RU2747818C1 - Способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени - Google Patents

Способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени Download PDF

Info

Publication number
RU2747818C1
RU2747818C1 RU2020121646A RU2020121646A RU2747818C1 RU 2747818 C1 RU2747818 C1 RU 2747818C1 RU 2020121646 A RU2020121646 A RU 2020121646A RU 2020121646 A RU2020121646 A RU 2020121646A RU 2747818 C1 RU2747818 C1 RU 2747818C1
Authority
RU
Russia
Prior art keywords
distance
mark
locomotive
receiving
railway track
Prior art date
Application number
RU2020121646A
Other languages
English (en)
Inventor
Владимир Иванович Головин
Виктор Степанович Наговицын
Андрей Алексеевич Калмыков
Алексей Андреевич Калмыков
Original Assignee
Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ САУТ" (ООО "НПО САУТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ САУТ" (ООО "НПО САУТ") filed Critical Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ САУТ" (ООО "НПО САУТ")
Priority to RU2020121646A priority Critical patent/RU2747818C1/ru
Application granted granted Critical
Publication of RU2747818C1 publication Critical patent/RU2747818C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к определению местоположения поезда. Технический результат - повышение точности определения местоположения локомотива поезда по инфраструктуре железнодорожного пути, особенно для высокоскоростных поездов. Он достигается за счет применения РЛС с линейно-частотной модуляцией, устанавливаемой на кабине машиниста, которая определяет ориентиры ж/д пути такие, как трансформаторные будки, ж/д переезды, стрелки, светофоры, опоры контактной сети и пр., вычисляет дальность до них и углы азимута и сверяет их с цифровой дорожной картой. Способ основан на использовании ориентиров вдоль всего ж/д пути, в качестве информационных отражающих меток, характеризующихся тем, что для их обнаружения применяется РЛС на основе MIMO системы, расположенной в передней части локомотива и содержащей передающий зондирующий канал и два приемных отраженных канала со следующей последовательностью действий: отраженные сигналы по приемным каналам обрабатываются по алгоритму решения прямой геодезической задачи. 2 з.п. ф-лы, 5 ил.

