RU2741010C1 - Гетерогенный катализатор жидкофазного окисления органических соединений и способ его получения - Google Patents

Гетерогенный катализатор жидкофазного окисления органических соединений и способ его получения Download PDF

Info

Publication number
RU2741010C1
RU2741010C1 RU2020119280A RU2020119280A RU2741010C1 RU 2741010 C1 RU2741010 C1 RU 2741010C1 RU 2020119280 A RU2020119280 A RU 2020119280A RU 2020119280 A RU2020119280 A RU 2020119280A RU 2741010 C1 RU2741010 C1 RU 2741010C1
Authority
RU
Russia
Prior art keywords
catalyst
solution
carrier
hours
organic compounds
Prior art date
Application number
RU2020119280A
Other languages
English (en)
Inventor
Ольга Валентиновна Гребенникова
Александрина Михайловна Сульман
Борис Борисович Тихонов
Валентина Геннадьевна Матвеева
Михаил Геннадьевич Сульман
Наталия Валерьевна Лакина
Лев Сергеевич Мушинский
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет"
Priority to RU2020119280A priority Critical patent/RU2741010C1/ru
Application granted granted Critical
Publication of RU2741010C1 publication Critical patent/RU2741010C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0205Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
    • B01J31/0207Aldehydes or acetals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biotechnology (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе производных фенолов), и может быть применено на предприятиях различных отраслей промышленности для проведения реакций окисления, а также для каталитической очистки сточных вод от токсичных органических загрязнителей. Гетерогенный катализатор жидкофазного окисления органических соединений содержит носитель, модифицированный 3-аминопропилтриэтоксисиланом, глутаровый диальдегид в качестве сшивающего агента и пероксидазу корня хрена в качестве активного компонента, в котором носителем являются магнитные наночастицы Fe3O4, модифицированные SiO2, при следующем соотношении компонентов, % мас.: Fe3O4- 34,2÷34,6; SiO2- 41,0÷41,4; 3-аминопропилтриэтоксисилан - 18,3÷18,8; глутаровый диальдегид - 3,8÷4,0; пероксидаза хрена - 1,9÷2,0. Способ получения гетерогенного катализатора жидкофазного окисления органических соединений включает взаимодействие фермент содержащего раствора с модифицированным для получения альдегидных групп на поверхности носителем, при этом в качестве носителя используют магнитные наночастицы Fe3O4. Модификация носителя включает смешивание его с SiO2, суспендирование полученного порошка в растворе 3-аминопропилтриэтоксисилана, добавление к смеси раствора глутарового диальдегида, раствора пероксидазы хрена, перемешивание, промывку дистиллированной водой и высушивание при комнатной температуре до постоянной массы. Техническим результатом изобретения является повышение активности, селективности, операционной стабильности гетерогенного катализатора в реакции жидкофазного окисления органических соединений перекисью водорода и его способности к отделению от реакционной среды за счет использования твердого носителя с большой площадью поверхности, высокореакционноспособными аминогруппами на поверхности и магнитными свойствами. 2 н.п. ф-лы, 3 табл., 33 пр.

