RU2456710C1 - Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения - Google Patents

Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения Download PDF

Info

Publication number
RU2456710C1
RU2456710C1 RU2011101731/28A RU2011101731A RU2456710C1 RU 2456710 C1 RU2456710 C1 RU 2456710C1 RU 2011101731/28 A RU2011101731/28 A RU 2011101731/28A RU 2011101731 A RU2011101731 A RU 2011101731A RU 2456710 C1 RU2456710 C1 RU 2456710C1
Authority
RU
Russia
Prior art keywords
nanocomposite
coating
composition
thick film
polymethyl methacrylate
Prior art date
Application number
RU2011101731/28A
Other languages
English (en)
Inventor
Олег Николаевич Гадомский (RU)
Олег Николаевич Гадомский
Николай Михайлович Ушаков (RU)
Николай Михайлович Ушаков
Виталий Яковлевич Подвигалкин (RU)
Виталий Яковлевич Подвигалкин
Павел Анатольевич Музалев (RU)
Павел Анатольевич Музалев
Дмитрий Михайлович Кульбацкий (RU)
Дмитрий Михайлович Кульбацкий
Игорь Донатович Кособудский (RU)
Игорь Донатович Кособудский
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ)
Priority to RU2011101731/28A priority Critical patent/RU2456710C1/ru
Application granted granted Critical
Publication of RU2456710C1 publication Critical patent/RU2456710C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Изобретение относится к области нанотехнологий. Техническим результатом изобретения является получение просветляющего покрытия, обладающего высоким качеством и увеличенным коэффициентом полезного действия. Сущность изобретения: нанокомпозиционное просветляющее покрытие в виде толстой пленки включает полимерную матрицу полиметилметакрилата, наполненную наночастицами серебра размером 1-10 нм с массовой концентрацией 3±0,5% и модифицированную вязким полиметилметакрилатом в объемном соотношении 10:1, соответственно. Способ получения нанокомпозиционного покрытия в виде толстой пленки включает растворение композиции на основе полиметилметакрилата, содержащей наночастицы серебра размером 1-10 нм с массовой концентрацией 3±0,5% до образования исходной жидкой композиции с кинематической вязкостью от 26,1±0,7 до 80±4 сСт и концентрацией полимера 0,15-0,31 мас. долей, стабилизацию полученной исходной композиции добавлением в нее при перемешивании модифицирующей добавки в виде полиметилметакрилата с кинематической вязкостью 84,2±0,5 сСт в объемном соотношении 10:1, соответственно, обеспечивающей образование адсорбционно-сольватного слоя на поверхности частиц исходной композиции, с последующим нанесением полученной технологической нанокомпозиции на твердотельную подстилающую поверхность и сушкой. 2 н. и 2 з.п. ф-лы, 5 ил., 5 табл.