Description

Изобретение относится к радиотехнике, точнее к радиолокации (РЛС) и может быть использовано на ж/д транспорте для точного измерения местоположения (координаты) головного вагона состава - локомотива.
Общей проблемой определения местоположения состава на ж/д является его большая погрешность, так на скоростях до 100 км/час она достигает в лучшем случае 20-50 м, что явно недостаточно, особенно для высокоскоростных поездов типа «Сапсан» и других, вновь разрабатываемых еще более скоростных. Это объясняется тем, что определение характеристик движения осуществляется в основном механическими средствами, например, датчики скорости на оси колес локомотива, а местоположение локомотива по счислению (интегрированию) скорости, при этом ошибка за время следования накапливается.
Радиотехническая, особенно радиолокационная, техника на ж/д РФ находится на недостаточной стадии развития и на локомотивах почти не применяется. РЛС довольно широко применяется в основном на сортировочных станциях, так называемых «горках», для подсчета вагонов при формировании составов для определения их скорости.
Также РЛС применяется на ж/д конечных остановочных пунктах для предотвращения столкновений во время тормозного пути, о приближении к тупиковой точке, причем РЛС находится на земле, а отражатель на локомотиве или около буфера на последнем вагоне, см. http://elval.com/products/a40104.
Недостаток: ограниченное применение, только на ж/д станциях - стационарно.
Известны датчики ELVA-1 для обнаружения препятствий, предотвращающие ж/д столкновения и работающие на частоте 94 ГГц, они могут эффективно использоваться в дыме, пыли, тумане или дожде, которые являются общими условиями для железных дорог, работающих над землей и под землей. Длина волны 3 миллиметра позволяет лучу радара проникать в длинный узкий дымовой туннель, и он все еще работает точно с пылью, прилипающей к передней части антенны.
Чрезвычайно узкий луч обнаружения (менее 1 градуса) не отражает непреднамеренные объекты, такие как земля, рельсы, перекрестные ворота или стенки туннелей, а для определения местоположения состава (локомотива) его применение по инфраструктуре ж/д пути вообще проблематично.
Недостатки: работа только по прямой видимости, около рельсового пути влево-вправо, вверх-вниз пространство не просматривается, вообще очень ограниченная зона просмотра, по существу точечная.
Технической задачей изобретения является повышение точности определения местоположения локомотива поезда по инфраструктуре ж/д пути, особенно для высокоскоростных поездов.
Технический результат достигается за счет применения РЛС с ЛЧМ и широкой ДН, устанавливаемой на кабине машиниста, которая определяет ориентиры ж/д пути такие, как трансформаторные будки, ж/д переезды, стрелки, светофоры, опоры контактной сети и пр., вычисляет дальность до них и углы азимута и сверяет с цифровой дорожной картой.
Для решения поставленной задачи предлагается способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени, основанный на использовании ориентиров вдоль ж/д пути в качестве информационных отражающих меток, характеризующийся тем, что для их обнаружения применяется РЛС на основе MIMO системы, расположенная в передней части локомотива, и содержащая передающий зондирующий канал и два приемных отраженных канала со следующей последовательностью действий: отраженные сигналы по приемным каналам обрабатываются по алгоритму решения прямой геодезической задачи.
Система решается с двух позиций: как это решается в целом и как конкретно с точки зрения геодезии:
- измерение расстояния;
- измерение углов;
- определение местонахождения заданной точки.
Эта геодезическая задача может быть решена радиотехническим способом, а именно с точки зрения радиолокации. Это фазовый или амплитудный или фазово-амплитудный дальномер для определения дальности до цели и ее пеленг.
На фиг. 1 показана структурная электрическая схема для практического решения предлагаемого способа, на фиг. 2 - диаграммы направленности передающей и приемных частей способа, на фиг. 3 - пример хода лучей этих частей, на которых показано:
На фиг. 1
1 - антенный блок
2 и 3 - первый и второй приемники соответственно
4 и 5 - первый и второй усилители соответственно
6 и 7 - первый и второй смесители соответственно
8 и 9 - первый и второй полосовые фильтры соответственно
10 и 11 - первый и второй АРУ соответственно
12 и 13 - первый и второй АЦП соответственно
14 - микроконтроллер (МК)
15 - цифровой синтезатор
16 - третий смеситель
17 - третий полосовой фильтр
18 - делитель мощности
19 - передатчик
20 - программное обеспечение (ПО) + цифровая дорожная карта
21 - генератор несущей частоты
На фиг. 2
22 - диаграмма направленности (ДН) первой приемной антенны А1
23 - ДН второй приемной антенны А2
24 - 1 - результирующая ДН антенн А1 и А2
24 - 2 - мертвая зона пеленгования
25 - направление движения
26 - рельсовый путь
27 - передающая ДН
d - расстояние между приемными антеннами А1 и А2
L - максимальная дальность обзора зондирующего пространства (≈1 км)
На фиг. 3
точка В - ориентир - метка вдоль ж/д пути
линия О-В - линия биссектрисы треугольника
А1 - В - А2 - треугольник измерения координаты метки В
D1 - дальность до точки В, измеряемая первым приемным каналом
D2 - дальность до точки В, измеряемая вторым приемным каналом
D - истинная дальность до метки (вычисленная)
θ - угол азимута, измеряемый схемой
Схема на фиг. 1 имеет следующие крупные модули: антенный блок, передающий канал и два идентичных приемных канала, которыми управляет МК 14, первый управляющий выход которого через цифровой синтезатор 15 соединен с первым входом третьего смесителя 16, со вторым выходом которого соединен выход СВЧ-генератора 21, выход смесителя 16 через полосовой фильтр 17 соединен с делителем мощности 18, основной выход его через передатчик 19 соединен параллельно с передающими антеннами A3 и А4, которые зондирующими сигналами направлены в контролируемое пространство вдоль ж/д пути впереди локомотива.
