RU2743308C1 - Диспергент для ликвидации разливов нефти - Google Patents

Диспергент для ликвидации разливов нефти Download PDF

Info

Publication number
RU2743308C1
RU2743308C1 RU2020124132A RU2020124132A RU2743308C1 RU 2743308 C1 RU2743308 C1 RU 2743308C1 RU 2020124132 A RU2020124132 A RU 2020124132A RU 2020124132 A RU2020124132 A RU 2020124132A RU 2743308 C1 RU2743308 C1 RU 2743308C1
Authority
RU
Russia
Prior art keywords
dispersant
oil
propylene glycol
composition
liquid paraffin
Prior art date
Application number
RU2020124132A
Other languages
English (en)
Inventor
Рифат Радисович Мингазов
Наталья Юрьевна Башкирцева
Original Assignee
Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") filed Critical Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть")
Priority to RU2020124132A priority Critical patent/RU2743308C1/ru
Application granted granted Critical
Publication of RU2743308C1 publication Critical patent/RU2743308C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/32Materials not provided for elsewhere for absorbing liquids to remove pollution, e.g. oil, gasoline, fat
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

Изобретение относится к очистке и поддержании в надлежащем состоянии поверхности открытых водоемов, предназначено для к ликвидации аварийных разливов нефти химическим способом за счет диспергирования плавающей нефти в толще воды в виде мелких капель. Сущностью заявленного технического решения является экологичный диспергент для ликвидации разливов нефти, содержащий: лецитин - 30-40 мас. %; моноолеат полиоксиэтиленсорбитана - 10-20 мас. %; растворитель - 40-60 мас. %. Растворитель представлен смесью жидкого парафина и пропиленгликоля в соотношении жидкий парафин : пропиленгликоль = 40-60:60-40 мас. %. Загрязненная поверхность воды обрабатывается поверхностно-активными веществами, в результате чего нефть с водной поверхности переносится в толщу воды, что уменьшает потенциальный ущерб от разлива. 2 табл., 13 пр.

