RU2750694C1 - Способ получения неорганического индикатора температуры - Google Patents

Способ получения неорганического индикатора температуры Download PDF

Info

Publication number
RU2750694C1
RU2750694C1 RU2020129974A RU2020129974A RU2750694C1 RU 2750694 C1 RU2750694 C1 RU 2750694C1 RU 2020129974 A RU2020129974 A RU 2020129974A RU 2020129974 A RU2020129974 A RU 2020129974A RU 2750694 C1 RU2750694 C1 RU 2750694C1
Authority
RU
Russia
Prior art keywords
cerium
phosphate solution
distilled water
terbium
xerogel
Prior art date
Application number
RU2020129974A
Other languages
English (en)
Inventor
Таисия Олеговна Козлова
Александр Евгеньевич Баранчиков
Антон Леонидович Попов
Ольга Сергеевна Иванова
Карина Вячеславовна Биричевская
Мария Александровна Теплоногова
Владимир Константинович Иванов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)
Priority to RU2020129974A priority Critical patent/RU2750694C1/ru
Application granted granted Critical
Publication of RU2750694C1 publication Critical patent/RU2750694C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/265General methods for obtaining phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7723Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7743Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
    • C09K11/7752Phosphates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Изобретение относится к области неорганической химии и может быть использовано при получении необратимого люминесцентного индикатора температуры. Сначала растворяют диоксид церия и оксид тербия(III,IV) в концентрированной ортофосфорной кислоте. Мольное соотношение Се : Tb при этом составляет 20:1-5:1, а концентрация церия в церийфосфатном растворе - 0,01-0,8 М. К полученному церийфосфатному раствору добавляют дистиллированную воду так, чтобы объемное соотношение церийфосфатный раствор : дистиллированная вода составляло от 1:3 до 1:8. Сформировавшийся гель очищают от избытка ортофосфорной кислоты, высушивают и получают ксерогель аморфного ортофосфата церия(IV), содержащего тербий, например, в виде тонкослойного материала. После отжига при температурах около 700°С полученный продукт обладает зеленой люминесценцией при УФ-облучении и может быть использован в качестве индикатора температуры как сам по себе, так и в составах, содержащих другие компоненты. Изобретение позволяет расширить арсенал технических средств, предназначенных для визуальной регистрации температуры перегрева деталей или оборудования при высоких температурах. 1 з.п. ф-лы, 4 ил., 8 пр.

