RU2750366C1 - Полупроводниковый фотоэлектрический преобразователь - Google Patents
Полупроводниковый фотоэлектрический преобразователь Download PDFInfo
- Publication number
- RU2750366C1 RU2750366C1 RU2020134852A RU2020134852A RU2750366C1 RU 2750366 C1 RU2750366 C1 RU 2750366C1 RU 2020134852 A RU2020134852 A RU 2020134852A RU 2020134852 A RU2020134852 A RU 2020134852A RU 2750366 C1 RU2750366 C1 RU 2750366C1
- Authority
- RU
- Russia
- Prior art keywords
- nanoparticles
- photoluminescence
- light
- solar cell
- wavelength
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 11
- 239000002105 nanoparticle Substances 0.000 claims abstract description 46
- 238000005424 photoluminescence Methods 0.000 claims abstract description 19
- 230000003595 spectral effect Effects 0.000 claims abstract description 16
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 9
- 230000004044 response Effects 0.000 claims abstract description 9
- 238000010521 absorption reaction Methods 0.000 claims abstract description 6
- 238000000103 photoluminescence spectrum Methods 0.000 claims abstract description 6
- 239000002800 charge carrier Substances 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 12
- 230000005855 radiation Effects 0.000 abstract description 12
- 238000013461 design Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000010248 power generation Methods 0.000 abstract 1
- 238000001228 spectrum Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 239000005543 nano-size silicon particle Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 230000005611 electricity Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 206010047289 Ventricular extrasystoles Diseases 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/055—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Изобретение относится к области прямого преобразования света в электрическую энергию. Солнечный элемент представляет собой многослойную структуру для преобразования света и слой с нанесенными наночастицами на, или внутри, или под слоем просветляющего покрытия, обладающими свойствами фотолюминесценции под действием УФ излучения. Поскольку фотолюминесценция происходит в области видимого света с меньшей энергией квантов, то поток тепла внутрь солнечного элемента сокращается. Для сохранения или улучшения эффективности преобразования света наночастицы должны обладать квантовой эффективностью фотолюминесценции К ≥ 1, где К определяется по предложенной расчетной формуле, связывающей край поглощения УФ диапазона наночастицами; длину волны спектра фотолюминесценции на полуширине пика фотолюминесценции, и спектральный отклик полупроводникового фотоэлектрического преобразователя на длине волны света λ. Конструкция солнечного элемента согласно изобретению обеспечивает увеличение выработки электроэнергии солнечным элементом за счет снижения рабочей температуры элемента. 9 ил.
Description
Изобретение относится к области прямого преобразования света в электрическую энергию и описывает конструкцию солнечного элемента, обеспечивающую увеличение выработки электроэнергии солнечным элементом при повышении его температуры.
Солнечная фотоэнергетика является одной из наиболее быстрорастущих отраслей мировой экономики, среднегодовые темпы роста которой оцениваются в 20%. И поскольку стоимость генерируемого фотоэлектрическими модулями электричества пока еще остается достаточно высокой (установленная мощность ~$1/Вт, стоимость электроэнергии 0,07 $1/Вт), способы ее удешевления за счет увеличения эффективности преобразования солнечного излучения в электричество и увеличения произведенной электроэнергии являются весьма актуальными задачами.
Известно, что электромагнитный спектр солнечного света охватывает широкий диапазон длин волн 0,29-2,5 мкм [Даффи Дж. А. Тепловые процессы с использованием солнечной энергии / Дж. А. Даффи, У.А. Бекман. М.: Мир, 1977, 420 с.], включая гамма-лучи, ультрафиолетовые (УФ) лучи, видимое и инфракрасное излучение, радиоволны, микроволны и др. Видимый спектр солнечного излучения - это лишь крошечный участок полного электромагнитного спектра, охватывающий длины волн от 380 нм до 760 нм [С. Зи, Физика полупроводниковых приборов, т. 2., М., «Мир», 1984, стр. 391..