Description

Изобретение относится к области нанотехнологий, а именно к наноэлектронике, и может быть использовано, в частности, при изготовлении функциональных структур в виде толстых пленок, толщина которых занимает размерный ряд от 2 до 100 мкм, используемых в качестве просветляющих покрытий активных элементов преобразования солнечной энергии в электричество для солнечных батарей, лазерной техники и др.
Известна подложка, покрытая композиционной пленкой, способ изготовления и применение (патент РФ на изобретение №2288167, МПК: B82B 1/00). Композиционная пленка представляет собой среду в виде мезопористого неорганического слоя, модифицированную наночастицами (in situ), частично периодическую в масштабе доменов. Периодическую структуру пленки получают из среднего (мезопористого) неорганического слоя частично периодической структуры, которая образует на подложке матрицу, путем осаждения прекурсора в поры слоя матрицы.
Однако технологический процесс изготовления пленки является трудоемким и включает дополнительный технологический процесс синтеза (осаждение прекурсора) при повышенных температурных режимах, что может привести, в нашем случае, к разрушению нанокомпозиции.
Известно просветляющее покрытие (патент РФ на изобретение №2097801, МПК: G02B 5/28, G02B 1/11), включающее подложку с показателем преломления от 2,2 до 4,0, нанесенные на подложку адгезионный слой из ZnS или ZnSe, слой с низким значением показателя преломления из фторида висмута (BiF3) и четвертьволновый слой с высоким значением показателя преломления из сульфида цинка (ZnS) или селенида цинка (ZnSe).
Однако, несмотря на высокую прочность к интенсивным лазерным потокам, данный метод создания просветляющего покрытия имеет ограничения, связанные с необходимостью иметь подложки с высоким показателем преломления (от 2,2 до 4,0), что ограничивает применение известного метода для широкого класса устройств оптоэлектроники на основе кремниевых технологий. Кроме того, известный метод наиболее перспективен для создания покрытий для работы в длинноволновой области оптического спектра (10-12 мкм) и мало пригоден для работы создаваемых покрытий в коротковолновой области спектра.
Известно просветляющее покрытие на основе гетероструктур фуллерен-кремний (C60/p-Si) с сильным поглощением в коротковолновой области солнечного спектра (Light S., Khaselev О., Ramakrishna P.A. et. al. Fullerene Photoelectromechanical Solar Cells. - Solar Energy Materials and Solar Cells, 51 (1998), p.9-19). Поликристаллический фуллерен толщиной 1 мкм осаждают на кремниевую подложку в глубоком вакууме. В качестве контактов используется алюминий и сплав GaxIny на позолоченной подложке.
Недостатком такого покрытия являются низкая эффективность фотоэлектрического преобразования в видимой и ближней ИК-областях солнечного спектра.
Наиболее близким к предлагаемому просветляющему покрытию является покрытие фотоэлемента на основе органических материалов в виде красителя (Мейтин М. Фотовольтаика: материалы, технологии, перспективы. Электроника-НТ. - №6. - 2000 г.). Подложками в таких элементах могут выступать полимерные пленки. Основа фотоэлемента такого типа - широкозонный полупроводник (например, диоксид титана), покрытый монослоем органического красителя, как правило - цис-(NCS)2бис(4,4′-дикарбокси-2,2′бипиридин)-рутением (II). Фотоэлектрод такого устройства представляет собой нанопористую пленку TiO2 толщиной 1 мкм, осажденную на оптически прозрачное электропроводящее покрытие (ТСО) на стекле. Отражающим электродом служит тонкий слой платины, осажденный на ТСО на стекле. Пространство между двумя электродами заполнено электролитом, содержащим иодид/трииодид.
Недостатком данного технического решения является невысокий КПД фотоэлектрического преобразования (КПД около 11%).
Наиболее близким к предлагаемому способу получения просветляющего покрытия является способ получения тонкопленочного нанокомпозитного покрытия на твердотельной подложке (патент РФ на изобретение №2324643, МПК; B82B 3/00), включающий введение раствора нанокомпонентов и водонерастворимого соединения амфифильного полиэлектролита в летучем неполярном растворителе на поверхность водной фазы с формированием нанокомпозитного монослоя и его последующий перенос по методу Ленгмюра-Блоджетт на твердотельную подложку с образованием на ее поверхности нанокомпозитного покрытия. При этом в процессе формирования нанокомпозитный монослой инкубируют при Т=16-58°С в течение времени, достаточного для образования упорядоченной структуры нанокомпонентов в плоскости монослоя.
Однако данный способ является трудоемким, длительным по времени и требует применения целого комплекса химических компонентов, множества операций и широкого температурного режима.
Задачей изобретения является получение просветляющего покрытия в виде нанокомпозиционной толстой пленки, обладающего высоким качеством и увеличенным коэффициентом полезного действия за счет предотвращения коалесценции (срастания) и переориентации наночастиц в композиции, а также их агрегативной устойчивости при нанесении композиции на твердую подстилающую поверхность.
