RU2753151C1 - Способ вибрационной диагностики роторных систем - Google Patents

Способ вибрационной диагностики роторных систем Download PDF

Info

Publication number
RU2753151C1
RU2753151C1 RU2020131421A RU2020131421A RU2753151C1 RU 2753151 C1 RU2753151 C1 RU 2753151C1 RU 2020131421 A RU2020131421 A RU 2020131421A RU 2020131421 A RU2020131421 A RU 2020131421A RU 2753151 C1 RU2753151 C1 RU 2753151C1
Authority
RU
Russia
Prior art keywords
rotor
data
artificial neural
recorded
neural network
Prior art date
Application number
RU2020131421A
Other languages
English (en)
Inventor
Роман Николаевич Поляков
Алексей Валерьевич Корнаев
Юрий Николаевич Казаков
Алексей Юрьевич Родичев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Орловский государственный университет имени И.С. Тургенева" (ФГБОУ ВО "ОГУ имени И.С. Тургенева")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Орловский государственный университет имени И.С. Тургенева" (ФГБОУ ВО "ОГУ имени И.С. Тургенева") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Орловский государственный университет имени И.С. Тургенева" (ФГБОУ ВО "ОГУ имени И.С. Тургенева")
Priority to RU2020131421A priority Critical patent/RU2753151C1/ru
Application granted granted Critical
Publication of RU2753151C1 publication Critical patent/RU2753151C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области машиностроения и может быть использовано для диагностирования состояния технического оборудования. При реализации способа, включающем измерение параметров работы реальной роторной системы и сравнение получаемых параметров с этими же величинами, замеренными в первоначальном состоянии, данные регистрируют в двух направлениях: вертикальном и горизонтальном по отношению к оси вращения ротора. При этом диагностику проводят в два этапа, на первом из которых проводят предварительное обучение искусственной нейронной сети на записанных сигналах системы мониторинга для работоспособного состояния роторной системы и для каждого случая диагностируемого дефекта, а на втором этапе - получение прогноза состояния реальной роторной системы путем обработки данных, полученных с нее, и сравнения их с данными, полученными на этапе обучения искусственной нейронной сети, с выводом результата на блок отображения информации, полученные данные регистрируют в одном направлении: вертикальном или горизонтальном по отношению к оси вращения ротора. Технический результат заключается в повышении точности и быстродействия системы диагностики для выявления различных видов дефектов роторных систем в режиме реального времени с высоким быстродействием за счет использования предварительно обученных искусственных нейронных сетей. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области машиностроения и может быть использовано для диагностирования состояния технического оборудования.
Известен способ вибрационной диагностики роторных систем, который включает в себя измерение параметров вибрационного процесса работающей роторной системы и сравнение с этими же величинами, замеренными в первоначальном состоянии, при этом характеристики вибрации регистрируют в двух направлениях: вертикальном и горизонтальном по отношению к оси ротора, полученные данные сохраняют в компьютере в оцифрованном виде, при этом проводится кепстральный анализ вибрационного процесса, по результатам которого делается вывод о существовании дефекта роторной системы (Патент RU 2356021, МПК G01M 7/02, опубл. 10.11.2008 г., Бюл. №14).
Недостатком данного способа вибрационной диагностики роторных систем является то, что процесс использования такого метода в онлайн режиме не является возможным, так как необходимо реализовать высокоскоростной обмен данными между внешней средой и процессором, который должен иметь постоянный доступ к базе данных. После получения первичного сигнала он проходит обработку, а уже затем сравнивается с эталонными сигналами базы данных. Без вторичной обработки сигнала в системах реализовать возможность классификации выявленных дефектов невозможно, так как подобные системы не обладают необходимым набором инструментов. Также реализация эталонных баз данных не может быть направлена на широкий спектр оборудования, что заставляет формировать данные для каждого оборудования отдельно. Также при формировании эталонных значений невозможно учесть абсолютно все реальные факторы, влияющие на работу роторных систем.
Техническая задача, которую решает данное изобретение, - повышение точности и быстродействия системы диагностики для выявления различных видов дефектов роторных систем, а также универсальность использования для различного типа оборудования за счет того, что система диагностики строится на обработке характеристик сигналов системы мониторинга и их сравнения с шаблонами дефектов в предварительно обученной искусственной нейронной сети в режиме реального времени.
Поставленная задача достигается тем, что в способе вибрационной диагностики роторных систем, включающем измерение параметров работы реальной роторной системы и сравнение получаемых параметров с этими же величинами, замеренными в первоначальном состоянии, при этом данные регистрируют в двух направлениях: вертикальном и горизонтальном по отношению к оси вращения ротора, согласно изобретению диагностику проводят в два этапа, на первом из которых проводят предварительное обучение искусственной нейронной сети на записанных сигналах системы мониторинга для работоспособного состояния роторной системы и для каждого случая диагностируемого дефекта, а на втором этапе - получение прогноза состояния реальной роторной системы путем обработки данных, полученных с нее, и сравнения их с данными, полученными на этапе обучения искусственной нейронной сети, с выводом результата на блок отображения информации, полученные данные регистрируют в одном направлении: вертикальном или горизонтальном по отношению к оси вращения ротора.