Description

Изобретение относится к области неорганической химии, а именно к способу получения необратимого индикатора температуры на основе аморфного ортофосфата церия(IV), и может быть использовано для визуального контроля перегрева деталей или оборудования в различных технологических процессах.
Термоиндикаторы являются одним из востребованных средств регистрации температуры. К термоиндикаторам в первую очередь относятся термохимические композиции, изменяющие свой цвет при температуре перехода, материалы, плавящиеся при определенной температуре и люминофоры, яркость или цвет свечения которых зависит от температуры [А.П. Леонов, В.А. Болгова. Вестник евразийской науки, 2014, с. 1-8]. Термоиндикаторы предназначены как для разового использования, если процесс изменения внешних параметров является необратимым, так и многоразового. Сферы применения термоиндикаторов крайне разнообразны: обеспечение безопасности на производстве и в быту, производственный мониторинг температурных режимов работы оборудования; реализация проверки перегрева в период гарантийного срока; проверка температуры авиационных систем, измерение температуры деталей оборудования с затрудненным доступом и т.д. В связи с широким спектром применения востребованы индикаторы с различным рабочим диапазоном измеряемых критических температур, вплоть до 1500°С [Е.А. Коленко. Технология лабораторного эксперимента: Справочник. СПб.: Политехника, 1994, 69]. Например, известен термохромный индикатор перегрева ствола оружия [US 10352641], способного разогреваться до 430°С при высокой скорости стрельбы. Известен порошковый термоиндикатор [RU 2343434], предназначенный для определения температуры нагрева металлов и сплавов, подвергающихся общему или местному нагреву, воспламеняющийся при 350°С. Однако большинство термоиндикаторов, в том числе люминесцентных, содержат органический компонент и работают при температурах, не превышающих 200°С [RU 2290648, RU 2443707, RU 2551373, RU 782366]. Для областей производства, где необходимы индикаторы высоких температур перегрева, целесообразно использовать полностью неорганические композиции. Перспективными соединениями для этого являются люминофоры на основе фосфатов редкоземельных элементов (РЗЭ). В качестве сигнала термоиндикатора на их основе можно использовать температуру, при которой возникают или исчезают люминесцентные свойства.
Известен люминофор на основе смешанного фосфата лантана-церия-тербия состава LaxCeyTb1-x-yPO4, где х находится в диапазоне от 0.4 до 0.6, а х+у больше 0.8, проявляющий люминесцентные свойства свыше 500°С [US 5562889]. В качестве одного из примеров реализации изобретения указан способ получения люминофора, включающий в себя смешение растворов нитратов трехвалентных РЗЭ с раствором фосфата аммония, нагретым до 80°С. Смесь перемешивают в течение 4 ч при рН=2, затем осадок промывают и подвергают отжигу при 700°С в течение 8 ч.
Недостатком способа является длительность процессов перемешивания суспензии и отжига.
Схожий способ представлен в патенте FR2931143. В частности, для получения люминесцентного смешанного фосфата лантана-церия-тербия состава La0.56Ce0.3Tb0.14PO4 готовят раствор смеси нитратов лантана, церия и тербия и добавляют к раствору фосфорной кислоты при 60°С при рН=1.6. После осаждения реакционную среду выдерживают в течение 15 минут при 60°С. Затем осадок промывают водой, сушат на воздухе и прокаливают при 850°С.
Известен способ получения [US 8419974] люминесцентного нанокристаллического редкоземельного фосфата, включающий смешение в водной среде источника фосфат-анионов, по меньшей мере одной водорастворимой соли РЗЭ (La, Lu, Gd) и, по меньшей мере, одной водорастворимой соли активирующего элемента (Pr, Nd, Eu, Се, Tb, Bi или Pb) с последующим отжигом осадка при температурах 300-400°С в течение 1-10 ч.
Недостатком предложенного способа является относительно невысокая температура появления люминесцентных свойств.
Общим недостатком вышеописанных способов получения люминофоров является использование трех и более редкоземельных элементов, что удорожает технологию производства.