Поставленная задача решается тем, что нанокомпозиционное просветляющее покрытие в виде толстой пленки включает полимерную матрицу полиметилметакрилата, наполненную наночастицами серебра размером 1-10 нм с массовой концентрацией 3±0,5% и модифицированную вязким полиметилметакрилатом в объемном соотношении 10:1, соответственно.
Модифицирующая добавка полиметилметакрилата выбрана кинематической вязкостью 84,2±0,5 сСт.
Нанокомпозиционное покрытие имеет толщину от 55 до 70 мкм.
Способ получения нанокомпозиционного просветляющего покрытия в виде толстой пленки включает растворение композиции на основе полиметилметакрилата, содержащей наночастицы серебра размером 1-10 нм с массовой концентрацией 3±0,5% до образования исходной жидкой композиции с кинематической вязкостью от 26,1±0,7 до 80±4 сСт и концентрацией полимера 0,15-0,31 мас. долей, стабилизацию полученной исходной композиции добавлением в нее при перемешивании модифицирующей добавки в виде полиметилметакрилата с кинематической вязкостью 84,2±0,5 сСт в объемном соотношении 10:1, соответственно, обеспечивающей образование адсорбционно-сольватного слоя на поверхности частиц исходной композиции, с последующим нанесением полученной технологической нанокомпозиции на твердотельную подстилающую поверхность и сушкой.
Заявляемое изобретение поясняется схемами и фотографиями, где на фиг.1 представлена функциональная схема технологического процесса получения толстопленочного нанокомпозиционного просветляющего покрытия, на фиг.2 - схема технологической операции нанесения нанокомпозиции на твердотельную подложку, на Фото 1, 2 - образцы элементов солнечных батарей с покрытием, на Фото 3 - образец без покрытия.
Позициями на фиг.2 обозначены: 1 - ракель; 2 - подложка; 3 - вязкая нанокомпозиция; 4 - толстопленочное нанокомпозиционное просветляющее покрытие.
Способ осуществляют следующим образом.
Полимерную матрицу полиметилметакрилата (ПММА) наполняют наночастицами серебра Ag размером 1-10 нм с массовой концентрацией 3±0,5%. При этом химический синтез осуществляют по классической методике "класпол", когда металлсодержащее соединение подвергается высокоскоростному термическому разложению с образованием дисперсной фазы металла, стабилизированного в полимере (Юрков Г.Ю., Кособудский И.Д., Севостьянов В.П. Наноразмерные металлические частицы в полимерных матрицах, синтез и физико-химические свойства // Известия ВУЗов, Химия и химическая технология, 2000, №2. С.56-61). Полученный нанодисперсный порошок растворяют, например, введением дихлорэтана, до образования исходной жидкой нанокомпозиции с кинематической вязкостью в интервале от 26,1±0,7 до 80±4 сСт и концентрацией полимера 0,15-0,31 мас. долей. Затем в жидкую нанокомпозицию для улучшения технологических характеристик (вязкости, адгезионной стойкости, механической и оптической однородности) вводят при перемешивании модифицирующую добавку в объемном соотношении 10 к 1, соответственно. При этом на поверхностях наночастиц, располагающихся на глобулах полимера, образуется адсорбционно-сольватный слой, защищающий наночастицы от агломерации. В качестве модифицирующей добавки используют растворенный ПММА кинематической вязкостью 84,2±0,5 сСт, который химико-технически совместим с глобулами и усиливает структуризацию наномерной среды. Полимер ПММА наиболее склонен к глобуляции с серебром, который является более подходящим для области излучений инфракрасного диапазона с точки зрения плазменного резонанса в получаемой композиционной пленке (коэффициент отражения серебра 0,96).
Затем полученную нанокомпозицию равномерно наносят при комнатной температуре на подстилающую поверхность твердого тела (плату) посредством ракеля и осуществляют сушку в течение времени, необходимого для образования адгезионного толстопленочного покрытия (в среднем 24 ч). Технологическая операция нанесения нанокомпозиции на подстилающую поверхность проводилась на полуавтоматической установке типа ПТП-2, при этом были установлены базовые технологические параметры «нанесения», обеспечивающие высокое качество получаемых толстых пленок: угол наклона ракеля к поверхности подложки α=45°, зазор между ракелем и подложкой h=0,45-0,5 мм, давление ракеля на вязкую нанокомпозицию P=3,9·10-3-6,6·102 Н/м2, скорость движения ракеля υ=15·10-3 м/с (фиг.2), которые сведены в таблицу 1.
Таблица 1
Зазор h, мм Давление ракеля (искусственный вес ракеля), P, Н/м2 Площадь подложки, S, м2 Скорость движения ракеля, υ, м/с Время технологической операции, τ, с Погрешность измерении, Δ, %
1 0,5 6,6·102 144·10-5 15·10-3 0,5 0,5
2 0,45 3,9·10-3 144·10-5 15·10-3 0,5 0,5
Время, в течение которого совершается технологическая операция нанесения нанокомпозиции на подложку, является постоянным 0,5 с и установлено для подложек и плат размерами ≤155×155×0,22 мм.
