmT варьируются от 2.47 см3моль-1 K (для 3) и доходят до 4.6 см3моль-1 K (для 2). Множественные циклы нагревания и охлаждения показывают, что в некоторых случаях поведение комплексов сильно зависит от процессов десольватации. В частности, 3· 1,5MeCN·2H2O при 340 K дает значения χmT, которые предполагают необычное ферромагнитное взаимодействие в валентном таутомере. Соединение 2·MeCN·H2O демонстрирует двухступенчатый валентый таутомерный переход, который можно объяснить наличием цис- и транс-геометрических изомеров.
Исследование зависимости магнитных свойств координационных полимеров I от температуры (4К-400К) показало, что исследуемые комплексы кобальта являются высокоспиновыми. На рис.7 приведена зависимость магнитных свойств от температуры для координационного полимера измеренная при B DC = 0.1 T. Теоретическая кривая (сплошная линия) рассчитана при g Z =2.06, g X , Y =2.32, D=35.09 см-1, E=4.89 см-1 и χ tip =4.7⋅10-3 эму⋅K/моль. При комнатной температуре χMT для комплекса составляет около 3.5 cм3 ⋅K⋅ моль-1 (рис. 7), что значительно выше значения только для спина (1.875 cм3⋅K⋅моль-1) из-за значительного орбитального вклада в магнитный момент сопровождается наличием ненулевого температурно-независимого парамагнитного вклада (TIP). При охлаждении χMT почти линейно уменьшается в интервале температур от 300 до 100K из-за TIP, после чего уменьшение становится более выраженным, и χMT достигает значения ≈ 1.535 см3 ⋅K⋅ моль-1 при 3 K. По-видимому, низкотемпературное снижение χMT может быть связано с одноионной магнитной анизотропией иона Co(II).
На рис. 8 приведена намагниченность по отношению к полю для измеренные при T= 2, 3, 4, 5.5 и 10 K. Теоретические кривые (сплошные линии) рассчитаны при g Z =2.06, g X , Y =2.32, D=35.09 см-1, E=4.89 см-1 Низкотемпературная (T = 2 K) намагниченность как функция магнитного поля почти насыщается при 5 T, достигая значения около 2N A μ B (рис. 7), что значительно ниже значения 3N A μ B , соответствующего чистому спин S = 3/2 основного состояния с g = 2. 3N A μ B , соответствующего чистому спин S = 3/2 основного состояния с g = 2.
На рис. 9 показаны результаты магнитных измерений для двух других комплексов Iа и Ib. На рис. 9 показана также зависимость магнитных свойств от температуры для координационного полимера (зеленая кривая / верхняя точечная кривая) и для Ib (фиолетовая кривая / нижняя точечная кривая) измеренная при B DC = 0.1 T. Теоретическая кривая (сплошная линия) рассчитана при g Z =1.92, g X , Y =2.47, D=59.34 см-1, E=5.36 см-1 для Ib и при g Z =2.0, g X , Y =2.42, D=28.31 cм-1, E=3.65 cм-1, χ tip = 2.1×10-3 эму⋅K/моль для .
Как видно, предлагаемые соединения являются представителями нового класса соединений в ряду высокоспиновых координационных соединений переходных металлов с органическими лигандами, обладающие высокими значениями магнитных свойств.
Список литературы
1. Sumida K., Rogow D.L., Mason J.A., McDonald T.M., Bloch E.D., Herm Z.R., Bae T.-H., Long J.R. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev., 2011, 112, 724-781;
2. Suh M.P., Park H.J., Prasad T.K., Lim D.-W. Hydrogen Storage in Metal-Organic Frameworks. Chem. Rev., 2011, 112, 782-835;
3. Li J.-R., Sculley J., Zhou H.-C. Metal-Organic Frameworks for Separations. Chem. Rev., 2011, 112, 869-932;
4. Kurmoo M. Magnetic metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1353-1379.;