Известно, что ортофосфат церия(III) со структурой монацита, допированный различными катионами (например, тербием или марганцем, европием и др.), обладает люминесцентными свойствами [С. Lv, W. Di, Z. Liu, et al. Analyst, 2014, 139(18), 4547-4555; Y. Ding, L.-B. Liang, M. Li et al. Nanoscale Res. Lett., 2011, 6(1), 119; G. Li, K. Chao, H. Peng, et al. J. Phys. Chem. C., 2008, 112(42), 16452-16456]. В ряде работ допированный CePO4 предлагают использовать в качестве индикатора, где в качестве аналитического сигнала будет возникновение или, наоборот, исчезновение люминесцентных свойств. Это явление основано на обратимом переходе Ce(III)/Ce(IV) в зависимости от окружающей атмосферы - является она окислительной или восстановительной. В частности, окисление Се(III) до Ce(IV) служит основным фактором гашения эмиссии Tb в CePO4 : Tb, а восстановление Ce(IV) до Се(III) приводит к возвращению люминесцентных свойств [W. Di, X. Wang, X. Ren. Nanotechnology, 2010, 21(7), 075709; Q. Li and V.W.W. Yam. Angew. Chemie - Int. Ed., 2007, 46(19), 3486-3489]. Однако этот эффект основан на действии атмосферы, а не температуры. В то же время, при температурном воздействии возможен необратимый переход Ce(IV) - Се(III), который происходит, например, при отжиге кислых ортофосфатов церия(IV) при температурах около 700°С [V. Brandel, N. Clavier, and N. Dacheux. J. Solid State Chem., 2005, 178(4), 1054-1063]
Известен способ получения аморфного ксерогеля на основе кислого ортофосфата церия(IV) [Т.О. Shekunova, А.Е. Baranchikov, O.S. Ivanova, et al. J. Non-Cryst. Solids, 2016, 447, 183-189]. Сначала растворяют диоксид церия в концентрированной ортофосфорной кислоте при 100°С и получают церийфосфатный раствор с [Се] = 0.1 М. После остывания к нему добавляют дистиллированную воду в объемном соотношении «церийфосфатный раствор» : «дистиллированная вода» = 1:7. Сформировавшийся гель промывают от избытка ортофосфорной кислоты и высушивают. При отжиге продукта около 700°С происходит частичное восстановление Ce(IV) до Се(III), сопровождающееся образованием монацита.
У получаемого церийфосфатного ксерогеля при температуре перехода Ce(IV) - Се(III) отсутствуют люминесцентные свойства, поскольку в способе не предусмотрена стадия допирования.
Известен способ получения неорганического индикатора температуры [JP 2006329666], принятый за прототип. В изобретении заявлен материал, содержащий неорганический пигмент с неорганическим связующим, изменяющий цвет с белого на желтый при повышении температуры. В качестве неорганического пигмента предложено использовать оксид титана (рутил) и/или оксид церия, в роли неорганического связующего - стекловолокно. В частном примере реализации способа указывается, что смешивают оксид титана со стекловолокном и отжигают при 800°C с целью получения неорганического термохромного композита.
В качестве недостатка прототипа следует отметить необходимость использования высоких температур отжига на стадии приготовления индикатора. Также в качестве недостатка можно отметить то, что, несмотря на высокую термическую стабильность, получаемый материал преимущественно меняет окраску в диапазоне температур до 300°С.
Изобретение направлено на расширение количества возможных технических средств, предназначенных для визуальной регистрации температуры.
Технической задачей изобретения является разработка способа получения неорганического индикатора, с помощью которого можно визуально детектировать области перегрева деталей или оборудования при высоких температурах.
Технический результат достигается тем, что предложен способ получения неорганического индикатора температуры, отличающийся тем, что растворяют диоксид церия и оксид тербия(III,IV) в концентрированной ортофосфорной кислоте, к полученному церийфосфатному раствору добавляют дистиллированную воду, сформировавшийся гель очищают от избытка ортофосфорной кислоты, высушивают и получают ксерогель, при этом концентрация церия в церийфосфатном растворе составляет 0.01-0.8 М, объемное соотношение «церийфосфатный раствор» : «дистиллированная вода» варьируют от 1:3 до 1:8, мольное соотношение Се : Tb = 20:1-5:1.
Целесообразно, что ксерогель может быть получен в виде тонкослойного материала.
Диапазон концентраций церийфосфатного раствора выбран из тех соображений, что при концентрации менее 0.01 М гель не формируется, а концентрация более 0.8 М является максимально возможной концентрацией церийфосфатного раствора.
Объемное соотношение «церийфосфатный раствор» : «дистиллированная вода» варьируют от 1:3 до 1:8, поскольку в этих пределах при указанных концентрациях церийфосфатного раствора формируется гель.
Диапазон мольных соотношений Се : Tb = 20:1-5:1 выбран из тех соображений, что при меньшем содержании тербия продукт после отжига обладает слабой люминесценцией, а использование больших количеств тербия нецелесообразно, поскольку это не влияет на технический результат.