Таким образом, при перемешивании синтезированной серебряной нанокомпозиции с модифицирующей добавкой в виде растворенного полимера ПММА на поверхности наночастиц металла образуется адсорбционно-сольватный слой, препятствующий сближению частиц при расклинивающем механическом воздействии ракеля в момент совершения технологической операции нанесения нанокомпозиции на подстилающую поверхность. Варьируя основными технологическими параметрами нанесения, можно получать толстопленочные покрытия на фотоэлементах с улучшенными физико-химическими характеристиками в быстропротекающем технологическом процессе.
Расклинивающее давление Р ракеля на вязкую нанокомпозитную среду, сольватно связанную в адсорбционном слое молекулами или ионами стабилизатора, позволяет предотвратить вероятное электростатическое отталкивание одноименно заряженных ионов, адсорбированных на поверхности частиц, и повысить структурную вязкость поверхностного защитного слоя, называемого структурно-механическим барьером.
Расклинивающее действие ракеля в момент исполнения технологической операции «нанесение» нанокомпозиции на подстилающую поверхность твердого тела влияет на характер течения нанокомпозитной среды, на вязкость и возможность разрушения среды, переориентацию частиц в потоке и их слипание. Поэтому весь технологический процесс, начиная от внесения модифицирующей добавки в исходную композицию и заканчивая сушкой нанесенного толстопленочного покрытия - быстропротекающий. Он исключает нарушение молекулярной архитектуры вязкой среды и преждевременной коагуляции структурной композиции.
Основной мерой равномерности и однородности покрытия является вязкость наносимой на подложку растворенной композиции.
Параметры получения исходной композиции (ПММА + Ag + растворитель) для выбора необходимой вязкости приведены в таблице 2.
Таблица 2
Масса полимера в исходной композиции, г Объем растворителя, мл Масса полимера в исходной композиции (в долях) Кинематическая вязкость исходной композиции, сСт
1,0 1 0,45 165±3
2 0,31 80±4
3 0,22 46,4±0,9
4 0,18 33±1
5 0,15 26,1±0,7
6 0,13 19,9±0,2
7 0,11 15,4±0,5
8 0,10 11,1±0,7
9 0,09 8,2±0,1
10 0,08 5,0±0,2
0 10 0,0 2,2±0,1
В диапазоне вязкостей исходной композиции от 26,1±0,7 до 80±4 сСт с концентрацией полимера 0,15-0,31 мас. долей удается получить достаточно однородные пленки, однако они характеризуются высокой склонностью к растрескиванию и плохими адгезионными свойствами. Для улучшения физико-химических характеристик получаемого покрытия применяют модифицирующую добавку в виде вязкого раствора ПММА, добавляемую в исходную композицию.
В таблице 3 приведены параметры получения модифицирующей добавки для выбора нужной вязкости.
Оптимальная вязкость модифицирующей добавки составляет 84,2±0,5 сСт. Использование добавки с большей (133±2 сСт) или меньшей (18,4±0,4 сСт) вязкостью вызывает ухудшение реологических и механических свойств покрытия.
Таблица 3
Масса полимера, г Объем растворителя, мл Масса полимера ПММА,(в долях) Кинематическая вязкость добавки, сСт
1 0,45 133±2
1 2 0,37 84,2±0,5
5 0,15 18,4±0,4
В таблице 4 приведены технологические параметры покрытия в зависимости от физико-химических свойств наносимой на плату технологической композиции (исходная композиция + модифицирующая добавка).
Таблица 4
Масса полимера в технологической композиции (в долях) Кинематическая вязкость технологической композиции, сСт Адгезионная прочность покрытия, кгс/см2 Шероховатость поверхности покрытия, нм
0,56 104±4 67±2 1124±4
0,40 39,1±0,2 74±2 132±2
0,24 19±1 58±3 86±3
0,18 11,8±0,1 53±1 59±1
0,11 3,6±0,3 19±1 73±2
Экспериментально установлено, что оптимальный интервал концентрации полимера в растворе технологической композиции, при которой наблюдаются лучшие адгезионные свойства толстопленочного покрытия, составляет 0,18-0,40 массовых долей, при этом оптимальная вязкость технологической композиции составляет от 11,8±0,1 сСт до 39,1±0,2 сСт.
На фото 1 и 2 представлены полученные образцы элементов солнечных батарей с толстопленочным просветляющим покрытием. На фото 3 показан образец без просветляющего покрытия. При сравнении образцов на фото 1, 2 с образцом, представленным на фото 3, визуально наблюдается характерный эффект затемнения подстилающей поверхности солнечного элемента на фото 3. Это говорит о способности фотоэлементов с нанесенной нанокомпозиционной пленкой значительно эффективнее преобразовывать энергию солнечного излучения в электрическую, по сравнению с элементами без покрытия.
Параметры эффективности получаемого просветляющего покрытия в виде толстой пленки сведены в таблицу 5.
Таблица 5
№ фотоэлемента Вольтаический эффект КПД активного элемента, %
без пленки с пленкой
без пленки с пленкой
Isc, A Uos, V Isc, A Uos, V
20К 1,12 0,6 1,43 0,6 17 22
02К 1,16 0,58 1,25 0,58 19 22
В таблице 5: Isc - ток короткого замыкания, в амперах; Uos - напряжение холостого хода, в вольтах.
Полученные пленки просветляющего покрытия на основе нанокомпозитных сред толщиной от 55 до 70 мкм обеспечивают КПД=22% и соответствуют требованиям, предъявляемым к просветляющим покрытиям в толстопленочной технологии микроэлектроники (ОСТ4 ГО.054.240, ОСТ 92-4179-79).