5. Wang Y.-Q., Yue Q., Qi Y., Wang K., Sun Q., Gao E.-Q. Manganese(II), Iron(II), and Mixed-Metal Metal-Organic Frameworks Based on Chains with Mixed Carboxylate and Azide Bridges: Magnetic Coupling and Slow Relaxation. Inorg. Chem. 2013, 52(8), 4259-4268;
6. Wang Z., Cohen S.M. Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1315-1329;
7. Zacher D., Shekhah O., Woll C., Fischer R.A. Thin films of metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1418-1429;
8. Inokuma Y., Kawano M., Fujita M. Crystalline Molecular Flasks. Nat. Chem., 2011, 3(5), 349-358;
9. Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., Hupp J.T. Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev., 2012, 112(2), 1105-1125;
10. McKinlay A.C., Morris R.E., Horcajada P., Férey G., Gref R., Couvreur P., Serre C. BioMOFs: metal-Organic Frameworks for Biomedical Applications. Chem., Int. Ed., 2010, 49(36), 6260-6266;
11. Zou C., Zhang T., Xie M.-H., Yan L., Kong G.-Q., Yang X.-L., Ma A., Wu C.-D. Four Metalloporphyrinic Frameworks as Heterogeneous Catalysts for Selective Oxidation and Aldol Reaction. Inorg. Chem., 2013, 52(7), 3620-3626;
12. Lee J., Farha O.K., Roberts J., Scheidt K.A., Nguyen S.T., Hupp J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev., 2009, 38(5), 1450-1459;
13. Dikhtiarenko A., Khainakov S.A., Pedro I. de, Blanco J.A., García J.R., Gimeno J. Series of 2D Heterometallic Coordination Polymers Based on Ruthenium(III) Oxalate Building Units: Synthesis, Structure, and Catalytic and Magnetic Properties. Inorg. Chem., 2013, 52(7), 3933-3941;
14. NNI Strategical Plan. December 2007. Section “Future Information Processing Technology from Nanotechnology”. Subcommittee on Nanoscale Science, Engineering and Technology. www.nano.gov.;
15. Nanoscience and Nanotechnologies. The Royal Society and the Royal Academy of Engineering. Carlton House. London, 2004;
16. Christou G. “Single-molecule magnets”. Polyhedron, 2005, 24, 2065-2075;
17. Sato O., Tao J., Zhang Y.-Z. Control of magnetic properties through external stimuli. Angew. Chem. Int. Ed., 2007, 46, 2152-2187;
18. Evangelio E., Ruiz-Molina D. Valence tautomerism. C. R. Chimie, 2008, 11, 1137-1154;
19. Hayami S., Hashiguchi K., Juhász G., Ohba M., Okawa H., Maeda Y., Kato K., Osaka K., Takata M., Inoue K. 1-D Cobalt(II) Spin Transition Compound with Strong Interchain Interaction:  [Co(pyterpy)Cl2]·X. Inorg. Chem., 2004, 43(14), 4124-4126;
20. Drath O., Gable R.W., Moubaraki B., Murray K.S., Poneti G., Sorace L., Boskovic C. Valence Tautomerism in One-Dimensional Coordination Polymers. Inorg. Chem. 2016, 55(9), 4141-4151;
21. Chen X., Wei R., Zheng L., Tao J. Valence Tautomeric Transitions of Three One-Dimensional Cobalt Complexes. Inorg. Chem. 2014, 53(24), 13212-13219;
22. Battye T. G. G., Kontogiannis L., Johnson O., Powell H. R., Leslie A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Cryst. 2011, D67, 271-281;
23. Evans P.R., Scaling and assessment of data quality. Acta Cryst. 2005, D62, 72-82;
24. Sheldrick G.M. (8/06/2000). SHELXTL v. 6.14, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA;
25. Sheldrick G. M. Crystal structure refinement with SHELXL.Acta Cryst., 2015, C71, 3-8;
26. Meech SR, Phillips D. Photophysics of some common fluorescence standards. J Photochem, 1983, 23, 193-217.