При необходимости ксерогель может быть высушен не только в виде порошка, но и получен в виде тонкослойного материала благодаря волокнистой микроструктуре кислого ортофосфата церия(IV), обеспечивающей материалу механическую прочность.
Сущность изобретения заключается в том, что полученный аморфный ксерогель на основе кислого ортофосфата церия(IV), допированный тербием, при отжиге на воздухе около 700°С начинает проявлять люминесцентные свойства - светиться зеленым цветом под воздействием УФ-облучения - вследствие частичного восстановления Се(IV) до Се(III).
Изобретение проиллюстрировано следующими фигурами.
Фиг. 1. Результаты термогравиметрического и дифференциально-термического анализа церийфосфатного ксерогеля, полученного а) по прототипу, б) по примеру 1.
Фиг. 2. Дифрактограмма церийфосфатного ксерогеля, содержащего тербий а) до отжига, б) после отжига при 700°С, все основные пики относятся к пирофосфату церия CeP2O7 (PDF-2, №00-016-0584). Звездочкой отмечены пики, относящиеся к монациту CePO4 (PDF-2, №00-032-0199).
Фиг. 3. Внешний вид церийфосфатного ксерогеля с тербием, полученного в виде тонкослойного материала по примеру 2 а) до отжига, б) после отжига при 700°С под действием УФ-облучения (λ=254 нм).
Фиг. 4. Данные растровой электронной микроскопии для церийфосфатного ксерогеля с тербием, полученного по примеру 2 а) до отжига, б) после отжига при 700°С.
Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.
Пример 1.
Растворяли нанокристаллический диоксид церия вместе с Tb4O7 (мольное отношение Се : Tb составляло 10:1) в концентрированной ортофосфорной кислоте при 100°С. Концентрация церия в церийфосфатном растворе составляла 0.1 М. К полученному раствору добавляли дистиллированную воду в объемном отношении 1:7. Полученный гель очищали диализом от избытка ортофосфорной кислоты и высушивали при 50°С в течение суток. Результаты термогравиметрического и дифференциально-термического анализа для полученного ксерогеля совпадают с результатами для ксерогеля, синтезированного по прототипу, что показано на Фиг. 1. Дифрактограмма продукта представлена на Фиг. 2а. После отжига при 700°С в течение 15 минут он люминесцировал зеленым светом при УФ-облучении с длиной волны λ=254 нм, согласно данным рентгенофазового анализа в продукте отжига присутствовал трехвалентный церий в виде СеРО4 что показано на Фиг. 2б.
Пример 2.
По примеру 1, отличающийся тем, что гель промывали на фильтре Шотта и высушивали под прессом. Гель высыхал в виде тонкослойного материала, что продемонстрировано на Фиг. 3а. После отжига при 700°С в течение 15 минут продукт люминесцировал зеленым светом при УФ-облучении с длиной волны λ=254 нм, что показано на Фиг. 3б. В результате отжига материал немного деформировался, но не разрушился. Механическая прочность связана со стабильностью волокнистой микроструктуры ксерогеля, что подтверждается данными растровой электронной микроскопии, представленными на Фиг. 4.
Пример 3.
По примеру 1, отличающийся тем, что объемное соотношение «церийфосфатный раствор» : «дистиллированная вода» равнялось 1:3. Полученный продукт проявлял люминесцентные свойства при температуре отжига свыше 700°С.
Пример 4.
По примеру 1, отличающийся тем, что объемное соотношение «церийфосфатный раствор» : «дистиллированная вода» равнялось 1:8. Полученный продукт проявлял люминесцентные свойства при температуре отжига свыше 700°С.
Пример 5.
По примеру 1, отличающийся тем, что концентрация церийфосфатного раствора равнялась 0.01 М. Полученный продукт проявлял люминесцентные свойства при температуре отжига свыше 700°С.
Пример 6.
По примеру 1, отличающийся тем, что концентрация церийфосфатного раствора равнялась 0.8 М. Полученный продукт проявлял люминесцентные свойства при температуре отжига свыше 700°С.
Пример 7.
По примеру 1, отличающийся тем, что мольное отношение Се : Тb составляло 20:1. Полученный продукт проявлял люминесцентные свойства при температуре отжига свыше 700°С.
Пример 8.
По примеру 1, отличающийся тем, что мольное отношение Се : Тb составляло 5:1. Полученный продукт проявлял люминесцентные свойства при температуре отжига свыше 700°С.
Предложенный способ позволяет получать термоиндикатор на основе аморфного ортофосфата церия(IV), содержащего тербий, который после нагревания до температур выше 700°С приобретает свойства люминофора, характеризующегося зеленой люминесценцией при Уф-облучении, и может быть использован как сам по себе, так и в составе более сложных объектов для визуального контроля областей перегрева.