Технический результат применения данного метода заключается в повышении точности и быстродействия системы диагностики для выявления различных видов дефектов роторных систем в режиме реального времени с высоким быстродействием за счет использования предварительно обученных искусственных нейронных сетей.
Система диагностики основывается на базе предварительно обученной искусственной нейронной сети, которая строится на записанных сигналах системы мониторинга для работоспособного состояния роторной системы и для каждого случая диагностируемого дефекта. Обучение искусственной нейронной сети осуществляется путем измерения и записи параметров характеристик вибрации в одном или двух направлениях: вертикальном и горизонтальном по отношению к оси вращения ротора в нескольких точках по длине ротора для различных состояний роторной системы. Состояния роторной системы выбираются разными: работоспособное, работоспособное с первым видом дефекта, например, изношенная втулка подшипника скольжения, работоспособное со вторым видом дефекта, например, повышенный дисбаланс, работоспособное с двумя видами дефектов и так далее. Данные о работоспособном состоянии с каким-либо дефектом позволяют сформировать правила в искусственной нейронной сети, по которым на основании измеренных характеристик вибрации с реальной роторной системы можно диагностировать тот или иной вид дефекта. Принцип работы и виды дефектов большинства роторных машин схожи, что позволяет использовать данные с разных устройств при обучении, а также в результате получить искусственную нейронную сеть, способную решать задачу диагностики сразу группы разных роторных систем, при этом пропадает необходимость наличия больших баз данных с эталонными данными и необходимость постоянного общения с ними, что значительно увеличивает скорость работы диагностической системы.
Сущность изобретения поясняется чертежом, на котором изображена блок-схема обмена данными при диагностике роторных систем с помощью искусственной нейронной сети.
Вибрационная диагностика роторных систем включает в себя два этапа: обучение и получение результата.
Обучение происходит на группе однотипных роторных систем 1, 2, 3, 4 (количество не ограничено), в которые искусственно внедрены различные виды дефектов, например, износ подшипников скольжения, отсутствие смазочного материала, ослабление элементов крепления, несоосность валов и т.д., причем система n не имеет искусственно внедренных дефектов. Каждая роторная система 1, 2, 3, 4 и n имеет одинаковый набор датчиков 5, например, датчики перемещения, датчики вибрации, датчики температуры, датчики давления, акустические датчики и их одинаковые каналы связи 6 (аналоговые или цифровые) с блоком 7 обработки, обучения и принятия решения, например, микрокомпьютер, микроконтроллер, в котором имеется искусственная нейронная сеть, представленная в виде программного кода.
Реальная роторная система 8, к которой подключен набор датчиков 5, например, датчики перемещения, датчики вибрации, датчики температуры, датчики давления, акустические датчики через их каналы связей 6 (аналоговые или цифровые) соединены с блоком 7 обработки, обучения и принятия решения, который связан с блоком 9 прогноза состояния и отображения информации, например, дисплеем, монитором.
Способ вибрационной диагностики роторных систем работает следующим образом.
Первый этап - обучение. Запускают роторную систему 1, в которую искусственно внедрен дефект - износ подшипников скольжения. С помощью набора датчиков 5 (датчики перемещения, датчики вибрации, датчики температуры, датчики давления, акустические датчики) через каналы связи 6 данные поступают в блок 7 обработки, обучения и принятия решения, где обрабатываются с помощью нейронной сети и сохраняются. Роторную систему 1 останавливают.
Запускают роторную систему 2, в которую искусственно внедрен дефект - отсутствие смазочного материала. С помощью набора датчиков 5 (датчики перемещения, датчики вибрации, датчики температуры, датчики давления, акустические датчики) через каналы связи 6 данные поступают в блок 7 обработки, обучения и принятия решения, где обрабатываются с помощью нейронной сети и сохраняются. Роторную систему 2 останавливают.
Запускают роторную систему 3, в которую искусственно внедрен дефект - ослабление элементов крепления. С помощью набора датчиков 5 (датчики перемещения, датчики вибрации, датчики температуры, датчики давления, акустические датчики) через каналы связи 6 данные поступают в блок 7 обработки, обучения и принятия решения, где обрабатываются с помощью нейронной сети и сохраняются. Роторную систему 3 останавливают.
Запускают роторную систему 4, в которую искусственно внедрен дефект - несоосность валов. С помощью набора датчиков 5 (датчики перемещения, датчики вибрации, датчики температуры, датчики давления, акустические датчики) через каналы связи 6 данные поступают в блок 7 обработки, обучения и принятия решения, где обрабатываются с помощью нейронной сети и сохраняются. Роторную систему 4 останавливают.
Запускают роторную систему n, в которой нет искусственно внедренных дефектов. С помощью набора датчиков 5 (датчики перемещения, датчики вибрации, датчики температуры, датчики давления, акустические датчики) через каналы связи 6 данные поступают в блок 7 обработки, обучения и принятия решения, где обрабатываются с помощью нейронной сети и сохраняются. Роторную систему 4 останавливают. Первый этап - обучение, закончен.
Второй этап - получение результата. Запускают реальную роторную систему 8, в которой в процессе работы могут возникать дефект или группа дефектов. С помощью набора датчиков 5 (датчики перемещения, датчики вибрации, датчики температуры, датчики давления, акустические датчики) через каналы связи 6 данные поступают в блок 7 обработки, обучения и принятия решения, где полученные данные обрабатываются и сравниваются с данными полученными в результате первого этапа - обучения. Результат выводят на блок 9 прогноза состояния и отображения информации. Реальную роторную систему 8 останавливают. Второй этап - получение результата закончен.