Claims (6)

1. Полимерные комплексы кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами общей формулы 1
Figure 00000008
где L = Acac (acac-ацетилацетонат), R = Cl; L = tfac (tfac-трифторацетилацетонат), R = H; L = hexfac (hexfac - гексафторацетилацетонат), R = Cl; t-Bu = трет-бутил.
2. Полимерные комплексы по п.1, обладающие магнитными свойствами.
3. Способ получения полимерных комплексов по п.1, характеризующийся тем, что 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазины вводят во взаимодействие с ацетилацетонатами кобальта в среде неполярных растворителей.
4. Способ по п.3, характеризующийся тем, что в качестве неполярных растворителей используют гептан или о-ксилол.
RU2020134252A 2020-10-19 2020-10-19 Полимерные комплексы кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами и способ их получения RU2753411C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020134252A RU2753411C1 (ru) 2020-10-19 2020-10-19 Полимерные комплексы кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами и способ их получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020134252A RU2753411C1 (ru) 2020-10-19 2020-10-19 Полимерные комплексы кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами и способ их получения

Publications (1)

Publication Number Publication Date
RU2753411C1 true RU2753411C1 (ru) 2021-08-16

Family

ID=77349041

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020134252A RU2753411C1 (ru) 2020-10-19 2020-10-19 Полимерные комплексы кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами и способ их получения

Country Status (1)

Country Link
RU (1) RU2753411C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249902A (zh) * 2021-12-24 2022-03-29 大连理工大学 具有可见光催化还原c-f键性能的吩噁嗪基金属有机框架的制备方法及应用
RU2811261C1 (ru) * 2023-10-28 2024-01-11 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Аддукты гексафторацетилацетоната цинка с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами, обладающие люминесцентными свойствами

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2601005C2 (ru) * 2015-03-18 2016-10-27 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Металлополимерный дисперсный магнитный материал и способ его получения
RU2708625C1 (ru) * 2019-07-11 2019-12-10 федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет» Трет-бутилзамещённые трифенодиоксазины, обладающие люминесцентными свойствами, и способ их получения

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2601005C2 (ru) * 2015-03-18 2016-10-27 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Металлополимерный дисперсный магнитный материал и способ его получения
RU2708625C1 (ru) * 2019-07-11 2019-12-10 федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет» Трет-бутилзамещённые трифенодиоксазины, обладающие люминесцентными свойствами, и способ их получения

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DRATH O. et al. Valence Tautomerism in One-Dimensional Coordination Polymers, Inorg. Chem., 2016, v. 55, no. 9, p. 4141-4151. *
DRATH O. et al. Valence Tautomerism in One-Dimensional Coordination Polymers, Inorg. Chem., 2016, v. 55, no. 9, p. 4141-4151. ИВАХНЕНКО Е.П. и др. Синтез, строение и динамика смешанно-лигандных комплексов кобальта с редокс-активным феноксазин-1-оном, Доклады Академии наук, 2011, т. 438, номер 4, с. 485-489. *
ИВАХНЕНКО Е.П. и др. Синтез, строение и динамика смешанно-лигандных комплексов кобальта с редокс-активным феноксазин-1-оном, Доклады Академии наук, 2011, т. 438, номер 4, с. 485-489. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249902A (zh) * 2021-12-24 2022-03-29 大连理工大学 具有可见光催化还原c-f键性能的吩噁嗪基金属有机框架的制备方法及应用
CN114249902B (zh) * 2021-12-24 2022-08-26 大连理工大学 具有可见光催化还原c-f键性能的吩噁嗪基金属有机框架的制备方法及应用
RU2811261C1 (ru) * 2023-10-28 2024-01-11 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Аддукты гексафторацетилацетоната цинка с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами, обладающие люминесцентными свойствами