Любой материал имеет свою химическую природу и работа выхода электрона в каждом полупроводнике разная. Т.е. для каждого материала фотоэлектрический эффект может наступать только при определенной частоте падающего света. Если энергия кванта меньше ширины запрещенной зоны для данного материала, то фотоэффект не возникает, какой бы большой интенсивности не был световой поток. Так, например, для кремниевого солнечного элемента диапазон чувствительности по длине волны падающего света составляет от 340 до 1150 нм, а теоретическая эффективность - 31%.
Такая не высокая эффективность преобразования частично связана с тем, что ультрафиолетовое излучение с энергией, превышающей более чем в 2 раза ширину запрещенной зоны материала, взаимодействует с поверхностью таким образом, что вся энергия свыше ширины запрещенной зоны рассеивается на фононах, переходя в тепловую энергию. Более того, поскольку поглощение УФ части спектра происходит в непосредственной близости от поверхности, часть генерированных носителей заряда рекомбинирует на поверхностных состояниях и не дает вклад в электрический ток. В результате такого взаимодействия происходит нагрев материала и снижение его электрических характеристик.
В природе не существует материала, который смог бы одинаково эффективно преобразовывать весь диапазон спектра солнечного электромагнитного излучения в электрическую энергию.
Одним из способов решения проблемы эффективного преобразования электромагнитного спектра солнечного излучения в электрическую энергию является конструкция фотоэлектрического модуля на основе тонкопленочных ФЭП, представляющих собой многослойную структуру из различных материалов, каждый слой которой реагирует на определенный частотный диапазон, но в то же время пропускает все остальные частоты без значимого ослабления к нижележащему слою. Так, например, верхний слой такого материала может аккумулировать свет из синей части спектра, позволяя красному свету проходить к тому слою, который более эффективен именно в этой области спектра [Zhang М. et al. Improvement on the interface properties of p-GaAs/n-InP heterojunction for wafer bonded four-junction solar cells//Journal of materials science & technology. - 2019. - Т. 35. - №. 3. - C. 330-333].
Такие ФЭП теоретически могут иметь КПД преобразования солнечной энергии в электрическую свыше 60%.
К недостаткам такой конструкции фотоэлектрического модуля следует отнести высокую стоимость ФЭП на основе многослойной структуры, технология изготовления которых основывается на использовании дорогостоящих процессов прецизионного вакуумного напыления или молекулярной эпитаксии твердых растворов соединений А2В6 и А3В5.
Известна также конструкция солнечного элемента с нанесенной на его поверхность пленкой люминофора для перевода энергии из УФ спектра в видимую область [Zhang М. et al. Solar cell performance improvement via photoluminescence conversion of Si nanoparticles//Chinese Optics Letters. - 2012. - T. 10. - №. 6. - C. 063101].
Однако такая конструкция обладает рядом существенных недостатков и никогда не использовалась на практике, потому что практически все люминофоры обладают низким коэффициентом преобразования, а нанесение пленки люминофора сильно снижает эффективность солнечных элементов, поскольку в подавляющем большинстве случаев люминофоры обладают большим коэффициентом поглощения в области длинноволновой части спектра, начиная от видимой его части.
Известно, что наночастицы многих материалов обладают свойством фотолюминесценции. Известны также попытки применить наночастицы кремния для улучшения характеристик солнечных элементов [Stupca М, Alsalhi, М., Saud, Т. Al, Almuhanna, A. and Nayfeh, М.Н. Silicon Nanoparticles Enhance Performance of Solar Cells, Appl. Phys. Lett. 91, 063107 (2007)]. Однако влияние таких частиц на характеристики элементов либо отсутствовало, либо было настолько мало, что не имело практического значения.
Наиболее близким по технической сущности является конструкция солнечного элемента, включающая барьерный слой в виде р-n перехода, слой кремниевых наночастиц, оптически и/или электрически связанных с солнечным элементом и верхнее просветляющее покрытие (US 9263600 В2, опубл. 16.02.2016].