Claims (2)

1. Способ вибрационной диагностики роторных систем, включающий измерение параметров работы реальной роторной системы и сравнение получаемых параметров с этими же величинами, замеренными в первоначальном состоянии, при этом данные регистрируют в двух направлениях: вертикальном и горизонтальном по отношению к оси вращения ротора, отличающийся тем, что диагностику проводят в два этапа, на первом из которых проводят предварительное обучение искусственной нейронной сети на записанных сигналах системы мониторинга для работоспособного состояния роторной системы и для каждого случая диагностируемого дефекта, а на втором этапе - получение прогноза состояния реальной роторной системы путем обработки данных, полученных с нее, и сравнения их с данными, полученными на этапе обучения искусственной нейронной сети, с выводом результата на блок отображения информации.
2. Способ по п. 1, отличающийся тем, что полученные данные регистрируют в одном направлении: вертикальном или горизонтальном по отношению к оси вращения ротора.
RU2020131421A 2020-09-23 2020-09-23 Способ вибрационной диагностики роторных систем RU2753151C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020131421A RU2753151C1 (ru) 2020-09-23 2020-09-23 Способ вибрационной диагностики роторных систем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020131421A RU2753151C1 (ru) 2020-09-23 2020-09-23 Способ вибрационной диагностики роторных систем

Publications (1)

Publication Number Publication Date
RU2753151C1 true RU2753151C1 (ru) 2021-08-12

Family

ID=77349128

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020131421A RU2753151C1 (ru) 2020-09-23 2020-09-23 Способ вибрационной диагностики роторных систем

Country Status (1)

