RU2739626C1 - Способ снижения гидродинамического сопротивления корпуса судна и скоростное судно с использованием данного способа - Google Patents

Способ снижения гидродинамического сопротивления корпуса судна и скоростное судно с использованием данного способа Download PDF

Info

Publication number
RU2739626C1
RU2739626C1 RU2020111884A RU2020111884A RU2739626C1 RU 2739626 C1 RU2739626 C1 RU 2739626C1 RU 2020111884 A RU2020111884 A RU 2020111884A RU 2020111884 A RU2020111884 A RU 2020111884A RU 2739626 C1 RU2739626 C1 RU 2739626C1
Authority
RU
Russia
Prior art keywords
ship
hull
water flow
jets
along
Prior art date
Application number
RU2020111884A
Other languages
English (en)
Inventor
Борис Никифорович Сушенцев
Original Assignee
Борис Никифорович Сушенцев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Борис Никифорович Сушенцев filed Critical Борис Никифорович Сушенцев
Priority to RU2020111884A priority Critical patent/RU2739626C1/ru
Application granted granted Critical
Publication of RU2739626C1 publication Critical patent/RU2739626C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • B63H11/103Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof having means to increase efficiency of propulsive fluid, e.g. discharge pipe provided with means to improve the fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Hydraulic Turbines (AREA)

Abstract

Изобретение относится к области судостроения, а именно к скоростным водоизмещающим судам, движущимся по поверхности воды и под водой. Предложен способ снижения гидродинамического сопротивления корпуса судна путем создания вдоль продольных поверхностей корпуса судна активного водяного потока при помощи истекающих струй из силовой водометной установки при помощи выпускных сопел, расположенных в виде двумерного массива по смоченной поверхности корпуса судна в зависимости от гидродинамического сопротивления участков корпуса судна, при этом вдоль корпуса судна выполняют продольные выемки парных расположенных симметрично диаметральной плоскости участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки внутри продольных выемок вогнутого сечения, закручивают при помощи тангенциально истекающих струй по направлению вращения потока либо при помощи винтовых лопаток, установленных в створе активного водяного потока. Предложено также судно, использующее данный способ снижения гидродинамического сопротивления корпуса. Технический результат заключается в минимизации гидродинамического сопротивления движущегося судна и, как следствие, увеличении скорости движения судна. 2 н.п. ф-лы, 24 ил.