Description

Изобретение относится к очистке и поддержанию в надлежащем состоянии поверхности открытых водоемов, предназначено для ликвидации аварийных разливов нефти химическим способом, за счет диспергирования плавающей нефти в толще воды в виде мелких капель. Загрязненная поверхность воды обрабатывается поверхностно-активными веществами, в результате чего нефть с водной поверхности переносится в толщу воды, что уменьшает потенциальный ущерб от разлива.
Диспергенты обычно не используются странами с береговыми линиями, граничащими с Балтийским морем из-за чувствительных экологических условий и малым обменом воды. Текущее руководство HELCOM (Комиссия по защите морской среды Балтийского моря - Хельсинкская комиссия) указывает, что ликвидация разливов нефти в максимальной степени должна проводиться механическими средствами. Однако существует растущий интерес к использованию диспергентов в связи с некоторыми экологическими преимуществами их применения, особенно на фоне ожидаемого увеличения объемов транспортировки нефти в регионе.
Из исследованного уровня техники заявителем выявлены источники, в которых описаны аналоги заявленного технического решения.
Известно изобретение по патенту SU 1325816, C02F 1/40, E02D 15/0415.10.92 «Диспергент для очистки поверхности воды от пленочных нефтяных и масляных загрязнений "Очиститель моря ОМ-84». Изобретение относится к очистке поверхности воды от нефтепродуктов путем диспергирования загрязнений с помощью химических препаратов. В качестве диспергента нефти очиститель моря ОМ-84 предложено использовать состав, включающий, мас. %: маслорастворимые оксиэтилированные алкилфенолы 30-50, алкилфосфаты высших жирных спиртов 5-15, диэтаноламиды жирных кислот 1,0-10,0, и жидкие парафины - до 100%. Диспергент обладает эмульгирующим и стабилизирующим действием.
Недостатком известного технического решения является использование менее биоразлагаемых синтетических ПАВ, в отличие от заявленного технического решения, в котором используются биоразлагаемые ПАВ.
Известна статья «Efficient dispersion of crude oil by blends of food-grade surfactants: Toward greener oil-spill treatments» (Эффективное диспергирование сырой нефти с помощью смесей пищевых поверхностно-активных веществ: к более экологичным методам ликвидации разливов нефти) [Riehm D.A., Neilsen J.E., Bothun G.D., John V.T., Raghavan S.R., McCormick A.V., Mar. Pollut. Bull. 2015; 101(1):92-97.]. Сущностью является состав для ликвидации разливов нефти: смесь лецитина с моноолеат полиоксиэтиленсорбитаном-30%, в качестве растворителя этанол с сорастворителями - 70%.
Недостатком известного технического решения является использование в качестве растворителя смесей на основе этанола, который (растворитель) не обеспечивает фазовую стабильность диспергента, в результате чего происходит расслоение диспергента и, соответственно, потеря им диспергирующих свойств.
Другим существенным недостатком известного технического решения является то, что растворительэтанол является легколетучим веществом, что приводит к уменьшению срока годности диспергента и также к уменьшению фазовой стабильности.
Наиболее близким по количеству совпадающих существенных признаков, выбранным заявителем в качестве прототипа, является источник «The role of dynamic interfacial phenomena in marine crude oil spill dispersion» [D. Riehm, A dissertation submitted to the faculty of the university of Minnesota]. Сущностью является составы на основе лецитина и моноолеат полиоксиэтиленсорбитана в различных соотношениях, и растворитель на основе этанола.
Недостатком известного технического решения является использование в качестве растворителя смесей на основе этанола, который (растворитель) не обеспечивает фазовую стабильность диспергента, в результате чего происходит его (диспергента) расслоение и, соответственно, потеря им диспергирующих свойств.
Другим существенным недостатком известного технического решения является то, что растворитель этанол является легколетучим веществом, что приводит к уменьшению срока годности диспергента и также к уменьшению фазовой стабильности.
При этом авторы известного технического решения делают заключение, что растворитель на основе этанола обладает существенными недостатками, указанными заявителем выше, и дальнейшие работы по повышению эффективности диспергентов на основе лецитина должны быть сосредоточены на поиске новых растворителей, например, с использованием полипропиленгликоля и парафиновых углеводородов, описанных в заявленном техническом решении. Однако, по мнению заявителя, в известном техническом решении не приведены доказательства достижения условия патентоспособности «промышленная применимость» по отношению к введению в состав диспергента полипропиленгликоля и парафиновых углеводородов, так как упоминание о них авторами декларировано без приведения примеров осуществления данного технического решения.
Техническим результатом заявленного технического решения является разработка экологичного диспергента для ликвидации разливов нефти, который обладает степенью диспергирования не менее 50% при низкой концентрации диспергента ифазовой стабильности, а также низкой токсичностью.
Сущностью заявленного технического решения является диспергент, для ликвидации разливов нефти, содержащий: лецитин - 30-40 мас. %; моноолеат полиоксиэтиленсорбитана - 10-20 мас. %; растворитель - 40-60 мас. %, отличающийся тем, что растворитель представлен смесью жидкого парафина и пропиленгликоля в соотношении жидкий парафин: пропиленгликоль = 40-60:60-40 мас. %..