Недостатком данной конструкции (Фиг. 2) является использование кремниевых наночастиц, которые при нанесении просветляющего покрытия могут агломерировать и снижать свою эффективность преобразования, а также взаимодействовать с материалом кремниевой подложки, теряя свойства присущие наночастицам. Кроме того, наличие верхнего слоя антиотражающего покрытия снижает поток УФ излучения, достигающего наночастиц негативно отражаясь на эффективности преобразования.
Поскольку кремниевые наночастицы поглощают широкий спектр излучения, а люминесцируют только под воздействием УФ части спектра, будет происходить генерация определенного количества электронно-дырочных пар в самих наночастицах. Данные носители будут рекомбинировать на границе наночастица/кремниевый солнечный элемент и суммарный фотоэффект на кремниевом солнечном элементе будет меньше, чем в отсутствии наночастиц.
Техническим результатом изобретения является увеличение эффективности преобразования энергии светового излучения в электроэнергию в рабочих условиях, когда температура солнечного элемента повышается и эффективность преобразования падает.
Технический результат достигается за счет того, что в полупроводниковом фотоэлектрическом преобразователе, содержащем барьерный слой для разделения носителей заряда в виде p-n перехода или гетероперехода, просветляющее покрытие, слой наночастиц и металлизированные контакты, где наночастицы, нанесенные на, или внутри, или под слоем просветляющего покрытия, обладают возможностью фотолюминесценции под воздействием света УФ диапазона с длиной волны в диапазоне оптимальной чувствительности фотоэлектрического преобразователя и квантовой эффективностью фотолюминесценции К не менее 1, где К определяется по формуле:
λЕА - длина волны света на краю поглощения УФ диапазона наночастицами,
λр1, λр2 - длина волны спектра фотолюминесценции на полуширине пика фотолюминесценции,
SR(λ) - спектральный отклик полупроводникового фотоэлектрического преобразователя на длине волны света λ.
Изобретение поясняется чертежом, где показаны: Фиг. 1 - типичные спектральные зависимости солнечных элементов, Фиг. 2 - слоевая структура солнечного элемента, Фиг. 3 - спектральная интенсивность солнечного излучения на поверхности Земли, Фиг. 4 - спектр поглощения света наночастицами оксида кремния, нанесенных на стекло; Фиг. 5 - спектр фотолюминесценции наночастиц оксида кремния, нанесенных на стекло; Фиг. 6 - типичная спектральная чувствительность солнечных элементов, Фиг. 7 - относительный спектральный отклик типичного кремниевого солнечного элемента, Фиг. 8 - экспериментальные результаты измерения температуры солнечных элементов по времени выдержки под искусственным источником света, Фиг. 9 - экспериментальные данные измерения температуры солнечных элементов по времени выдержки под естественным солнечным светом.
На чертеже изображены: фиг. 1 - внутренняя квантовая эффективность 1, внешняя квантовая эффективность 2, отражение 3 от поверхности; фиг. 2 - антиотражающее покрытие 4, слой 5 наночастиц кремния, полупроводник 6 n-типа, полупроводник 7 p-типа, фотолюминесцентный слой 8 наночастиц; фиг. 3 - спектральная интенсивность 9 - не поглощается (19%), спектральная интенсивность 10 - уходит на нагрев (33%), спектральная интенсивность 11 - частично поглощается (15%), спектральная интенсивность 12 - поглощается (33%); фиг. 6 - элемент 13 SunPower, стандартный солнечный элемент 14, солнечный спектр 15 ASTM, G173-03; фиг. 8 - температура 16 и 17 солнечных элементов без нанесенных наночастиц, температура 18 и 19 солнечных элементов с нанесенными наночастицами; фиг. 9 - температура 20 солнечного элемента без нанесенных наночастиц, температура 21 солнечного элемента с нанесенными наночастицами.