Description

Изобретение относится к химической промышленности, а именно, к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе - производных фенолов) и может быть применено на предприятиях различных отраслей промышленности для проведения реакций окисления, а также для каталитической очистки сточных вод от токсичных органических загрязнителей.
Известен гетерогенный катализатор окисления неорганических и/или органических соединений на полимерном носителе (RU 2255805, B01J 23/70, B01J 23/94, B01D 53/86, 10.07.2005), содержащий активный компонент на полимерном носителе - полиэтилене или полипропилене, или полистироле, или другом полимере, который в качестве активного компонента содержит оксиды и/или гидроксиды и/или шпинели металлов переменной валентности, и, дополнительно, модифицирующую добавку, в качестве которой используют органические основания и/или гетерополикислоты, и/или углеродсодержащий материал при следующем содержании компонентов катализатора, массовая доля в %: активный компонент 15-50; модифицирующая добавка 0,5-20; носитель остальное.
Однако его недостаточно высокая операционная стабильность из-за непрочного связывания активного компонента с поверхностью носителя, а также высокое содержание активного компонента обуславливает высокую стоимость катализатора и его низкую эффективность.
Известен также гетерогенный катализатор окисления органических соединений (RU 2288033; B01J 31/02, B01J 31/08, C12N 9/08, C02F 1/72; 15.11.2005), включающий полимерный носитель, модифицирующую добавку, активный компонент и сшивающий агент, при этом в качестве сшивающего агента используется глутаровый альдегид или карбодиимид, в качестве полимерного носителя катализатор содержит ионообменную смолу, в качестве модифицирующей добавки - альгинат натрия или хитозан, а в качестве активного компонента - экстракт корня хрена или редьки, при следующем соотношении компонентов в масс. %: активный компонент - 1-2%; модифицирующая добавка - 0,1-1%; сшивающий агент - 3-6%; носитель - 90-95%.
Однако недостаточно прочная сшивка активного компонента с поверхностью твердого носителя приводит к существенному снижению активности и стабильности катализатора в реакциях окисления органических соединений. Кроме того, активный компонент распределен только на поверхности носителя, не проникая в его поры, что существенно снижает эффективность катализатора.
Наиболее близким к предлагаемому катализатору является гетерогенный катализатор жидкофазного окисления органических соединений (RU 2626964, B01J 31/02, B01J 21/06, C12N 9/08, C12N 11/14, C02F 1/72, 14.11.2016), содержащий носитель, глутаровый диальдегид в качестве сшивающего агента и экстракт корня хрена (ArmoraciaRusticana) в качестве активного компонента, при этом в качестве носителя используют диоксид титана, модифицированный последовательно 0,095÷0,105 н. раствором соляной кислоты, 0,195÷0,205%-ным раствором хитозана в 0,0045÷0,0055 М растворе соляной кислоты и 4,95÷5,05%-ным раствором аминопропилтриэтоксисилана в 95,5÷96,5%-ном этаноле при следующем соотношении компонентов, % масс.: диоксид титана - 45÷55; хитозан - 7,5÷12,5; аминопропилтриэтоксисилан - 17,5÷22,5; сшивающий агент (глутаровыйдиальдегид) - 7,5÷12,5; активный компонент (экстракт корня хрена) - 7,5÷12,5.
Однако такой катализатор обладает сложной многокомпонентной структурой, вследствие чего активность его очень нестабильна и подвержена влиянию различных факторов реакционной среды, что в большинстве случаев приводит к существенному снижению эффективности катализатора.
Известен способ получения нерастворимых конъюгатов ферментов с производными полистирола (US 3860486; C07G 7/02; 14.01.1975), включающий обработку полимерного носителя на основе модифицированного полистирола водным раствором пероксидазы хрена в присутствии бикарбоната натрия при 0-4°С. Продолжительность обработки 20 ч.
Однако в данном способе необходимо проводить длительную обработку носителя раствором пероксидазы и проводить процесс иммобилизации при низких температурах.
Известен также способ получения иммобилизованной пероксидазы (SU 742434; C07G 7/02,C07G 7/022; 10.11.1978) путем обработки органического полимерного носителя раствором, содержащим фермент - пероксидазу, отличающийся тем, что, с целью упрощения процесса, в качестве носителя используют альгинатное волокно, в качестве раствора, содержащего пероксидазу культуральный фильтрат гриба Cerrerid, а обработку им носителя осуществляют при 18-22°С в течение 10-30 мин.
Однако материал носителя имеет низкую механическую, химическую и микробиологическую стойкость и активность иммобилизованной пероксидазы низкая.
Наиболее близким к предлагаемому способу является способ получения иммобилизованной пероксидазы (RU 2005784; C12N 11/14, C12N 11/10; 06.05.1990) предусматривающий взаимодействие ферментсодержащего раствора с модифицированным носителем, при этом с целью повышения удельной активности фермента, в качестве носителя используют аэросил, модифицированный 2-3% раствором декстрана и окисленный перхлоратом натрия для получения альдегидных групп на поверхности носителя.
Однако недостаточная стабилизация активного компонента на поверхности носителя из-за отсутствия химического взаимодействия между аэросилом и декстраном в этом способе существенно ухудшает каталитическую активность и стабильность катализатора.