Отраженные сигналы от ориентиров-меток вдоль ж/д пути через антенный блок 1 (антенны А1 и А2) соединены с приемниками 2 и 3 первого и второго каналов соответственно, выходы которых через второй и третий усилители соединены с первыми входами первого и второго усилителей 4 и 5 также соответственно; выходы их соединены с первыми входами первого и второго смесителей 6 и 7, с вторыми входами которых соединены дополнительные выходы делителя мощности 18, выходы смесителей через первый и второй полосовой фильтры 8 и 9 соединены с сигнальными входами первого и второго АРУ 10 и 11 соответственно, с управляющими входами этих АРУ соединены выходы 2 и 3 МК 14 также соответственно; выходы этих АРУ через первый и второй АЦП 12 и 13 соединены с сигнальными входами МК 14, который выходами синхронизации соединен с соответствующими входами обоих АЦП, МК 14 двунаправленной шиной соединен с ПО и цифровой дорожной картой 20, а выход шиной USB МК 14 является выходом системы.
Схема на фиг. 2 имеет следующие соединения. Передающие антенны A3 и А4 соединены зондирующими сигналами с окружающим пространством широкой ДН 27, отраженные от ориентира - метки 24 с более узкими ДН 22 и 23 соединены с приемными антеннами А1 и А2, образуя вдоль ж/д колеи 25 совместное контролируемое пространство 24, а расстояние d между приемными антеннами А1 и А2 образует измерительную базу, направление движения локомотива показано поз. 25.
Схема на фиг. 3 имеет следующие обозначения.
d - расстояние (база) между двумя приемными антеннами А1 и А2.
D1 - дальность до метки В, измеренная по первому приемному каналу
D2 - дальность до метки В, измеренная по второму приемному каналу
D - вычисленная дальность до метки В
θ - угол пеленга метки В от линии движения локомотива (условный угол азимута)
С - проекция точки В на линию движения локомотива
Схема на фиг. 1 построена по классическому принципу определения координат локомотива по однобазовой схеме с линейно-частотной модуляцией (ЛЧМ), которая основана на определении направления прихода отраженных от объекта радиоволн, измерения расстояния до него путем сравнения частот зондирующего и отраженных сигналов в точках приема антенной системы 1. Передающий канал по сигналам МК 14 формирует ЛЧМ на схемах 15, 21 и 16, отфильтровывает его на схеме 17, усиливает по мощности на схеме 18 и через передатчик 18 и антенны A3 и А4 излучают электромагнитные волны по ходу локомотива. Отраженный от метки сигнал принимается на две антенны А1 и А2, разнесенные на расстояние (базу) = d, при этом частоты будут приниматься с задержкой, пропорциональной дальности до пеленгуемой метки.
Принятые сигналы усиливаются на усилителях 4 и 5, поступают на смесители 6 и 7, где смешиваются с сигналом (уменьшенным) усилителя мощности 18, после чего отфильтровываются на полосовых фильтрах 8 и 9, затем нормируются на АРУ 10 и 11 и поступают на АЦП 12 и 13, а с них на МК 14, где по простейшим формулам определяется дальность до метки, а по разностям этих дальностей и базовому расстоянию определяется пеленг метки.
По изменению вычисленной дальности и пеленгу также вычисляется скорость локомотива и его координаты, которые сравниваются с цифровой дорожной картой и результаты сравнения и текущие координаты передаются по шине USB потребителям.
Формирование зондирующих сигналов и обработка отраженных сигналов и вычисление пеленга проводится по укрупненному алгоритму, см. фиг. 3.
Известны базовая величина d, вычисленные дальности до метки D1, D2 и D, по ним вычисляются углы треугольника А1-В-А2, назовем их α, β, γ.
Тогда
Figure 00000001
Figure 00000002
γ=180°-(D1-D2)
Отсюда пеленг угла θ равен [90° - угол ВОА2]
Далее также сравнение с цифровой дорожной картой и т.д.
На фиг. 4 показана укрупненная электрическая схема однобазового способа, на фиг. 5 временные диаграммы его работы, на которых дополнительно изображено:
2 - первый приемник
3 - второй приемник
12 - передатчик ЛЧМ
14 - МК
21 - генератор ВЧ (несущей частоты)
28 - схема вычитания внутри МК
29 - метка
D1 - расстояние от метки до первого приемника
D2 - расстояние от метки до второго приемника
D - расстояние от передающих антенн до метки В (истинное расстояние)
θ - угол азимута
β - угол места
А1 - первая приемная антенна
А2 - вторая приемная антенна
A3, А4 - передающие антенны
wб1, wб2 - частоты биений
Схема по фиг. 4 работает следующим образом.
Передатчик 12 излучает ЛЧМ сигналы с несущей частотой wп, определяемой выражением
Figure 00000003
(см. фиг. 4)
где w0 - начальная частота
wθ - конечная частота
Tg - период ЛЧМ
t - текущее время,
этот сигнал отражается от метки и принимается на две антенны А1 и А2, разнесенные на расстояние (базу) A1-А2=d с задержкой, пропорциональной удвоенной дальности до метки. При этом частоты wпр1, wпр2 принятых первым и вторым приемными каналами будут изменяться по закону диаграммы 2 (см. фиг. 5), описываемому выражениями
Figure 00000004
Figure 00000005
Принятые сигналы после их усиления приемниками 2 и 3 поступают на первый и второй смесители 6 и 7 соответственно, где смешиваются с сигналами генератора несущей частоты 21. Частоты биений на выходах смесителей 6 и 7 определяются выражениями:
Figure 00000006
На выходе схемы выделения разностной частоты 28 формируется сигнал с частотой wθ, соответствующей пеленгу θ цели (угол азимута)
Figure 00000007
В то же время как видно из фиг. 3
Figure 00000008
учитывая, что D»d это уравнение можно переписать в виде:
Figure 00000009
Из него можно получить выражение пеленга цели
Figure 00000010
Подставляя выражение (4) в (5) получим
Figure 00000011
где
Figure 00000012
- фиксированный коэффициент, определяемый параметрами частотной модуляции Tg, wg передатчика и базой d антенн.
Таким образом, измерив частоту биений сигналов, принятых на разнесенные антенны, можно определить дальность до метки и угол азимута, а решение выражения (6) это просто табличное определение угла из таблицы arcsin-ов, записанных в программном обеспечении (ПО).
В первых двух вариантах могут быть использованы РЛС с любыми зондирующими сигналами: непрерывными, импульсными и пр., а в третьем варианте только ЛЧМ. Этот вариант наиболее точный и помехоустойчивый, его элементная база может быть выбрана на СБИС фирмы AD (analog devices) или на отечественных заказных СБИС г. Зеленограда или фирмы «Интеграл» г. Минск.
В качестве приемо-передающих антенн подходят элементарные изотропные излучатели, причем имеющие вертикальную и горизонтальную поляризацию для определения меток как в вертикальной, так и в горизонтальной плоскости.
Наличие двух излучающих антенн позволяет при минимальных аппаратурных затратах (габаритно-массовых характеристиках - ГМХ) повысить энергетику системы в целом, т.е. увеличить ее разрешающую способность определения координатной цели, в данном случае координаты меток.