Заявленный технический результат достигается тем, что заявленный диспергент содержит в своем составе такие пищевые эмульгаторы, как лецитин и моноолеат полиоксиэтиленсорбитана и отличается такими преимуществами, как:
- простой двухкомпонентный состав действующей основы;
- высокая фазовая стабильность диспергента;
- низкая токсичность диспергента.
Известно, что лецитин не оказывает токсического воздействия на морские организмы (ЛС50>1000 мг/л). Низкая токсичность лецитина позволяет использовать его в качестве природного эмульгатора в пищевой промышленности. Эта пищевая добавка (код Е322) находит широкое применение при изготовлении шоколада и шоколадной глазури (для снижения их вязкости во рту и в качестве антиоксиданта, препятствующего старению изделий), кондитерских, хлебобулочных и макаронных изделий, маргарина, майонеза, выпечке хлебобулочных и кондитерских изделий, вафель, а также при изготовлении жироводных эмульсий для смазки хлебопекарных форм и листов.
Моноолеат полиоксиэтиленсорбитана (ЛС50>450 мг/л), также, как и лецитин, считается наименее токсичным ПАВ и в окружающей среде распадается на отдельные соединения (сорбит и жирная кислота). Пропиленгликоль используется в качестве растворителя для снижения вязкости смеси эмульгаторов и стабилизации их фазового состояния.
Пример 1. Получение заявленного диспергента (Таблица 1, состав 1).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 180,0 г жидкого парафина и 180,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 180,0 г лецитина. Затем загружают 60,0 г полиоксиэтиленмоноолеатсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 1.
Пример 2. Получение заявленного диспергента (Таблица 1, состав 2).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 165,0 г жидкого парафина и 165,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 180,0 г лецитина. Затем загружают 90,0 г моноолеат полиоксиэтиленсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 2.
Пример 3. Получение заявленного диспергента (Таблица 1, состав 3).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 150,0 г жидкого парафина и 150,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 180,0 г лецитина. Затем загружают 120,0 г моноолеат полиоксиэтиленсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 3.
Пример 4. Получение заявленного диспергента (Таблица 1, состав 4).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 165,0 г жидкого парафина и 165,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 210,0 г лецитина. Затем загружают 60,0 г моноолеат полиоксиэтиленсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 4.
Пример 5. Получение заявленного диспергента (Таблица 1, состав 5).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 150,0 г жидкого парафина и 150,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 210,0 г лецитина. Затем загружают 90,0 г моноолеат полиоксиэтиленсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 5.
Пример 6. Получение заявленного диспергента (Таблица 1, состав 6).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 135,0 г жидкого парафина и 135,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 210,0 г лецитина. Затем загружают 120,0 г моноолеат полиоксиэтиленсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 6.
Пример 7. Получение заявленного диспергента (Таблица 1, состав 7).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 150,0 г жидкого парафина и 150,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 240,0 г лецитина. Затем загружают 60,0 г моноолеат полиоксиэтиленсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 7.
Пример 8. Получение заявленного диспергента (Таблица 1, состав 8).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 135,0 г жидкого парафина и 135,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 240,0 г лецитина. Затем загружают 90,0 г полиоксиэтиленмоноолеатсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 8.
Пример 9. Получение заявленного диспергента (Таблица 1, состав 9).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 120,0 г жидкого парафина и 120,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 240,0 г лецитина. Затем загружают 120,0 г полиоксиэтиленмоноолеатсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 9.
Пример 10. Получение заявленного диспергента (Таблица 1, состав 10).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 150,0 г жидкого парафина и 150,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 210,0 г лецитина. Затем загружают 90,0 г полиоксиэтиленмоноолеатсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 10.
Пример 11. Получение заявленного диспергента (Таблица 1, состав 11).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 120,0 г жидкого парафина и 180,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 210,0 г лецитина. Затем загружают 90,0 г моноолеат полиоксиэтиленсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 11.
Пример 12. Получение заявленного диспергента (Таблица 1, состав 12).
В коническую колбу объемом 2000 мл при комнатной температуре загружают 180,0 г жидкого парафина и 120,0 г пропиленгликоля, включают перемешивающее устройство, например, верхнеприводную лопастную мешалку, устанавливают скорость вращения лопастей 100-500 об/мин и постепенно загружают 210,0 г лецитина. Затем загружают 90,0 г полиоксиэтиленмоноолеатсорбитана.
После загрузки всех компонентов перемешивают раствор в течение 2-х часов при комнатной температуре. Получают заявленный диспергент по составу 12.