Технической проблемой, решаемой при создании изобретения, является разработка высокоактивного, стабильного и селективного гетерогенного катализатора для многократного использования в реакции жидкофазного окисления органических соединений перекисью водорода, легко отделяемого от реакционной среды.
Техническим результатом изобретения является повышение активности, селективности, операционной стабильности гетерогенного катализатора в реакции жидкофазного окисления органических соединений перекисью водорода и его способности к отделению от реакционной среды за счет использования твердого носителя с большой площадью поверхности, высокореакционноспособными аминогруппами на поверхности и магнитными свойствами.
Решение поставленной проблемы и заявленный технический результат достигаются за счет того, что гетерогенный катализатор жидкофазного окисления органических соединений содержит носитель, модифицированный 3-аминопропилтриэтоксисиланом, глутаровый диальдегид в качестве сшивающего агента и пероксидазу корня хрена в качестве активного компонента при этом носителем являются магнитные наночастицы Fe3O4, модифицированные SiO2, при следующем соотношении компонентов в % масс.:
- Fe3O4 - 34,2÷34,6;
- SiO2 - 41,0÷41,4;
- 3-аминопропилтриэтоксисилан - 18,3÷18,8;
- глутаровый диальдегид - 3,8÷4,0;
- пероксидаза хрена - 1,9÷2,0.
Способ получения гетерогенного катализатора жидкофазного окисления органических соединений включает взаимодействие фермент содержащего раствора с носителем, модифицированным для получения альдегидных групп на его поверхности, при этом для повышения удельной активности и стабильности фермента, в качестве носителя используют магнитные наночастицы Fe3O4, для получения которых растворяют 0,625÷0,635 г FeCl3, 0,09 г янтарной кислоты, 1,38 г мочевины в 30 мл этиленгликоля при постоянном перемешивании магнитной мешалкой в течение 30±1 минут, выдерживают смесь в автоклаве при температуре 200±5°С в течение 3±0,1 часов, охлаждают до 20±1°С, отделяют наночастицы с помощью постоянного магнита, промывают их этанолом и высушивают под вакуумом при 60±2°С в течение 6±0,1 часов, модификация носителя включает смешивание его с 10 мл этанола, добавление 0,22÷0,24 г SiO2, после чего смесь перемешивают в течение 12±0,5 часов, высушивают при комнатной температуре под вакуумом до постоянной массы, добавляют 25 капель этиленгликоля, нагревают в трубчатой печи в атмосфере аргона до 250±5°С со скоростью нагрева 2±0,1°С в секунду, отжигают в течение 5±0,1 часов при 250±5°С, охлаждают, измельчают пестиком в ступке, промывают ацетоном с использованием магнитной сепарации с постоянным магнитом, высушивают при комнатной температуре до постоянной массы, после чего полученный порошок суспендируют в 0,84÷0,86%(масс.) растворе 3-аминопропилтриэтоксисилана в 10% уксусной кислоте, добавляют к смеси7 мл глицерина, выдерживают при 90±1°С в течение 5±0,1 часов, промывают дистиллированной водой и метанолом, сушат в вакуумной печи в течение 12±0,5 часов при температуре 90±1°С, затем к полученному порошку добавляют 20 мл 0,09÷0,11% (масс.) раствора глутарового диальдегида в фосфатном буферном растворе (рН=7,0), перемешивают смесь в течение 12±0,5 часов, промывают порошок дистиллированной водой, добавляют 20 мл 0,045÷0,055%(масс.) раствора пероксидазы хрена в фосфатном буферном растворе (рН=7,0), перемешивают в течение 1±0,05 часа, промывают дистиллированной водой и высушивают при комнатной температуре до постоянной массы.
Предлагаемый катализатор обладает следующими преимуществами:
- более высокой активностью в реакции окисления органических субстратов в присутствии пероксида водорода;
- более высокой операционной стабильностью при многократном использовании;
- удобством полного отделения от реакционной среды практически без потерь с помощью постоянного магнита.
Включение в катализатор каждого из компонентов является обязательным и ни один из них нельзя исключить из состава катализатора, а также изменить их количественное соотношение, так как это приведет к существенному снижению активности и стабильности катализатора в реакции окисления органических соединений.
Магнитные наночастицы Fe3O4 необходимы для создания твердой основы для катализатора и придания ему магнитных свойств, что способствует легкому отделению катализатора от реакционной среды с помощью постоянного магнита.
Оксид кремния SiO2 необходим для создания твердой основы для катализатора, обеспечения присутствия на поверхности носителя гидроксидных-групп ОН-, способных к взаимодействию с другими функциональными группами, и увеличения площади поверхности носителя, что существенно увеличивает количество присоединенных к поверхности носителя молекул фермента, что существенно повышает активность и стабильность катализатора.
Аминопропилтриэтоксисилан необходим для образования прочной связи между компонентами катализатора за счет образования связи между гидроксильными группами на поверхности носителя и кремнием, входящим в состав аминопропилтриэтоксисилана, и для появления на поверхности носителя аминогрупп с высокой реакционной способностью.
Сшивающий агент - глутаровый диальдегид - необходим для образования азометиновой связи (оснований Шиффа) между аминогруппами на поверхности носителя и аминогруппами пероксидазы хрена, что способствует прочному закреплению фермента на поверхности носителя.
Активный компонент - фермент пероксидаза хрена - катализирует реакцию окисления органических соединений в присутствии пероксида водорода.
Относительное массовое содержание компонентов катализатора выбрано экспериментально.