Claims (4)

1. Нанокомпозиционное просветляющее покрытие в виде толстой пленки, включающее полимерную матрицу полиметилметакрилата, наполненную наночастицами серебра размером 1-10 нм с массовой концентрацией 3±0,5% и модифицированную вязким полиметилметакрилатом в объемном соотношении 10:1 соответственно.
2. Нанокомпозиционное покрытие по п.1, отличающееся тем, что модифицирующая добавка полиметилметакрилата выбрана кинематической вязкостью 84,2±0,5 сСт.
3. Нанокомпозиционное покрытие по п.1, отличающееся тем, что имеет толщину от 55 до 70 мкм.
4. Способ получения нанокомпозиционного просветляющего покрытия в виде толстой пленки, включающий растворение композиции на основе полиметилметакрилата, содержащей наночастицы серебра размером 1-10 нм с массовой концентрацией 3±0,5% до образования исходной жидкой композиции с кинематической вязкостью от 26,1±0,7 до 80±4 сСт и концентрацией полимера 0,15-0,31 мас. долей, стабилизацию полученной композиции добавлением в нее при перемешивании модифицирующей добавки в виде полиметилметакрилата с кинематической вязкостью 84,2±0,5 сСт в объемном соотношении 10:1 соответственно, обеспечивающей образование адсорбционно-сольватного слоя на поверхности частиц исходной композиции с последующим нанесением полученной технологической нанокомпозиции на твердотельную подстилающую поверхность и сушкой.
RU2011101731/28A 2011-01-18 2011-01-18 Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения RU2456710C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011101731/28A RU2456710C1 (ru) 2011-01-18 2011-01-18 Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011101731/28A RU2456710C1 (ru) 2011-01-18 2011-01-18 Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения

Publications (1)

Publication Number Publication Date
RU2456710C1 true RU2456710C1 (ru) 2012-07-20

Family

ID=46847586

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011101731/28A RU2456710C1 (ru) 2011-01-18 2011-01-18 Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения

Country Status (1)

Country Link
RU (1) RU2456710C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554608C2 (ru) * 2013-07-01 2015-06-27 Общество с ограниченной ответственностью "Солар" Способ получения просветляющего покрытия
RU2573903C1 (ru) * 2014-09-02 2016-01-27 Федеральное государственное бюджетное учреждение науки Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук (ИСПМ РАН) Способ получения гибкой электропроводящей полимерной пленки
RU172493U1 (ru) * 2016-10-31 2017-07-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Высокоэффективный светоизлучающий многослойный полупроводниковый светодиод
RU175868U1 (ru) * 2017-07-17 2017-12-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Солнечный элемент с композитным PMMA+Ag просветляющим покрытием
RU2750366C1 (ru) * 2020-10-23 2021-06-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Полупроводниковый фотоэлектрический преобразователь
RU2758150C1 (ru) * 2020-11-09 2021-10-26 Федеральное государственное бюджетное учреждение науки Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук Способ изготовления поляризационно-чувствительной нанокомпозитной плёнки на основе селенида меди

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2097801C1 (ru) * 1995-01-19 1997-11-27 Научно-исследовательский центр по технологическим лазерам РАН Просветляющее покрытие
EP1195621A1 (en) * 2000-10-04 2002-04-10 Eastman Kodak Company Method of making an antireflection polymeric material
RU2217394C1 (ru) * 2002-03-25 2003-11-27 Слепцов Владимир Владимирович Просветляющее оптическое многослойное покрытие
RU2324643C1 (ru) * 2006-10-06 2008-05-20 Государственное учебно-научное учреждение Физический факультет Московского Государственного университета им. М.В. Ломоносова Способ получения тонкопленочного нанокомпозитного покрытия на твердотельной подложке
EP2031424A1 (en) * 2007-08-28 2009-03-04 Nissan Motor Co., Ltd. Antireflective structure and antireflective moulded body
US7569254B2 (en) * 2005-08-22 2009-08-04 Eastman Kodak Company Nanocomposite materials comprising high loadings of filler materials and an in-situ method of making such materials
RU2009114821A (ru) * 2006-09-18 2010-10-27 Нано-Икс Гмбх (De) Силан в качестве материала покрытия и способ нанесения покрытия из силана