Description

Изобретение относится к области судостроения, а именно к скоростным водоизмещающим судам, движущимся по поверхности воды и под водой. Известен способ снижения гидродинамического сопротивления судна путем эжектирования на поверхность корпуса судна вязкоупругого полимерного покрытия (см. патент РФ N 2501823, авторы Мур К.Дж. (US), Райен T.Д. (US), Мур К.M. (US), Бойс T.A. (US), публикация 20.12.2013 г.). Данная технология снижения гидродинамического сопротивления водной среды является слишком трудоемкой и дорогостоящей в реализации. Известен способ уменьшения поверхностного трения при движении тела в воде, при котором создается электрическое поле в пограничном слое окружающем поверхность тела, путем приложения электрического напряжения к проводящим участкам разделенных изолятором, при этом происходит образование пограничного газового слоя вокруг поверхности движущегося тела. (см. патент РФ N 2223195, авторы Дозоров Т.А., Смирнов Г.В., публикация 10.02.2004 г.). Известен способ снижения сопротивления при обтекании тела потоком жидкой или газовой среды, при котором создают циркуляцию среды между пространством вне тела и полостями внутри него (см. патент РФ N 2169097, авторы Альпин А.Я., Альпин В.А., публикация 20.06.2001 г.). Следует отметить, что все вышеприведенные аналоги решают задачу пассивного снижения сопротивления при движении тела в воде, что не дает существенного положительного эффекта от использования данных технологических решений. Известны технические решения по увеличению пропускной способности трубопроводов с использованием приспособлений в виде закручивающих плоскостей устанавливаемых внутри трубопроводов для закручивания потока жидкости по трубопроводу (см. австрийский патент N134543, публикация 25.08.1933 г., N138296, публикация 10.07.1934 г., автор В. Шаубергер). Также известно открытие N389 от 18.10.1990 г., (авторы Новиков И.И, Скобелкин В.И., Абрамович Г.И., Клячко Л.А.). В данном окрытии установлена закономерность по максимальному расходу закрученного потока жидкости. На основании вышепривенных закономерностей очевидным является вывод о снижении гидродинамического сопротивления стенок трубопроводов при пропускании по ним закрученного потока жидкости, поэтому следует признать целесообразным использование активного закрученного потока жидкости вдоль корпуса судна для снижения гидродинамического сопротивления корпуса судна. За прототип принято техническое решение реактивного водного движителя, включающего водометную силовую установку, водозаборные устройства, выпускные сопла, систему каналов-трубопроводов соединяющих водозаборные устройства с силовой водометной установкой и с выпускными соплами, при этом выпускные сопла расположены на участках смоченной поверхности корпуса судна в виде двумерного массива в зависимости от гидродинамического сопротивления участков корпуса судна, при этом истекание струй из выпускных сопел направлено вдоль поверхности корпуса судна, либо под острым углом к поверхности корпуса судна (патент РФ 2651949, автор Сушенцев Б.Н., публикация 24.04.2018 г.). Целью предлагаемого изобретения является использование эффекта активного закрученного потока жидкости вдоль поверхности соприкасающейся с водой для минимизации гидродинамического сопротивления движущегося судна, и как следствие увеличение скорости движения судна.
Данная цель достигается в предлагаемом способе снижения гидродинамического сопротивления корпуса судна путем создания вдоль продольных поверхностей корпуса судна активного водяного потока при помощи истекающих струй из силовой водометной установки при помощи выпускных сопел расположенных в виде двумерного массива по смоченной поверхности корпуса судна в зависимости от гидродинамического сопротивления участков корпуса судна, при этом вдоль корпуса судна выполняют продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки внутри продольных выемок вогнутого сечения закручивают при помощи тангенциально истекающих струй, либо при помощи винтовых лопаток установленных в створе активного водяного потока. Также указанная цель достигается в предлагаемом скоростном судне, включающем протяженный корпус, реактивный водный движитель с реактивной водометной установкой, водозаборные устройства, выпускные сопла, систему трубопроводов соединяющих водозаборные устройства с силовой водометной установкой и с выпускными соплами, при этом водовыпускные сопла от силовой водометной установки расположены на участках смоченной поверхности корпуса судна в виде двумерного массива в зависимости от гидродинамического сопротивления участков корпуса судна, при этом истекание струй из выпускных сопел от силовой водометной установки направлено вдоль поверхности корпуса судна, либо под острым углом к поверхности корпуса судна, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй, либо при помощи винтовых лопаток установленных в створе активного водяного потока. На иллюстрационных примерах данного изобретения показаны варианты исполнения водоизмещающих судов с использованием активного закрученного водяного потока вдоль поверхности корпуса судна для снижения гидродинамического сопротивления для надводных и подводных судов.
на фиг. 1 - вид сбоку скоростного крупнотоннажного водоизмещающего надводного судна включающего маршевую судовую силовую установку для привода гребных винтов, при этом гребные винты от маршевой судовой силовой установки располагаются в хвостовой части судна, дополнительную вспомогательную судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй по направлению вращения потока;
на фиг. 2 - вид сбоку скоростного крупнотоннажного водоизмещающего надводного судна включающего маршевую судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй по направлению вращения потока.
на фиг. 3 - вид А1-А1, схема создания закрученного активного водяного потока вдоль продольных вогнутых участков корпуса судна при помощи тангенциально истекающих струй по направлению вращения активного водяного потока, вид с носовой части судна по фиг. 1 и фиг. 2;
на фиг. 4 - вид сбоку скоростного крупнотоннажного водоизмещающего надводного судна включающего маршевую судовую силовую установку для привода гребных винтов, при этом гребные винты от маршевой судовой силовой установки располагаются в хвостовой части судна, дополнительную вспомогательную судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создается при помощи винтовых лопаток установленных в створе активного водяного потока;
на фиг. 5 - вид сбоку скоростного крупнотоннажного водоизмещающего надводного судна включающего маршевую судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи винтовых лопаток установленных в створе активного водяного потока.
на фиг. 6 - вид А2-А2, схема создания активного водяного потока вдоль продольных вогнутых участков корпуса судна при помощи винтовых лопаток установленных в створе активного водяного потока, вид с носовой части судна по фиг. 3 и фиг. 4;