Уменьшение содержания SiO2, 3-аминопропилтриэтоксисилана и глутарового диальдегида меньше представленных значений существенно снижает активность катализатора, так как значительно снижается количество пероксидазы хрена, ковалентно связанной с поверхностью носителя и фермент легко смывается с нее в процессе промывки. Увеличение содержания SiO2 больше указанного значения приводит к чрезмерному увеличению поверхности катализатора, что приводит к диффузионным ограничениям и существенно снижает активность катализатора из-за затруднения удаления субстрата из реакционной среды и отравления фермента.
Увеличение содержания 3-аминопропилтриэтоксисилана и глутарового альдегида выше указанных значений нецелесообразно, так как, по результатам экспериментов, не приводит к существенному увеличению активности и стабильности катализатора. Содержание активного компонента ниже представленного значения значительно снижает активность катализатора в реакции окисления органических субстратов, а увеличение его содержания нецелесообразно, так как, по результатам экспериментов, не приводит к существенному увеличению активности катализатора в реакции окисления органических субстратов.
Добавление янтарной кислоты и мочевины к FeCl3⋅6H2O необходимо для восстановления ионов железа и образования магнетита Fe3O4 (FeO⋅Fe2O3), который обладает магнитными свойствами. Восстановление проводится при температуре 200±5°С в течение 3±0,1 часов для наиболее полного восстановления ионов железа. Температура и время проведения реакции выбраны экспериментально. Уменьшение времени и температуры ниже указанных значений приводит к недовосстановлению ионов железа и существенному снижению магнитных свойств порошка, что существенно увеличивает потери катализатора в ходе реакции, а дальнейшее увеличение температуры и времени выше указанных значений не приводит к улучшению магнитных свойств, но нецелесообразно из-за существенного увеличения энергозатрат.
Промывка Fe3O4 этанолом необходима для удаления из порошка остатков неспецифически связанных компонентов.
Смешивание Fe3O4 с дальнейшим высушиванием и отжигом необходимо для формирования равномерной структуры SiO2 вокруг магнитных наночастиц, что необходимо для увеличения площади поверхности катализатора и сохранения его магнитных свойств.
Температура (250±5°С) и время (5±0,1 часов) отжига выбраны экспериментально. При уменьшении температуры и времени отжига ниже указанных значений уменьшается прочность и равномерность структуры носителя, что отрицательно сказывается на активности и стабильности катализатора. Дальнейшее увеличение температуры и времени отжига нецелесообразно, так как оно приводит к необратимым изменениям и разрушению структуры носителя, что существенно снижает активность и стабильность катализатора, а также требует дополнительных энергозатрат.
Промывка смеси Fe3O4 и SiO2 необходима для удаления из порошка остатков неспецифически связанных компонентов.
Температура (90±1°С) и время (5±0,1 часов) выдерживания носителя в растворе 3-аминопропилтриэтоксисилана выбраны экспериментально. При уменьшении температуры и времени выдерживания ниже указанных значений взаимодействие 3-аминопропилтриэтоксисилана с носителем проходит не полностью, что существенно снижает количество свободных функциональных аминогрупп на поверхности носителя, и, соответственно, снижает активность и стабильность получаемого катализатора. Дальнейшее увеличение температуры и времени выдерживания выше указанных значений нецелесообразно, так как оно не приводит существенному улучшению активности и стабильности катализатора, при этом требует дополнительных энергозатрат.
Время выдерживания модифицированного носителя в растворе глутарового диальдегида - 12±0,5 часов - выбрано экспериментально. При уменьшении времени выдерживания ниже указанного значения взаимодействие глутарового диальдегида с аминогруппами носителя проходит не полностью, что существенно снижает количество свободных функциональных альдегидных групп на поверхности носителя, и, соответственно, снижает активность и стабильность получаемого катализатора. Дальнейшее увеличение времени выдерживания выше указанного значения нецелесообразно, так как оно не приводит существенному улучшению активности и стабильности катализатора.
Время выдерживания модифицированного носителя в растворе пероксидазы хрена - 1±0,05 час - выбрано экспериментально. При уменьшении времени выдерживания ниже указанного значения взаимодействие аминогрупп пероксидазы хрена с альдегидными группами модифицированного носителя проходит не полностью, что существенно снижает количество прочно закрепленного на поверхности модифицированного носителя фермента, и, соответственно, снижает активность и стабильность получаемого катализатора. Дальнейшее увеличение времени выдерживания выше указанного значения нецелесообразно, так как оно не приводит существенному улучшению активности и стабильности катализатора.
Основными свойствами гетерогенных катализаторов процессов жидкофазного окисления органических соединений являются активность катализатора (ед/г), коэффициент иммобилизации (%) и сохранение начальной активности после 10 циклов использования в реакции окисления 2,2'-азино-бис-(3-этилбензтиозолин-6-сульфокислоты) (АБТС).