Пример 13. Получение диспергента по прототипу (Таблица 1).
Получают состав по алгоритму, описанному в прототипе.
Полученный раствор по внешнему виду должен представлять собой однородную прозрачную жидкость коричневого цвета без комков, взвесей, пленок и других признаков неполного растворения сырьевых компонентов.
Оценка эффективности заявляемых составов, представленных в Таблице 1, проводилась по результатам анализа диспергирующей эффективности. Диспергирующая эффективность составов оценивалась на нефти с плотностью 0,858 г/см3 и при различных температурах 0°С, 15°С и 25°С (Таблица 2).
Соотношение диспергент:нефть во всех испытаниях составляло 1:20.
Для испытаний составов использовалась модель морской воды, который представляет собой водный раствор смеси солей, в следующем соотношении:
NaCl - 75.71 мас. %;
CaCl2 - 3.31 мас. %;
KCl - 2.26 мас. %;
MgCl2 - 14.83 мас. %;
Na2SO4 - 3.89 мас. %.
Общая соленость модели морской воды составила 35 г/л.
Оценка диспергирующей эффективности проводилась по методике BFT (BaffledFlaskTest) [A.D. Venosa, D.W. King, G.A. Sorial The Baffled Flask Test for Dispersant Effectiveness: A Round Robin Evaluation of Reproducibility and Repeatability // Spill Science & Technology Bulletin, Vol. 7, Nos. 5-6, pp. 299-308,2002].
Согласно методике, сначала необходимо приготовить стандартные растворы. Для этого в виалу последовательно добавляют 18 мл дихлорметана, 2 мл нефти и исследуемый диспергент в количестве 1:20 по отношению к нефти. Далее содержимое виалы встряхивается до получения однородного раствора. После приготовления определяют плотность получившегося раствора.
Для получения шеститочечной калибровочной зависимости выполняется следующая процедура. В шесть делительных воронок объемом 120 мл приливают по 30 мл модельной морской воды и добавляют соответственно 20, 50, 100, 150, 200 и 300 мкл приготовленного ранее стандартного раствора. Затем из каждой смеси модельной морской воды и стандартного раствора трижды экстрагируют нефть и диспергент, используя по 5 мл дихлорметана, встряхивая каждый раз воронку в течение 2-х минут. После полного разделения слоев в делительных воронках нижний слой дихлорметана собирают и объединяют в виалах с винтовой крышкой. Общий объем экстракта в виалах доводят до 20 мл добавлением дихлорметана. Полученные шесть экстрактов при необходимости, можно хранить при температуре 5°С, не более 5 суток.
Далее определяют оптическую плотность экстрактов при длинах волн 340, 370 и 400 нм. Используя полученные значения, строят зависимость оптической плотности от длины волны и рассчитывают площадь под ней. Для этого применяют метод трапеций, используя соответствующее уравнение:
Figure 00000001
Полученные значения площади (Area) наносят на график зависимости от концентрации нефти и используют для определения количества (мг) диспергированной нефти (ДН):
Figure 00000002
где Vдхм - объем экстрагента (дихлорметан), мл;
Vк - объем модельной морской воды в колбе, мл;
Vэ - объем модельной морской воды, отобранной для экстрагирования, мл;
tgα - тангенс угла наклона калибровочной зависимости площади (Area) от концентрации нефти.
Для определения процентного содержания диспергированной нефти используют следующую формулу:
Figure 00000003
где ρн - плотность исследуемой нефти, мг/мл;
Vн - объем исследуемой нефти, мл.
Предельно допускаемое абсолютное расхождение между четырьмя параллельными результатами испытаний, полученными в условиях воспроизводимости для доверительной вероятности 0,95.
Оценка эффективности диспергирования проводится с использованием модифицированной колбы для трипсинизации, оснащенной носиком, с целью отделения диспергированной нефти без затрагивания верхнего слоя нефти. В колбу добавляют около 120 мл модельной морской воды. Далее нефть аккуратно вносят на поверхность модельной морской воды. Затем добавляют диспергент в отношении к нефти 1:20. Колба встряхивают в орбитальном шейкере при 200 об/мин в течение 10 мин. Диспергированную нефть помещают в делительную колбу для ее экстракции дихлорметаном. Экстракцию проводят трижды, используя по 5 мл дихлорметана, встряхивая каждый раз воронку в течение 2-х минут.
Концентрацию нефти определяют спектрофотометрически при длинах волн 340,370 и 400 нм. Эффективность диспергирования оценивают как отношение количества диспергированной нефти к общему количеству внесенной нефти с учетом естественного диспергирования, выраженное в процентах.
Из анализа диспергирующей эффективности заявленных составов, представленных в Таблице 2, можно сделать вывод, что заявленный диспергент обладает эффективностью не менее 50% при фазовой стабильности и температуре не ниже 15°С. При нулевой температуре диспергирующая эффективность заявленных составов в половине случаев имеет значение ниже 50%, поэтому использовать заявленный состав при низких температурах нецелесообразно.
По устойчивости во времени и по диспергирующей эффективности наиболее оптимальным растворителем является смесь жидкого парафина и пропиленгликоля в соотношении жидкий парафин : пропиленгликоль = 40-60:60-40 мас. %.
Из описанного выше можно сделать вывод, что разработан состав экологичного диспергента для ликвидации разливов нефти, который обладает степенью диспергирования не менее 50% при низкой концентрации диспергента, низкой токсичностью и фазовой стабильностью.
Заявленный экологичный диспергент обладает эффективностью выше, чем у прототипа, и может быть использован при ликвидации аварийных разливов нефти, не оказывая экологическую нагрузку на окружающую среду.
Figure 00000004
Figure 00000005