При падении кванта УФ излучения на поверхность наночастицы происходит захват кванта электронной структурой наночастицы с последующей излучательной рекомбинацией на длине волны больше длины волны кванта УФ излучения (Фиг. 3). Оставшаяся часть энергии через ряд преобразований уходит на нагрев решетки.
Таким образом количество теплоты (Q1), поступающей в решетку кристалла под действием коротковолнового кванта (hv1) можно выразить формулой
Q1=E(hv1)- Eg*EQE(hv1),
где E(hv1) - энергия падающего кванта УФ излучения, Eg - ширина запрещенной зоны полупроводника, a EQE(hv1) - значение внутреннего квантового выхода на длине волны падающего кванта.
Аналогично, теплота, поступающая от того же кванта, но при наличии фотолюминесценции, Q2 записывается как
Q2=E(hv1)- Eg*EQE(hv2),
где E(hv2) - энергия кванта переизлученного света, EQE(hv2) - значение внутреннего квантового выхода на длине волны переизлученного кванта.
Следовательно, разница в потоке теплоты составляет
Для всех солнечных элементов кривая EQE имеет вид, аналогичный представленному на Фиг. 1.
Поскольку фотолюминесценция происходит только под действием квантов УФ света (λ<380 нм) в области видимого света (λ>380 нм), то значение выражения (2) положительное, что означает поступление меньшего количества тепла в солнечный элемент при наличии фотолюминесценции.
Если принять во внимание еще, что переизлученные кванты света равномерно распределены в пространстве (4π), то в сторону солнечного элемента направляется только половина из них. Это дополнительно снижает тепловой поток на величину, равную 1/2Е(hv2). Возможно, что какая-то часть переизлученных квантов, уходящих в сторону от солнечного элемента вследствие отражения от стекла, обычно покрывающего модули солнечных элементов, вернется обратно в сторону элемента, однако этот эффект в настоящей интерпретации не рассматривается.
В любом случае энергия, поступающая в солнечный элемент, будет меньше исходной и степень разогрева решетки при одинаковых условиях теплоотвода будет меньше.
Однако, поскольку число квантов, поступающих в солнечный элемент, также становится меньше, для того чтобы не уменьшить фототок, необходимо, чтобы число генерируемых переизлученным светом электронно-дырочных пар было не меньше, чем в случае отсутствия переизлучающих наночастиц. Это накладывает определенные ограничения на коэффициент квантовой эффективности фотолюминесценции К, т.е. на то, сколько переизлученных квантов приходится на 100 квантов фотонов, вызывающих фотолюминесценцию. Это значение должно быть равно или более 1. В противном случае будет происходить снижение фототока солнечного элемента.
Определить значения коэффициента К можно исходя из спектра поглощения наночастиц, спектра фотолюминесценции наночастиц и кривой спектрального отклика солнечного элемента.
Чтобы число генерируемых носителей заряда не уменьшилось в случае фотолюминесценции на наночастицах, необходимо, чтобы спектральный отклик от переизлученных квантов света был бы не меньше спектрального отклика от вызывающих фотолюминесценцию квантов УФ света.
Если сопоставить спектр поглощения наночастиц, полуширина пика которого приходится на диапазон длин волн 340-380 нм (Фиг. 4), спектр фотолюминесценции этих же частиц, где полуширина приходится на диапазон длин волн 400-480 нм (Фиг. 5), типичный спектральный отклик кремниевого солнечного элемента, который получается из кривой EQR путем деления EQR(λ) на E(hv)=hc/λ (Фиг. 6), и относительный спектральный отклик типичного кремниевого солнечного элемента (Фиг. 7), то значение К составляет 1,2.
Экспериментальное подтверждение полученного эффекта.
Для подтверждения положительного эффекта был взяты кремниевые солнечные элементы, созданные по диффузионной технологии с КПД 21-22%.