Активность катализатора определяли в реакции окисления 2,2'-азино-бис-(3-этилбензтиозолин-6-сульфокислоты) (АБТС). Для исследования активности катализатора в термостатируемую стеклянную ячейку с возвратно-поступательным качанием (300 мин-1) вносили 0,5 г катализатора, 25 мл фосфатного буферного раствора (рН=7,0), 2 мл раствора 2,2'-азино-бис-(3-этилбензтиозолин-6-сульфокислоты) (2 ммоль/л) и 2 мл раствора пероксида водорода (2,2 ммоль/л), через определенные промежутки времени отбирали пробы и измеряли оптическую плотность раствора при 440 нм (раствор сравнения - дистиллированная вода). Из полученных значений оптической плотности была рассчитана активность катализатора в единицах активности (ммоль субстрата в минуту) на 1 г катализатора, коэффициент иммобилизации, равный отношению активности синтезированного катализатора к активности исходного ферментативного экстракта (10 мг пероксидазы хрена в 20 мл фосфатного буферного раствора с рН=7,0), выраженный в процентах, а также процент сохранения начальной активности после 10 циклов использования в реакции окисления АБТС.
Сущность изобретения иллюстрируется следующими примерами и таблицами. Способ получения гетерогенного катализатора описывается примерами 1-33, таблицами 1 и 2. В таблице 2 представлен состав гетерогенных катализаторов процессов жидкофазного окисления органических соединений, получаемых в результате примеров 1-33.
Свойства получаемых гетерогенных катализаторов процессов жидкофазного окисления органических соединений согласно примерам 1-33 представлены в таблице 3.
Пример 1
В химическом стакане в 30 мл этиленгликоля были растворены 0,629 г FeCl3⋅6H2O, 0,09 г янтарной кислоты, 1,38 г мочевины при постоянном перемешивании магнитной мешалкой в течение 30 минут. Полученный раствор переносился в тефлоновый стакан объемом 50 мл и выдерживался в автоклаве при температуре 200°С в течение 3 часов, после чего смесь охлаждалась до 20°С. Затем с помощью магнита отделялся черный осадок магнетита Fe3O4(FeO⋅Fe2O3), который промывался несколько раз этанолом и высушивался под вакуумом при температуре 60°С в течение 6 часов.
Высушенный осадок смешивали с 10 мл этанола и добавили 0,23 г SiO2, после чего перемешивали смесь в течение 12 часов. Далее смесь высушивали при комнатной температуре под вакуумом до постоянной массы. К высушенному порошку добавили 25 капель этиленгликоля, после чего его поместили в фарфоровую чашку, которую затем нагрели в кварцевой трубке в трубчатой печи в атмосфере аргона до 250°С со скоростью нагрева 2°С в секунду. Далее порошок отжигали в течение 5 часов при 250°С. После отжига порошок охлаждали и измельчали с помощью пестика в фарфоровой ступке. Измельченный порошок промывали 5 раз ацетоном с использованием магнитной сепарации с постоянным магнитом, а затем сушили при комнатной температуре до постоянной массы.
Порошок суспендировали в 11,6 мл 0,85% (масс.) раствора 3-аминопропилтриэтоксисилана (к 10 мл дистиллированной воды добавили 1,5 мл ледяной уксусной кислоты, после чего к ним добавляли 0,1 г 3-аминопропилтриэтоксисилана). Затем к смеси добавили 7 мл глицерина и выдерживали при 90°С в течение 5 часов. Затем смесь 3 раза промывали водой и 5 раз метанолом и сушили в вакуумной печи в течение 12 часов при температуре 90°С.
К полученному порошку добавили 20 мл 0,1% (масс.) раствора глутарового диальдегида (0,08 мл 25% (масс.) раствора глутарового диальдегида смешали с 20 мл фосфатного буферного раствора с рН=7,0) и перемешивали в течение 12 часов. После этого порошок промывали дистиллированной водой и добавляли 20 мл 0,05% (масс.) раствора пероксидазы хрена в фосфатном буферном растворе с рН=7,0 и перемешивали в течение 1 часа. Далее полученный катализатор промывали дистиллированной водой и высушивали при комнатной температуре до постоянной массы.
В результате сформировали катализатор со следующим соотношением компонентов, % масс.:
- Fe3O4 - 34,39%;
- SiO2 - 41,19%;
- 3-аминопропилтриэтоксисилан - 18,54%;
- глутаровый диальдегид - 3,92%;
- пероксидаза хрена -1,96%.
Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 2
Аналогичен примеру 1, однако использовали 0,4 г FeCl3⋅6H2O. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 3
Аналогичен примеру 1, однако использовали 0,625 г FeCl3⋅6H2O. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 4
Аналогичен примеру 1, однако использовали 0,635 г FeCl3⋅6Н2О.Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 5
Аналогичен примеру 1, однако использовали 0,8 г FeCl3⋅6Н2О. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1-5 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при использовании 0,629 г FeCl3⋅6H2O.
Пример 6
Аналогичен примеру 1, однако использовали 0,15 г SiO2. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 7
Аналогичен примеру 1, однако использовали 0,22 г SiO2. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 8
Аналогичен примеру 1, однако использовали 0,24 г SiO2. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 9
Аналогичен примеру 1, однако использовали 0,3 г SiO2. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1, 6-9 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при использовании 0,23 г SiO2.
Пример 10
Аналогичен примеру 1, однако использовали 0,43% (масс.) раствор 3-аминопропилтриэтоксисилана. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 11
Аналогичен примеру 1, однако использовали 0,84% (масс.) раствор 3-аминопропилтриэтоксисилана. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 12
Аналогичен примеру 1, однако использовали 0,86% (масс.) раствор 3-аминопропилтриэтоксисилана. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 13