Claims (15)

1. Способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени, основанный на использовании ориентиров вдоль ж/д пути в качестве информационных отражающих меток, характеризующийся тем, что для их обнаружения применяется РЛС на основе MIMO системы, расположенная в передней части локомотива и содержащая передающий зондирующий канал и два приемных отраженных канала со следующей последовательностью действий: передающий канал по сигналам микроконтроллера (МК) 14 формирует линейно-частотную модуляцию (ЛЧМ) на схемах цифрового синтезатора частоты 15, генератора несущей частоты 21, передающих сигнал на смеситель 16, отфильтровывает его на схеме фильтра 17, усиливает по мощности на схеме делителя мощности 18 и через передатчик 19 и антенны A3 и А4 излучаются электромагнитные волны по ходу локомотива, при этом, отраженный от метки сигнал принимается на две антенны А1 и А2, разнесенные на расстояние d, при этом частоты будут приниматься с задержкой, пропорциональной дальности до пеленгуемой метки, затем принятые сигналы усиливаются на усилителях 4 и 5, поступают на смесители 6 и 7, где смешиваются с сигналом (уменьшенным) делителя мощности 18, после чего отфильтровываются на полосовых фильтрах 8 и 9, затем нормируются и поступают на АЦП 12 и 13, а с них на МК 14, где определяется дальность до метки, а по разностям этих дальностей и базовому расстоянию определяется пеленг метки, причем дальности от метки до приемных антенн определяются выражениями:
D1=c×t1/2 - дальность до первой приемной антенны;
D2=c×t2/2 - дальность до второй приемной антенны;
где t1,2 - время от начала посылки зондирующего сигнала до прихода отраженного сигнала;
с - скорость света,
пеленг метки θ определяется выражением
θ=arcsin((D1-D2)/d),
где d - расстояние между антеннами приемных каналов,
зная пеленг θ и расстояния D1, D2, истинное расстояние до метки определяется выражением:
D=D1 - 0,5d×sinθ
или
D=D2 + 0,5d×sinθ,
полученные данные сравниваются с цифровой дорожной электронной картой пути следования локомотива в реальном масштабе времени и по этому сравнению определяется скорость локомотива и пройденный путь от начала движения и его координаты.
2. Способ по п. 1, характеризующийся тем, что цифровая электронная карта маршрута следования составляется заранее по прохождению тестовой поездки с указанием времени движения.
3. Способ по п. 1, характеризующийся тем, что зондирующие сигналы имеют вертикальную и горизонтальную поляризацию, а приемные каналы принимают отраженные от метки сигналы также с учетом их поляризации.
RU2020121646A 2020-06-25 2020-06-25 Способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени RU2747818C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020121646A RU2747818C1 (ru) 2020-06-25 2020-06-25 Способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020121646A RU2747818C1 (ru) 2020-06-25 2020-06-25 Способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени

Publications (1)

Publication Number Publication Date
RU2747818C1 true RU2747818C1 (ru) 2021-05-14

Family

ID=75919961

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020121646A RU2747818C1 (ru) 2020-06-25 2020-06-25 Способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени

Country Status (1)

Country Link
RU (1) RU2747818C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534142A (zh) * 2021-07-13 2021-10-22 中国人民解放军国防科技大学 基于雷达系统的铁路接触网测量方法及轨道车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026571A1 (en) * 1993-05-17 1994-11-24 Hughes Aircraft Company Train location and control using spread spectrum radio communications
WO2016117192A1 (ja) * 2015-01-22 2016-07-28 三菱電機株式会社 列車位置検知装置
RU2679268C1 (ru) * 2017-11-14 2019-02-06 Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ САУТ" (ООО "НПО САУТ") Способ путевой навигации и измерения скорости локомотива по геометрии железнодорожного пути
RU2679491C1 (ru) * 2018-01-10 2019-02-11 Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ САУТ" (ООО "НПО САУТ") Способ путевой навигации и обзора передней полусферы локомотива по геометрии железнодорожного пути

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026571A1 (en) * 1993-05-17 1994-11-24 Hughes Aircraft Company Train location and control using spread spectrum radio communications
WO2016117192A1 (ja) * 2015-01-22 2016-07-28 三菱電機株式会社 列車位置検知装置
RU2679268C1 (ru) * 2017-11-14 2019-02-06 Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ САУТ" (ООО "НПО САУТ") Способ путевой навигации и измерения скорости локомотива по геометрии железнодорожного пути
RU2679491C1 (ru) * 2018-01-10 2019-02-11 Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ САУТ" (ООО "НПО САУТ") Способ путевой навигации и обзора передней полусферы локомотива по геометрии железнодорожного пути

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534142A (zh) * 2021-07-13 2021-10-22 中国人民解放军国防科技大学 基于雷达系统的铁路接触网测量方法及轨道车
CN113534142B (zh) * 2021-07-13 2022-05-13 中国人民解放军国防科技大学 基于雷达系统的铁路接触网测量方法及轨道车

Similar Documents

Publication Publication Date Title
US6360998B1 (en) Method and apparatus for controlling trains by determining a direction taken by a train through a railroad switch
JP4593468B2 (ja) レーダ装置
US4863123A (en) Process and system for localizing a mobile unit which travels on a system of railroads
CN109031271B (zh) 用于机动车的fmcw雷达传感器
RU2577516C2 (ru) Способ и устройство для обнаружения вращающегося колеса
JP5122536B2 (ja) レーダ装置
JPWO2007111130A1 (ja) レーダ装置および移動体
JPH0854461A (ja) 鉄道車両用非接触速度計測装置
US3824592A (en) Method and apparatus for measuring and indicating the distance, distance variation, or both between an automotive vehicle and an obstacle
WO2016012106A1 (en) System and method for locating the center of a beacon equipping guided vehicle routes
CN104345308A (zh) 车辆侦测器和量测车辆距离以及车辆速度的方法
RU2747818C1 (ru) Способ определения местоположения поезда по инфраструктуре железнодорожного пути в режиме реального времени
FR2361669A1 (fr) Systeme de mesure de parcours avec radar a effet doppler pour vehicules associes a une voie
JP4613711B2 (ja) 物体検出装置及び物体検出方法
JP6074322B2 (ja) 速度計測装置
RU2679491C1 (ru) Способ путевой навигации и обзора передней полусферы локомотива по геометрии железнодорожного пути
JPH10253750A (ja) Fm−cwレーダ装置
RU2679268C1 (ru) Способ путевой навигации и измерения скорости локомотива по геометрии железнодорожного пути
RU2378654C1 (ru) Локомотивная система определения скорости движения и пройденного пути
GB753069A (en) Improvements in or relating to speed measuring devices employed in railroad car retarder control systems
RU2367974C2 (ru) Способ определения нерадиальной проекции скорости движущейся цели
EP2985629B1 (en) System and method for detecting and locating the center of beacons installed along guided vehicle routes
RU2769956C1 (ru) Способ и система определения скорости локомотива и направления движения
RU2769100C2 (ru) Способ составления цифровой ж/д карты и применение её для мониторинга движения локомотива
RU2808863C1 (ru) Способ и система определения скорости локомотива и направления движения