на фиг. 7 - вид сбоку скоростного водоизмещающего надводного судна малой осадки включающего маршевую судовую силовую установку для привода гребных винтов, при этом гребные винты от маршевой судовой силовой установки располагаются в хвостовой части судна, дополнительную вспомогательную судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй по направлению вращения потока;
на фиг. 8 - вид сбоку скоростного водоизмещающего надводного судна малой осадки включающего маршевую судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй по направлению вращения потока;
на фиг. 9 - вид A3-A3, схема создания закрученного активного водяного потока вдоль продольных вогнутых участков корпуса судна при помощи тангенциально истекающих струй по направлению вращения активного водяного потока, вид с носовой части судна по фиг. 8 и фиг. 9;
на фиг. 10 - вид сбоку скоростного водоизмещающего надводного судна малой осадки включающего маршевую судовую силовую установку для привода гребных винтов, при этом гребные винты от маршевой судовой силовой установки располагаются в хвостовой части судна, дополнительную вспомогательную судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи винтовых лопаток установленных в створе активного водяного потока;
на фиг. 11 - вид сбоку скоростного водоизмещающего надводного судна малой осадки включающего маршевую судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи винтовых лопаток установленных в створе активного водяного потока;
на фиг. 12 - вид А4-А4, схема создания закрученного активного водяного потока вдоль продольных вогнутых участков корпуса судна при помощи винтовых лопаток установленных в створе активного водяного потока, вид с носовой части судна по фиг. 11 и фиг. 12;
на фиг. 13 - вид сбоку скоростного ныряющего судна движущегося в надводном положении, включающего маршевую судовую силовую установку для привода гребных винтов, при этом гребные винты от маршевой судовой силовой установки располагаются в хвостовой части судна, дополнительную вспомогательную судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй по направлению вращения потока;
на фиг. 14 - вид сбоку скоростного ныряющего судна движущегося в надводном положении, включающего маршевую судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй по направлению вращения потока;
на фиг. 15 - вид А5-А5, схема создания закрученного активного водяного потока вдоль продольных вогнутых участков корпуса судна при помощи тангенциально истекающих струй по направлению вращения активного водяного потока, вид с носовой части судна по фиг. 13 и фиг. 14;
на фиг. 16 - вид сбоку скоростного ныряющего судна движущегося в подводном положении, включающего маршевую судовую силовую установку для привода гребных винтов, при этом гребные винты от маршевой судовой силовой установки располагаются в хвостовой части судна, дополнительную вспомогательную судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерною массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй по направлению вращения потока;
на фиг. 17 - вид сбоку скоростного ныряющего судна движущегося в подводном положении, включающего маршевую судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи тангенциально истекающих струй по направлению вращения потока;
на фиг. 18 - вид А6-А6, схема создания закрученного активного водяного потока вдоль продольных вогнутых участков корпуса судна при помощи тангенциально истекающих струй по направлению вращения активного водяного потока, вид с носовой части судна по фиг. 15 и фиг. 16;
на фиг. 19 - вид сбоку скоростного ныряющего судна движущегося в надводном положении, включающего маршевую судовую силовую установку для привода гребных винтов, при этом гребные винты от маршевой судовой водометной силовой установки располагаются в хвостовой части судна, дополнительную вспомогательную судовую силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи винтовых лопаток установленных в створе активного водяного потока;
на фиг. 20 - вид сбоку скоростного ныряющего судна движущегося в надводном положении, включающего маршевую судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи винтовых лопаток установленных в створе активного водяного потока;
на фиг. 21 - вид А7-А7, схема создания закрученного активного водяного потока вдоль продольных вогнутых участков корпуса судна при помощи винтовых лопаток установленных в створе активного водяного потока, вид с носовой части судна по фиг. 19 и фиг. 20.
на фиг. 22 - вид сбоку скоростного ныряющего судна движущегося в подводном положении, включающего маршевую судовую силовую установку для привода гребных винтов, при этом гребные винты от маршевой судовой водометной силовой установки располагаются в хвостовой части судна, дополнительную вспомогательную судовую силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи винтовых лопаток установленных в створе активного водяного потока;
на фиг. 23 - вид сбоку скоростного ныряющего судна движущегося в подводном положении, включающего маршевую судовую водометную силовую установку для обеспечения высокоскоростного поверхностного потока воды вдоль наружной смачиваемой поверхности корпуса судна через выпускные сопла расположенные по смачиваемой поверхности корпуса судна в виде двумерного массива, при этом истекание реактивных водяных струй из поверхностных выпускных сопел направлено вдоль наружной поверхности корпуса судна в направлении против направления движения, при этом вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток вдоль продольных вогнутых участков корпуса судна, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки закручивается при помощи винтовых лопаток установленных в створе активного водяного потока;
на фиг. 24 - вид А8-А8, схема создания закрученного активного водяного потока вдоль продольных вогнутых участков корпуса судна при помощи винтовых лопаток установленных в створе активного водяного потока, вид с носовой части судна по фиг. 22 и фиг. 23.
На представленных чертежах позициями обозначены:
поз. 1 - корпус морского надводного крупнотоннажного водоизмещающего судна;
поз. 2 - корпус надводного водоизмещающего судна с малой осадкой;
поз. 3 - корпус подводного судна;
поз. 4 - продольная выемка вогнутого сечения вдоль корпуса судна в виде лекально сочлененных овальных поверхностей;
поз. 5 - выпускное сопло от силовой водометной установки с истечением реактивной струи вдоль наружной поверхности корпуса судна в направлении против направления движения;
поз. 6 - выпускное сопло от силовой водометной установки с истечением реактивной струи вдоль наружной поверхности продольной выемки вогнутого сечения корпуса судна в направлении тангенциально по направлению вращения активного водяного потока;
поз. 7 - винтовая лопатка, установленная в створе активного водяного потока;
поз. 8 - гребной винт от маршевой судовой силовой установки;
поз. 9 - вертикальный цельноповоротный руль в хвостовой части корпуса судна;
поз. 10 - область закрученного активного водяного потока вдоль продольных вогнутых участков корпуса судна;
поз. 11 - горизонтальный цельноповоротный руль.