Аналогичен примеру 1, однако использовали 1,28% (масс.) раствор 3-аминопропилтриэтоксисилана. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1, 10-13 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при использовании 0,85% (масс.) раствора 3-аминопропилтриэтоксисилана.
Пример 14
Аналогичен примеру 1, однако использовали 0,075% (масс.) раствор глутарового диальдегида. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 15
Аналогичен примеру 1, однако использовали 0,09% (масс.) раствор глутарового диальдегида. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 16
Аналогичен примеру 1, однако использовали 0,11% (масс.) раствор глутарового диальдегида. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 17
Аналогичен примеру 1, однако использовали 0,125% (масс.) раствор глутарового диальдегида. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1, 14-17 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при использовании 0,1%(масс.) раствора глутарового диальдегида.
Пример 18
Аналогичен примеру 1, однако использовали 0,025% (масс.)раствор пероксидазы хрена. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 19
Аналогичен примеру 1, однако использовали 0,045% (масс.) раствор пероксидазы хрена. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 20
Аналогичен примеру 1, однако использовали 0,055% (масс.) раствор пероксидазы хрена. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 21
Аналогичен примеру 1, однако использовали 0,075% (масс.) раствор пероксидазы хрена. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1, 18-21 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при использовании 0,05% (масс.) раствора пероксидазы хрена.
Пример 22
Аналогичен примеру 1, однако смесь FeCl3⋅6H2O, янтарной кислоты и мочевины выдерживалась в автоклаве при температуре 185°С.Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 23
Аналогичен примеру 1, однако смесь FeCl3⋅6H2O, янтарной кислоты и мочевины выдерживалась в автоклаве при температуре 195°С. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 24
Аналогичен примеру 1, однако смесь FeCl3⋅6H2O, янтарной кислоты и мочевины выдерживалась в автоклаве при температуре 205°С. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 25
Аналогичен примеру 1, однако смесь FeCl3⋅6H2O, янтарной кислоты и мочевины выдерживалась в автоклаве при температуре 215°С. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1, 22-25 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при выдерживании в автоклаве при температуре 200°С.
Пример 26
Аналогичен примеру 1, однако смесь FeCl3⋅6H2O, янтарной кислоты и мочевины выдерживалась в автоклаве в течение 2 часов. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 27
Аналогичен примеру 1, однако смесь FeCl3⋅6H2O, янтарной кислоты и мочевины выдерживалась в автоклаве в течение 4 часов. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1, 26-27 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при выдерживании в автоклаве в течение 3 часов.
Пример 28
Аналогичен примеру 1, однако отжиг смеси Fe3O4 и SiO2 проводился при температуре 235°С. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 29
Аналогичен примеру 1, однако отжиг смеси Fe3O4 и SiO2 проводился при температуре 245°С. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 30
Аналогичен примеру 1, однако отжиг смеси Fe3O4 и SiO2 проводился при температуре 255°С. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 31
Аналогичен примеру 1, однако отжиг смеси Fe3O4 и SiO2 проводился при температуре 265°С. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1, 28-31 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при отжиге смеси Fe3O4 и SiO2 при температуре 250°С.
Пример 32
Аналогичен примеру 1, однако отжиг смеси Fe3O4 и SiO2 проводился в течение 4 часов. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Пример 33
Аналогичен примеру 1, однако отжиг смеси Fe3O4 и SiO2 проводился в течение 6 часов. Основные параметры способа получения представлены в таблице 1. Соотношение компонентов в катализаторе представлены в таблице 2. Свойства полученного катализатора представлены в таблице 3.
Из результатов, сведенных в таблице 2 и таблице 3 по примерам 1, 32-33 видно, что оптимальной активностью и стабильностью обладает катализатор, полученный при отжиге смеси Fe3O4 и SiO2 в течение 5 часов.
Таким образом, по результатам экспериментов было определено оптимальное соотношение компонентов гетерогенного катализатора для реакций жидкофазного окисления органических соединений, % масс.:
- Fe3O4 - 34,2÷34,6;
- SiO2 - 41,0÷41,4;
- 3-аминопропилтриэтоксисилан - 18,3÷18,8;
- глутаровый диальдегид - 3,8÷4,0;
- пероксидаза хрена - 1,9÷2,0.
Предложенный способ позволяет получать гетерогенный катализатор для реакций жидкофазного окисления органических соединений перекисью водорода с повышенной активностью, селективностью, операционной стабильностью, который обладает способностью к отделению от реакционной среды за счет использования твердого носителя с большой площадью поверхности, высоко реакционноспособными аминогруппами на поверхности и магнитными свойствами.
Полученные результаты свидетельствуют о том, что применение катализатора на основе пероксидазы хрена, иммобилизованной на наночастицах Fe3O4, модифицированных SiO2 и 3-аминопропилтриэтоксисиланом, с использованием сшивающего агента глутарового диальдегида является перспективной возможностью для создания эффективных катализаторов окисления органических субстратов.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005