Claims (1)

  1. Диспергент для ликвидации разливов нефти, содержащий: лецитин - 30-40 мас.%; моноолеат полиоксиэтиленсорбитана - 10-20 мас.%; растворитель - 40-60 мас.%, отличающийся тем, что растворитель представлен смесью жидкого парафина и пропиленгликоля в соотношении жидкий парафин : пропиленгликоль = 40-60:60-40 мас.%.
RU2020124132A 2020-07-21 2020-07-21 Диспергент для ликвидации разливов нефти RU2743308C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020124132A RU2743308C1 (ru) 2020-07-21 2020-07-21 Диспергент для ликвидации разливов нефти

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020124132A RU2743308C1 (ru) 2020-07-21 2020-07-21 Диспергент для ликвидации разливов нефти

Publications (1)

Publication Number Publication Date
RU2743308C1 true RU2743308C1 (ru) 2021-02-17

Family

ID=74666206

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020124132A RU2743308C1 (ru) 2020-07-21 2020-07-21 Диспергент для ликвидации разливов нефти

Country Status (1)

Country Link
RU (1) RU2743308C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793218A (en) * 1971-06-15 1974-02-19 Exxon Research Engineering Co Oil slick dispersant and method
SU578853A3 (ru) * 1972-02-22 1977-10-30 Банк Пур Л, Экспансьон Эндюстриель "Банекси", (Фирма) Состав дл биоразложени нефтепродуктов
US20100016452A1 (en) * 2007-01-30 2010-01-21 Nedwed Timothy J Floating Dispersant Paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793218A (en) * 1971-06-15 1974-02-19 Exxon Research Engineering Co Oil slick dispersant and method
SU578853A3 (ru) * 1972-02-22 1977-10-30 Банк Пур Л, Экспансьон Эндюстриель "Банекси", (Фирма) Состав дл биоразложени нефтепродуктов
DE2306845B2 (de) * 1972-02-22 1979-05-31 Banque Pour L'expansion Industrielle Banexi, Paris Mittel zur beschleunigten Beseitigung von Erdölprodukten durch biologischen Abbau
US20100016452A1 (en) * 2007-01-30 2010-01-21 Nedwed Timothy J Floating Dispersant Paste

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Riehm David. The role of dynamic interfacial phenomena in marine crude oil spill dispersion. A dissertation submitted to the faculty of the university of Minnesota/ David Riehm. - December, 2016. *

Similar Documents

Publication Publication Date Title
RU2044025C1 (ru) Жидкая фаза инвертного бурового раствора типа вода в масле для освоения геологических месторождений
LaRoche et al. Bioassay procedures for oil and oil dispersant toxicity evaluation
EP1294821B1 (fr) Fluide de puits a base d'huile comprenant un systeme emulsifiant stable en temperature et non polluant
CA1200459A (en) Dispersant composition
US4374737A (en) Nonpolluting drilling fluid composition
US9109151B2 (en) Process for preparing thermally stable oil-in-water and water-in-oil emulsions
US9334437B2 (en) Environment friendly base fluid to replace the toxic mineral oil-based base fluids
NO176360B (no) Oljebasert borevæske med kontinuerlig oljefase
US20020098997A1 (en) Organic emulsion-breaking formula and its use in treating well bores drilled in oil-base mud
Yaakob et al. Performance assessment of plant extracts as green demulsifiers
RU2743308C1 (ru) Диспергент для ликвидации разливов нефти
US20150072904A1 (en) Oil based mud system
US4110213A (en) Compositions and processes for the dispersing of oil spillages
US3639255A (en) Process of dispersing oil slicks
Canevari OIL SPILL DISPERSANTS–CURRENT STATUS AND FUTURE OUTLOOK
AU710402B2 (en) Aqueous composition for plasticising paint prior to strip
NO155755B (no) Materiale inneholdende overflateaktivt stoff og loesningsmiddel til dispergering av oljeflak.
RU2744568C1 (ru) Диспергент для ликвидации разливов нефти
GB2121779A (en) Dispersant composition
NO137482B (no) Preparat for dispergering av oljes¦l.
GB2259518A (en) Cleaning composition for use in seawater
RU2800052C1 (ru) Состав для очистки поверхности воды от нефтяных загрязнений
RU2784364C1 (ru) Диспергент для ликвидации разливов нефти
RU2764306C1 (ru) Способ ликвидации аварийных разливов нефти
SU947275A1 (ru) Средство дл очистки поверхности воды от нефти