Claims (2)

1. Способ получения неорганического индикатора температуры, отличающийся тем, что растворяют диоксид церия и оксид тербия(III,IV) в концентрированной ортофосфорной кислоте, к полученному церийфосфатному раствору добавляют дистиллированную воду, сформировавшийся гель очищают от избытка ортофосфорной кислоты, высушивают и получают ксерогель, при этом концентрация церия в церийфосфатном растворе составляет 0,01-0,8 М, объемное соотношение церийфосфатный раствор : дистиллированная вода варьируют от 1:3 до 1:8, мольное соотношение Се : Tb = 20:1-5:1.
2. Способ по п. 1, отличающийся тем, что ксерогель получают в виде тонкослойного материала.
RU2020129974A 2020-09-11 2020-09-11 Способ получения неорганического индикатора температуры RU2750694C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020129974A RU2750694C1 (ru) 2020-09-11 2020-09-11 Способ получения неорганического индикатора температуры

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020129974A RU2750694C1 (ru) 2020-09-11 2020-09-11 Способ получения неорганического индикатора температуры

Publications (1)

Publication Number Publication Date
RU2750694C1 true RU2750694C1 (ru) 2021-07-01

Family

ID=76820120

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020129974A RU2750694C1 (ru) 2020-09-11 2020-09-11 Способ получения неорганического индикатора температуры

Country Status (1)

Country Link
RU (1) RU2750694C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791913C1 (ru) * 2022-03-29 2023-03-14 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения керамических композитов на основе ортофосфата лантана

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562889A (en) * 1991-02-04 1996-10-08 Rhone-Poulenc Chimie Cerium/lanthanum/terbium mixed phosphates
JP2006329666A (ja) * 2005-05-23 2006-12-07 Narumi China Corp 温度表示体
US20070131906A1 (en) * 2003-09-18 2007-06-14 Jean-Pierre Boilot Rare-earth phosphate colloidal dispersion, method for the production thereof and a transparent luminescent material obtainable from said dispersion
RU2343434C2 (ru) * 2006-10-04 2009-01-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Алтайский государственный аграрный университет" Состав для термоиндикатора
FR2931143A1 (fr) * 2008-05-15 2009-11-20 Rhodia Operations Sas Phosphate de lanthane et d'au moins une terre rare choisie parmi le cerium et le terbium sous forme d'une suspension, procede de preparation et utilisation comme luminophore
US20100148658A1 (en) * 2008-12-11 2010-06-17 General Electric Company Methods for preparation of nanocrystalline rare earth phosphates for lighting applications
CN110484255A (zh) * 2019-06-05 2019-11-22 杭州电子科技大学 一种能够用于温度测量的荧光材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562889A (en) * 1991-02-04 1996-10-08 Rhone-Poulenc Chimie Cerium/lanthanum/terbium mixed phosphates
US20070131906A1 (en) * 2003-09-18 2007-06-14 Jean-Pierre Boilot Rare-earth phosphate colloidal dispersion, method for the production thereof and a transparent luminescent material obtainable from said dispersion
JP2006329666A (ja) * 2005-05-23 2006-12-07 Narumi China Corp 温度表示体
RU2343434C2 (ru) * 2006-10-04 2009-01-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Алтайский государственный аграрный университет" Состав для термоиндикатора
FR2931143A1 (fr) * 2008-05-15 2009-11-20 Rhodia Operations Sas Phosphate de lanthane et d'au moins une terre rare choisie parmi le cerium et le terbium sous forme d'une suspension, procede de preparation et utilisation comme luminophore
US20100148658A1 (en) * 2008-12-11 2010-06-17 General Electric Company Methods for preparation of nanocrystalline rare earth phosphates for lighting applications
CN110484255A (zh) * 2019-06-05 2019-11-22 杭州电子科技大学 一种能够用于温度测量的荧光材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K. RAJESH et al, High-Surface-Area Nanocrystalline Cerium Phosphate through Aqueous Sol-Gel Route, Chem. Mater., 2004, v. 16, p.p. 2700-2705. *
K. RAJESH et al, High-Surface-Area Nanocrystalline Cerium Phosphate through Aqueous Sol-Gel Route, Chem. Mater., 2004, v. 16, p.p. 2700-2705. T.O.SHEKUNOVA et al, Cerous Phosphate gels: Synthesis, thermal decomposition and hydrothermal crystallization paths, J. of Non-Crystalline Solids, 2016, v. 447, p.p. 183-189. *
T.O.SHEKUNOVA et al, Cerous Phosphate gels: Synthesis, thermal decomposition and hydrothermal crystallization paths, J. of Non-Crystalline Solids, 2016, v. 447, p.p. 183-189. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791913C1 (ru) * 2022-03-29 2023-03-14 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения керамических композитов на основе ортофосфата лантана