Элемент был разделен на 2 или более частей и проведены измерения вольт-амперных характеристик (ВАХ) всех полученных частей. Затем на одну часть элементов были нанесены наночастицы, а вторая оставалась как контрольная без нанесения наночастиц. Затем к тыльной стороне солнечного элемента были приклеены датчики температуры и припаяны контактные шины для измерения холостого хода от солнечных элементов в процессе выдержки под солнечным светом. В качестве наночастиц были использованы наночастицы кремния, оксида титана и оксида кремния.
Части солнечного элемента с нанесенными наночастицами и без них одновременно освещались на естественном солнечном свете.
На Фиг. 8 приведен типичный график изменения температуры солнечных элементов со временем при наличии наночастиц и в отсутствии наночастиц при освещении искусственным светом. Как видно из экспериментальных данных, солнечные элементы с нанесенными наночастицами имели температуру на 2-3°С ниже, чем такие же солнечные элементы без нанесенных наночастиц.
Проведение натурных испытаний под естественным солнечным светом подтвердило температурное поведение солнечных элементов с наличием и отсутствием наночастиц на поверхности (Фиг. 9). Колебания температуры соответствовали изменению освещенности солнечных элементов от набегающих облаков, однако в любом случае температура солнечного элемента с нанесенными наночастицами оставалась ниже температуры образца сравнения, а напряжение холостого хода выше на аналогичную величину в соответствии с температурным коэффициентом для данного типа солнечного элемента.
Дополнительные испытания проводились в лабораторных условиях. Исследование изменения температуры солнечных элементов со временем при наличии наночастиц и в отсутствии наночастиц при освещении галогенной лампой. Из экспериментальных данных солнечные элементы с нанесенными наночастицами имели температуру на 2-3°С ниже, чем такие же солнечные элементы без нанесенных наночастиц.
Повторно были сняты ВАХ частей солнечного элемента с нанесенными наночастицами. При использовании наночастиц оксидов кремния и титана изменений в ВАХ не было обнаружено. Незначительное снижение тока короткого замыкания солнечных элементов было обнаружено при использовании наночастиц кремния, что хорошо согласуется с кривой поглощения наночастицами кремния, нанесенными на стекло.
Claims (5)
- Полупроводниковый фотоэлектрический преобразователь, содержащий барьерный слой для разделения носителей заряда в виде p-n перехода или гетероперехода, просветляющее покрытие, слой наночастиц и металлизированные контакты, где наночастицы, нанесенные на, или внутри, или под слоем просветляющего покрытия, обладают возможностью фотолюминесценции под воздействием света УФ диапазона с длиной волны в диапазоне оптимальной чувствительности фотоэлектрического преобразователя и квантовой эффективностью фотолюминесценции К не менее 1, где К определяется по формуле:
- λЕА - длина волны света на краю поглощения УФ диапазона наночастицами,
- λp1 λp2 - длина волны спектра фотолюминесценции на полуширине пика фотолюминесценции,
- SR(λ) - спектральный отклик полупроводникового фотоэлектрического преобразователя на длине волны света λ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020134852A RU2750366C1 (ru) | 2020-10-23 | 2020-10-23 | Полупроводниковый фотоэлектрический преобразователь |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020134852A RU2750366C1 (ru) | 2020-10-23 | 2020-10-23 | Полупроводниковый фотоэлектрический преобразователь |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2750366C1 true RU2750366C1 (ru) | 2021-06-28 |
Family
ID=76820183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020134852A RU2750366C1 (ru) | 2020-10-23 | 2020-10-23 | Полупроводниковый фотоэлектрический преобразователь |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2750366C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2456710C1 (ru) * | 2011-01-18 | 2012-07-20 | Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) | Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения |
DE102011012482A1 (de) * | 2011-02-25 | 2012-08-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Photovoltaische Solarzelle |
RU2515182C2 (ru) * | 2008-12-12 | 2014-05-10 | Конинклейке Филипс Электроникс Н.В. | Люминесцентный фотогальванический генератор и волновод для использования в фотогальваническом генераторе |
US9263600B2 (en) * | 2005-11-10 | 2016-02-16 | The Board Of Trustees Of The University Of Illinois | Silicon nanoparticle photovoltaic devices |
RU175868U1 (ru) * | 2017-07-17 | 2017-12-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" | Солнечный элемент с композитным PMMA+Ag просветляющим покрытием |
CN110611008A (zh) * | 2019-08-19 | 2019-12-24 | 武汉理工大学 | 一种太阳能电池的增透涂层的制备方法 |
-
2020
- 2020-10-23 RU RU2020134852A patent/RU2750366C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9263600B2 (en) * | 2005-11-10 | 2016-02-16 | The Board Of Trustees Of The University Of Illinois | Silicon nanoparticle photovoltaic devices |
RU2515182C2 (ru) * | 2008-12-12 | 2014-05-10 | Конинклейке Филипс Электроникс Н.В. | Люминесцентный фотогальванический генератор и волновод для использования в фотогальваническом генераторе |
RU2456710C1 (ru) * | 2011-01-18 | 2012-07-20 | Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) | Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения |
DE102011012482A1 (de) * | 2011-02-25 | 2012-08-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Photovoltaische Solarzelle |
RU175868U1 (ru) * | 2017-07-17 | 2017-12-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" | Солнечный элемент с композитным PMMA+Ag просветляющим покрытием |
CN110611008A (zh) * | 2019-08-19 | 2019-12-24 | 武汉理工大学 | 一种太阳能电池的增透涂层的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6689456B2 (ja) | 透明トンネル接合を有する光起電力デバイス | |
Xu et al. | Efficient perovskite photovoltaic‐thermoelectric hybrid device | |
US8816191B2 (en) | High efficiency photovoltaic cells and manufacturing thereof | |
US20130206211A1 (en) | Phosphors-Based Solar Wavelength-Converters | |
US10014421B2 (en) | High efficiency photovoltaic cells with self concentrating effect | |
Jeong et al. | Ultrawide spectral response of CIGS solar cells integrated with luminescent down-shifting quantum dots | |
US20070204901A1 (en) | Photovoltaic cells based on nano or micro-scale structures | |
WO2009022945A1 (fr) | Convertisseur d'émission électromagnétique | |
Engelhardt et al. | Cu (In, Ga) Se2 solar cells with a ZnSe buffer layer: interface characterization by quantum efficiency measurements | |
Ruzgar et al. | The tuning of electrical performance of Au/(CuO: La)/n-Si photodiode with La doping | |
Maurya et al. | Efficient Sb2Se3 solar cell with a higher fill factor: a theoretical approach based on thickness and temperature | |
Yang et al. | Alternative spectral Photoresponse in ap-Cu2ZnSnS4/n-GaN Heterojunction photodiode by modulating applied voltage | |
Dhass et al. | Estimation of power losses in single-junction gallium-arsenide solar photovoltaic cells | |
RU2750366C1 (ru) | Полупроводниковый фотоэлектрический преобразователь | |
US20170077327A1 (en) | Photoelectric conversion element, solar cell, solar cell module, and solar power generating system | |
Van Roosmalen | Molecular-based concepts in PV towards full spectrum utilization | |
Dobrozhan et al. | Optical and recombination losses in thin film solar cells based on heterojunctions n-ZnS (n-CdS)/p-CdTe with current collecting contacts ITO and ZnO | |
Vahedi et al. | Overcoming the temperature effect on a single junction and intermediate band solar cells using an optical filter and energy selective contacts | |
Terukov et al. | Investigation of the characteristics of heterojunction solar cells based on thin single-crystal silicon wafers | |
KR20100086925A (ko) | 태양 전지 | |
KR101349554B1 (ko) | 태양전지 모듈 | |
KR102493413B1 (ko) | 투명 태양전지 및 그 제조방법 | |
Abd El Gany et al. | Experimental Investigation of Silicon and Dye Sensitized Solar Cells Based on Wavelength Dependence | |
Tao et al. | Physics of solar cells | |
Eke | Photovoltaic Characteristics and Applications |