Similar Documents

Publication Publication Date Title
Wang et al. 4-(4-Carboxyphenoxy) phthalate-based coordination polymers and their application in sensing nitrobenzene
Wang et al. A series of intriguing metal–organic frameworks with 3, 3′, 4, 4′-benzophenonetetracarboxylic acid: structural adjustment and pH-dependence
Boulsourani et al. Ferromagnetic and antiferromagnetic copper (II) complexes: Counterplay between zero-field effects of the quartet ground state and intermolecular interactions
Li et al. Cobalt and cadmium complexes with N-heterocyclic dicarboxylic acid ligands: syntheses, structures, magnetic and fluorescent properties
RU2753411C1 (ru) Полимерные комплексы кобальта с 2,4-ди-трет-бутилбензо[5,6][1,4]оксазино[2,3-b]феноксазинами и способ их получения
Yuan et al. Structural diversity of a series of terpyridyl carboxylate coordination polymers: Luminescent sensor and magnetic properties
Zhang et al. Synthesis, characterization, and photoresponsive properties of a series of Mo (IV)–Cu (II) complexes
Lü et al. A series of silver coordination polymers constructed from flexible bis (benzimidazole) ligands and different carboxylates
Skorupa et al. Crystal structure and magnetic properties of two heteronuclear thiocyanate bridged compounds:(CuL)[Co (NCS) 4](L= N-meso-(5, 12-Me2-7, 14-Et2-[14]-4, 11-dieneN4) and N-rac-(5, 12-Me2-7, 14-Et2-[14]-4, 11-dieneN4))
Yong et al. Magnetic and luminescent properties of Cd (II)-and Fe (II)-anion radical frameworks: various networks or structures influenced by metal ion sizes or in situ forming mechanisms of anion radical ligand
Li et al. Crystal structures and properties of four coordination polymers based on a new asymmetric ligand: Tuning structure/dimensionality by various organic solvents
Yue et al. Homochiral coordination polymers from a chiral dicarboxylic acid and dipyridyl ligands: Structural diversity, photoluminescence and magnetic properties
Baruah et al. Ring opening reactions of pyromellitic dianhydride for the synthesis of first row transition metal dicarboxylate complexes
Lun et al. Different dimensional coordination polymers with 4, 4׳-oxybis (benzoate): Syntheses, structures and properties
Han et al. Two chiral Zn (ii) metal–organic frameworks with dinuclear Zn 2 (COO) 3 secondary building units: a 2-D (6, 3) net and a 3-D 3-fold interpenetrating (3, 5)-connected network
Jin et al. New oxalate-propagated layered Mn2+/Fe2+-4, 4′-sulfoyldiphthalhydrazidate coordination polymers
Fujiwara et al. Ferromagnetic oxovanadium (IV) complexes chelated with tetrahalosalen ligands
Dong et al. Different crystal structures and luminescent properties of zinc and cadmium coordination polymers constructed from two flexible thioether ligands with different alkyl chains
Yeh et al. Role of ligand conformation in the structural diversity of copper (II) and silver (I) coordination polymers containing the angular dipyridyl ligand bearing amide spacer
Jin et al. New 4-carboxylphthalhydrazidate-bridged Mn2+/In3+ coordination polymers
Mishra et al. Four novel isostructural coordination polymers {[M (H′ L) 2 (H2O) 2]· 2DMF}[M= Zn (II), Cd (II), Mn (II) and Co (II)] built using a nitrogen and oxygen donor azo ligand: Crystal structures and fluorescence studies
Tsai et al. Structural diversity in Cu (II), Cd (II) and Hg (II) coordination complexes with the rigid N, N′-bis (2/3-aryl)-1, 4-benzenedicarboxamide ligand
Kuai et al. Syntheses, characterization and properties of manganese, cobalt and copper complexes from chelate N-donor ligands
Matoga et al. Self-assembly of mixed-valent ruthenium (II, III) pivalate and octacyanotungstate (V) building blocks
Wang et al. Stepwise tuning of the substituent groups from mother BTB ligands to two hexaphenylbenzene based ligands for construction of diverse coordination polymers