Similar Documents

Publication Publication Date Title
Kumar et al. Synthesis, characterization and studies of radiative properties on Eu3+-doped ZnAl2O4
Salek et al. Optical properties versus temperature of Cr-doped γ-and α-Al2O3: Irreversible thermal sensors application
Batista et al. Effect of the vanadium (V) concentration on the spectroscopic properties of nanosized europium-doped yttrium phosphates
JPH04338105A (ja) セリウムランタンテルビウム混合燐酸塩及びその製造方法
Golyeva et al. Effect of synthesis conditions on structural, morphological and luminescence properties of MgAl2O4: Eu3+ nanopowders
Yuan et al. Fluorescence intensity ratio optical thermometer YNbO4: Pr3+, Tb3+ based on intervalence charge transfer
Gupta et al. Europium Luminescence as a Structural Probe: Structure-Dependent Changes in Eu 3+-Substituted Th (C 2 O 4) 2· xH 2 O (x= 6, 2, and 0).
Thakur et al. Synthesis and optical properties of GdVO4: Eu3+ phosphor
Stefańska et al. Temperature sensitivity modulation through changing the vanadium concentration in a La 2 MgTiO 6: V 5+, Cr 3+ double perovskite optical thermometer
Xu et al. Double perovskite structure CaLaMgTaO6: Bi3+, Eu3+ co-doped phosphors for optical temperature measurement
Jeon et al. Eu3+ ions co-doped CLPO: Dy3+ single phase white-light emitting phosphors for near UV-based white LEDs
Kumar et al. Structural and photoluminescence properties of thermally stable Eu3+ activated CaWO4 nanophosphor via Li+ incorporation
Liu et al. An optical thermometer with high sensitivity and superior signal discriminability based on dual-emitting Ce3+/Eu2+ co-doped La5Si2BO13 thermochromic phosphor
Durugkar et al. Novel photoluminescence properties of Eu3+ doped chlorapatite phosphor synthesized via sol-gel method
Santiago et al. Fast and simultaneous doping of Sr0. 9− x− y− zCa0. 1In2O4:(xEu3+, yTm3+, zTb3+) superstructure by ultrasonic spray pyrolysis
Zhu et al. MgGa2O4: Mn2+, Mn4+: A dual-emitting phosphors with unique optical temperature sensing
RU2750694C1 (ru) Способ получения неорганического индикатора температуры
Kumari et al. Structural and photoluminescence properties of Sm3+ ions doped strontium yttrium tungstate phosphors for reddish-orange photonic device applications
Elakkiya et al. Bismuth and vanadium-substituted yttrium phosphates for cool coating applications
Rajyalakshmi et al. Synthesis and investigations for white LED material: VO2+ doped Calcium Cadmium phosphate hydrate nanophosphor
Hernández et al. Photoluminescence behavior of YPO4: Tb3+ crystallized in monoclinic, hexagonal or tetragonal phase obtained by hydrothermal process
KR100840053B1 (ko) 희토류 인산염의 콜로이드성 분산액, 그의 제조 방법 및상기 분산액으로부터 수득할 수 있는 투명한 발광 물질
Sahu et al. Dopant Concentration induced optical changes in Ba1− xEuxMoO4: A green and facile approach towards tunable photoluminescent material
Onoda et al. Synthesis and pigmental properties of nickel phosphates by the substitution with tetravalent cerium cation
CN103911153A (zh) 一种上转换发射荧光粉前驱体及其制备方法