Claims (7)

1. Гетерогенный катализатор жидкофазного окисления органических соединений, содержащий носитель, модифицированный 3-аминопропилтриэтоксисиланом, глутаровый диальдегид в качестве сшивающего агента и пероксидазу корня хрена в качестве активного компонента, отличающийся тем, что носителем являются магнитные наночастицы Fe3O4, модифицированные SiO2, при следующем соотношении компонентов, % мас.:
Fe3O4 - 34,2÷34,6;
SiO2 - 41,0÷41,4;
3-аминопропилтриэтоксисилан - 18,3÷18,8;
глутаровый диальдегид - 3,8÷4,0;
пероксидаза хрена - 1,9÷2,0.
2. Способ получения гетерогенного катализатора по п.1 жидкофазного окисления органических соединений, включающий взаимодействие фермент содержащего раствора с модифицированным для получения альдегидных групп на поверхности носителем, отличающийся тем, что в качестве носителя используют магнитные наночастицы Fe3O4, для получения которых растворяют 0,625÷0,635 г FeCl3, 0,09 г янтарной кислоты, 1,38 г мочевины в 30 мл этиленгликоля при постоянном перемешивании магнитной мешалкой в течение 30±1 минут, выдерживают смесь в автоклаве при температуре 200±5°С в течение 3±0,1 часов, охлаждают до 20±1°С, отделяют наночастицы с помощью постоянного магнита, промывают их этанолом и высушивают под вакуумом при 60±2°С в течение 6±0,1 часов, модификация носителя включает смешивание его с 10 мл этанола, добавление 0,22÷0,24 г SiO2, после чего смесь перемешивают в течение 12±0,5 часов, высушивают при комнатной температуре под вакуумом до постоянной массы, добавляют 25 капель этиленгликоля, нагревают в трубчатой печи в атмосфере аргона до 250±5°С со скоростью нагрева 2±0,1°С в секунду, отжигают в течение 5±0,1 часов при 250±5°С, охлаждают, измельчают пестиком в ступке, промывают ацетоном с использованием магнитной сепарации с постоянным магнитом, высушивают при комнатной температуре до постоянной массы, после чего полученный порошок суспендируют в 0,84÷0,86% (мас.) растворе 3-аминопропилтриэтоксисилана в 10%-ной уксусной кислоте, добавляют к смеси 7 мл глицерина, выдерживают при температуре 90±1°С в течение 5±0,1 часов, промывают дистиллированной водой и метанолом, сушат в вакуумной печи при температуре 90±1°С в течение 12±0,5 часов, затем к полученному порошку добавляют 20 мл 0,9÷1,1% (мас.) раствора глутарового диальдегида в фосфатном буферном растворе (рН=7,0), перемешивают смесь в течение 12±0,5 часов, промывают порошок дистиллированной водой, добавляют 20 мл 0,045÷0,055% (мас.) раствора пероксидазы хрена в фосфатном буферном растворе (рН=7,0), перемешивают в течение 1±0,05 часа, промывают дистиллированной водой и высушивают при комнатной температуре до постоянной массы.
RU2020119280A 2020-06-04 2020-06-04 Гетерогенный катализатор жидкофазного окисления органических соединений и способ его получения RU2741010C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020119280A RU2741010C1 (ru) 2020-06-04 2020-06-04 Гетерогенный катализатор жидкофазного окисления органических соединений и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020119280A RU2741010C1 (ru) 2020-06-04 2020-06-04 Гетерогенный катализатор жидкофазного окисления органических соединений и способ его получения