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2097801C1 (ru) * 1995-01-19 1997-11-27 Научно-исследовательский центр по технологическим лазерам РАН Просветляющее покрытие
EP1195621A1 (en) * 2000-10-04 2002-04-10 Eastman Kodak Company Method of making an antireflection polymeric material
RU2217394C1 (ru) * 2002-03-25 2003-11-27 Слепцов Владимир Владимирович Просветляющее оптическое многослойное покрытие
US7569254B2 (en) * 2005-08-22 2009-08-04 Eastman Kodak Company Nanocomposite materials comprising high loadings of filler materials and an in-situ method of making such materials
RU2009114821A (ru) * 2006-09-18 2010-10-27 Нано-Икс Гмбх (De) Силан в качестве материала покрытия и способ нанесения покрытия из силана
RU2324643C1 (ru) * 2006-10-06 2008-05-20 Государственное учебно-научное учреждение Физический факультет Московского Государственного университета им. М.В. Ломоносова Способ получения тонкопленочного нанокомпозитного покрытия на твердотельной подложке
EP2031424A1 (en) * 2007-08-28 2009-03-04 Nissan Motor Co., Ltd. Antireflective structure and antireflective moulded body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554608C2 (ru) * 2013-07-01 2015-06-27 Общество с ограниченной ответственностью "Солар" Способ получения просветляющего покрытия
RU2573903C1 (ru) * 2014-09-02 2016-01-27 Федеральное государственное бюджетное учреждение науки Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук (ИСПМ РАН) Способ получения гибкой электропроводящей полимерной пленки
RU172493U1 (ru) * 2016-10-31 2017-07-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Высокоэффективный светоизлучающий многослойный полупроводниковый светодиод
RU175868U1 (ru) * 2017-07-17 2017-12-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Солнечный элемент с композитным PMMA+Ag просветляющим покрытием
RU2750366C1 (ru) * 2020-10-23 2021-06-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Полупроводниковый фотоэлектрический преобразователь
RU2758150C1 (ru) * 2020-11-09 2021-10-26 Федеральное государственное бюджетное учреждение науки Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук Способ изготовления поляризационно-чувствительной нанокомпозитной плёнки на основе селенида меди

Similar Documents

Publication Publication Date Title
RU2456710C1 (ru) Нанокомпозиционное просветляющее покрытие в виде толстой пленки и способ его получения
Hanusch et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide
Esparza et al. Effect of different sensitization technique on the photoconversion efficiency of CdS quantum dot and CdSe quantum rod sensitized TiO2 solar cells
US8089681B2 (en) Electrochromic device based on layer by layer deposition
US6653701B1 (en) Semiconductor device and production method thereof
Piatkowski et al. Unraveling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film
Xie et al. Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells
US20090320894A1 (en) Method for preparing nanocrystalline transparent films of tungsten oxide
Dar et al. Photoanode based on (001)-oriented anatase nanoplatelets for organic–inorganic lead iodide perovskite solar cell
Evangelista et al. Semiconductor quantum dot sensitized solar cells based on ferricyanide/ferrocyanide redox electrolyte reaching an open circuit photovoltage of 0.8 V
Zhang et al. A facile self-assembly synthesis of hexagonal ZnO nanosheet films and their photoelectrochemical properties
Zhang et al. TiO2 nanorods: a facile size-and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells
Lin et al. A sodium chloride modification of SnO2 electron transport layers to enhance the performance of perovskite solar cells
Krbal et al. TiO2 nanotube/chalcogenide-based photoelectrochemical cell: nanotube diameter dependence study
Badawi et al. Study of the back recombination processes of PbS quantum dots sensitized solar cells
Kilic et al. Nanoporous ZnO photoelectrode for dye-sensitized solar cell
Li et al. Perovskite solar cell using a two-dimensional titania nanosheet thin film as the compact layer
Park et al. Nanostructured photoelectrode consisting of TiO2 hollow spheres for non-volatile electrolyte-based dye-sensitized solar cells
Miyake et al. Photoelectrochemical characterization of nearly monodisperse CdS nanoparticles− Immobilized gold electrodes
Wang et al. Interfacial modification via a 1, 4-butanediamine-based 2D capping layer for perovskite solar cells with enhanced stability and efficiency
Qiu et al. ZnO/CdS/CdSe core/double shell nanorod arrays derived by a successive ionic layer adsorption and reaction process for quantum dot-sensitized solar cells
Ding et al. Low defect density and anisotropic charge transport enhanced photo response in pseudo-cubic morphology of MAPbI3 single crystals
Vijayaraghavan et al. All spray pyrolysis-coated CdTe–TiO 2 heterogeneous films for photo-electrochemical solar cells
Parvazian et al. Photovoltaic performance improvement in vacuum-assisted meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering
Zhu et al. Indium-doped CsPbI2. 5Br0. 5 with a tunable band structure and improved crystallinity for thermo-stable all-inorganic perovskite solar cells

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190119