Country Link
RU (1) RU2753151C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2783172C1 (ru) * 2021-12-21 2022-11-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Система виброакустической диагностики подшипниковых узлов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2313815C2 (ru) * 2002-09-26 2007-12-27 Сименс Акциенгезелльшафт Устройство и способ для контроля технической установки, содержащей множество систем, в частности установки электростанции
RU2356021C2 (ru) * 2007-05-02 2009-05-20 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Способ вибрационной диагностики роторных систем
RU118745U1 (ru) * 2012-04-04 2012-07-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Устройство для бесконтактной диагностики автоколебаний рабочего колеса турбомашины
CN104634603A (zh) * 2015-03-16 2015-05-20 汪文峰 一种复杂设备早期故障诊断方法
RU2563161C2 (ru) * 2013-07-18 2015-09-20 Федеральное государственное бюджетное учреждение науки Институт конструкторско-технологической информатики Российской академии наук (ИКТИ РАН) Способ и устройство технической диагностки сложного технологического оборудования на основе нейронных сетей

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2313815C2 (ru) * 2002-09-26 2007-12-27 Сименс Акциенгезелльшафт Устройство и способ для контроля технической установки, содержащей множество систем, в частности установки электростанции
RU2356021C2 (ru) * 2007-05-02 2009-05-20 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Способ вибрационной диагностики роторных систем
RU118745U1 (ru) * 2012-04-04 2012-07-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Устройство для бесконтактной диагностики автоколебаний рабочего колеса турбомашины
RU2563161C2 (ru) * 2013-07-18 2015-09-20 Федеральное государственное бюджетное учреждение науки Институт конструкторско-технологической информатики Российской академии наук (ИКТИ РАН) Способ и устройство технической диагностки сложного технологического оборудования на основе нейронных сетей
CN104634603A (zh) * 2015-03-16 2015-05-20 汪文峰 一种复杂设备早期故障诊断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2783172C1 (ru) * 2021-12-21 2022-11-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Система виброакустической диагностики подшипниковых узлов
RU2817311C1 (ru) * 2023-10-30 2024-04-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Устройство для диагностики роторных систем

Similar Documents

Publication Publication Date Title
US4435770A (en) Vibration diagnosing method and apparatus for a rotary machine
Gohari et al. Modelling of shaft unbalance: Modelling a multi discs rotor using K-Nearest Neighbor and Decision Tree Algorithms
CN106022366B (zh) 一种基于近邻证据融合的旋转机械设备故障诊断方法
CN102033984A (zh) 一种基于区间型证据融合的旋转机械设备故障诊断方法
CN113408068A (zh) 一种随机森林分类的机泵故障诊断方法及装置
Pestana-Viana et al. The influence of feature vector on the classification of mechanical faults using neural networks
Harris A Kohonen SOM based, machine health monitoring system which enables diagnosis of faults not seen in the training set
Crupi et al. Neural-network-based system for novel fault detection in rotating machinery
CN111122191A (zh) 一种基于ewma控制的设备安康报警阈值设定方法
Vojtko et al. Examining the effect of alignment of the rotor of the emissions exhaust fan on its operating parameters
JP3108405B2 (ja) 機器の診断方法
Satishkumar et al. Vibration based health assessment of bearings using random forest classifier
RU2753151C1 (ru) Способ вибрационной диагностики роторных систем
CN105675321A (zh) 一种设备性能退化雷达图确定方法
CN110057588B (zh) 基于奇异值与图论特征融合的轴承早期故障检测与诊断方法及系统
Cong et al. Research on the order selection of the autoregressive modelling for rolling bearing diagnosis
Kolar et al. Identification of inability states of rotating machinery subsystems using industrial IoT and convolutional neural network–initial research
Kulagin et al. Automated identification of critical malfunctions of aircraft engines based on modified wavelet transform and deep neural network clustering
Kohlheb et al. Embedded autoencoder-based condition monitoring of rotating machinery
Bachir et al. Application of principal component analysis approach in gas turbine defect diagnosis
KR20020032711A (ko) 자기조직맵 신경망을 이용하여 회전기계의 진동센서위치를선정하고 그 선정위치를 이용하여 회전기계의 진동을진단하는 방법
Klausen Condition monitoring of rolling element bearings during low and variable speed conditions
Kaewkongka et al. Continuous wavelet transform and neural network for condition monitoring of rotodynamic machinery
RU2783172C1 (ru) Система виброакустической диагностики подшипниковых узлов
Bublil et al. Labeling Algorithm for Outer-Race Faults in Bearings Based on Load Signal