Publications (1)

Publication Number Publication Date
RU2741010C1 true RU2741010C1 (ru) 2021-01-22

Family

ID=74213380

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020119280A RU2741010C1 (ru) 2020-06-04 2020-06-04 Гетерогенный катализатор жидкофазного окисления органических соединений и способ его получения

Country Status (1)

Country Link
RU (1) RU2741010C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807591C1 (ru) * 2023-02-14 2023-11-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Магнитоотделяемый катализатор окисления органических соединений и способ его получения
CN118022690A (zh) * 2024-04-11 2024-05-14 杭州普望生物技术有限公司 一种表面修饰磁珠及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005784C1 (ru) * 1990-06-05 1994-01-15 Ставропольский сельскохозяйственный институт Способ получения иммобилизованной пероксидазы
RU2425879C1 (ru) * 2010-02-16 2011-08-10 Государственное образовательное учреждение высшего профессионального образования "Кемеровский технологический институт пищевой промышленности" Способ получения поверхностно-модифицированных наночастиц для иммобилизации биологических веществ
CN106434620A (zh) * 2016-09-30 2017-02-22 阜阳师范学院 一种木聚糖酶的固定化方法以及固定化木聚糖酶
RU2626964C1 (ru) * 2016-11-14 2017-08-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Гетерогенный катализатор жидкофазного окисления органических соединений
CN110438116A (zh) * 2019-09-02 2019-11-12 成都信息工程大学 一种漆酶的固定化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005784C1 (ru) * 1990-06-05 1994-01-15 Ставропольский сельскохозяйственный институт Способ получения иммобилизованной пероксидазы
RU2425879C1 (ru) * 2010-02-16 2011-08-10 Государственное образовательное учреждение высшего профессионального образования "Кемеровский технологический институт пищевой промышленности" Способ получения поверхностно-модифицированных наночастиц для иммобилизации биологических веществ
CN106434620A (zh) * 2016-09-30 2017-02-22 阜阳师范学院 一种木聚糖酶的固定化方法以及固定化木聚糖酶
RU2626964C1 (ru) * 2016-11-14 2017-08-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Гетерогенный катализатор жидкофазного окисления органических соединений
CN110438116A (zh) * 2019-09-02 2019-11-12 成都信息工程大学 一种漆酶的固定化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chan T.H. et al. "Magnetite with a modified surface for water treatment", Bulletin of the Tomsk Polytechnic University. Engineering of georesources, v. 330, no. 8, 2019, pp. 163-172. *
O.V. Matveeva et al. "The influence of the peroxidase immobilization method on the biocatalyst activity in the process of trimethylphenol oxidation", Catalysis in industry, no. 1, 2015, pp. 70-78. *
О.В. Матвеева и др. "Влияние способа иммобилизации пероксидазы на активность биокатализатора в процессе окисления триметилфенола", Катализ в промышленности, номер 1, 2015, стр. 70-78. Чан Т.Х. и др. "Магнетит с модифицированной поверхностью для водоочистки", Известия Томского политехнического университета. Инжиниринг георесурсов, т. 330, номер 8, 2019, стр.163-172. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807591C1 (ru) * 2023-02-14 2023-11-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Магнитоотделяемый катализатор окисления органических соединений и способ его получения
CN118022690A (zh) * 2024-04-11 2024-05-14 杭州普望生物技术有限公司 一种表面修饰磁珠及其制备方法和应用

Similar Documents

Publication Publication Date Title
Reis et al. Design of immobilized enzyme biocatalysts: Drawbacks and opportunities
Li et al. Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on melamine-glutaraldehyde dendrimer modified magnetic nanoparticles
Cacicedo et al. Immobilized enzymes and their applications
Wu et al. Electrospun blend nanofiber membrane consisting of polyurethane, amidoxime polyarcylonitrile, and β-cyclodextrin as high-performance carrier/support for efficient and reusable immobilization of laccase
Tan et al. Electrostatic interaction-induced formation of enzyme-on-MOF as chemo-biocatalyst for cascade reaction with unexpectedly acid-stable catalytic performance
Wang et al. Immobilization of cellulase on polyamidoamine dendrimer-grafted silica
El‐Zahab et al. Enabling multienzyme biocatalysis using nanoporous materials
Rekuć et al. Very stable silica-gel-bound laccase biocatalysts for the selective oxidation in continuous systems
Yang et al. Enzyme immobilization in cage-like 3D-network PVA-H and GO modified PVA-H (GO@ PVA-H) with stable conformation and high activity
Güleç Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics
EP0158909A2 (en) Immobilized enzymes, processes for preparing same and use thereof
JPS6029474B2 (ja) 固定された蛋白質及びその製造法
Silva et al. Immobilization of soybean peroxidase on silica-coated magnetic particles: a magnetically recoverable biocatalyst for pollutant removal
JPS5912275B2 (ja) 生物学的に活性な物質の固定化に関する改良法
Goldhahn et al. Enzyme immobilization inside the porous wood structure: a natural scaffold for continuous-flow biocatalysis
Zhang et al. Progress and perspective of enzyme immobilization on zeolite crystal materials
RU2741010C1 (ru) Гетерогенный катализатор жидкофазного окисления органических соединений и способ его получения
Malmsten et al. Immobilization of trypsin on porous glycidyl methacrylate beads: effects of polymer hydrophilization
Wang et al. PEGylation and macroporous carrier adsorption enabled long-term enzymatic transesterification
Rai et al. Development of recyclable magnetic cross-linked enzyme aggregates for the synthesis of high value rare sugar d-tagatose in aqueous phase catalysis
Primožič et al. Immobilized Laccase for Sustainable Technological Processes.
Han et al. Characterization of immobilized α-amylaseonfunctionalizedgraphene oxide surface
RU2807591C1 (ru) Магнитоотделяемый катализатор окисления органических соединений и способ его получения
RU2626964C1 (ru) Гетерогенный катализатор жидкофазного окисления органических соединений
WO2002010218A1 (en) Direct encapsulation of biomacromolecules in surfactant templated mesoporous and nanoporous materials