Claims (2)

1. Способ снижения гидродинамического сопротивления корпуса судна, включающий создание вдоль продольных поверхностей корпуса судна активного водяного потока при помощи истекающих струй из силовой водометной установки при помощи выпускных сопел, расположенных в виде двумерного массива по смоченной поверхности корпуса судна в зависимости от гидродинамического сопротивления участков корпуса судна, отличающийся тем, что вдоль корпуса судна выполняют продольные выемки парных симметрично расположенных относительно диаметральной плоскости судна участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки внутри продольных выемок вогнутого сечения, закручивают при помощи тангенциально истекающих струй по направлению вращения потока либо при помощи винтовых лопаток, установленных в створе активного водяного потока.
2. Судно, включающее протяженный корпус, реактивный водный движитель с реактивной водометной установкой, водозаборные устройства, выпускные сопла, систему трубопроводов, соединяющих водозаборные устройства с силовой водометной установкой и с выпускными соплами, при этом водовыпускные сопла от силовой водометной установки расположены на участках смоченной поверхности корпуса судна в виде двумерного массива в зависимости от гидродинамического сопротивления участков корпуса судна, при этом истекание струй из выпускных сопел от силовой водометной установки направлено вдоль поверхности корпуса судна либо под острым углом к поверхности корпуса судна, отличающееся тем, что вдоль корпуса судна выполнены продольные выемки парных симметрично расположенных относительно диаметральной плоскости судна участков вогнутого сечения в виде лекально сочлененных овальных поверхностей, при этом активный водяной поток, создаваемый при помощи истекающих струй из выпускных сопел из силовой водометной установки внутри продольных выемок вогнутого сечения, закручивается при помощи тангенциально истекающих струй по направлению вращения потока либо при помощи винтовых лопаток, установленных в створе активного водяного потока.
RU2020111884A 2020-03-23 2020-03-23 Способ снижения гидродинамического сопротивления корпуса судна и скоростное судно с использованием данного способа RU2739626C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020111884A RU2739626C1 (ru) 2020-03-23 2020-03-23 Способ снижения гидродинамического сопротивления корпуса судна и скоростное судно с использованием данного способа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020111884A RU2739626C1 (ru) 2020-03-23 2020-03-23 Способ снижения гидродинамического сопротивления корпуса судна и скоростное судно с использованием данного способа

Publications (1)

Publication Number Publication Date
RU2739626C1 true RU2739626C1 (ru) 2020-12-28

Family

ID=74106357

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020111884A RU2739626C1 (ru) 2020-03-23 2020-03-23 Способ снижения гидродинамического сопротивления корпуса судна и скоростное судно с использованием данного способа

Country Status (1)

Country Link
RU (1) RU2739626C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057006A1 (en) * 1998-05-06 1999-11-11 Luigi Mascellaro Hull for shipping with a mono-three-catamaran architecture
RU2169097C2 (ru) * 1998-06-22 2001-06-20 Альпин Александр Яковлевич Способ для снижения сопротивления при обтекании тела потоком жидкой или газовой среды
US20070017588A1 (en) * 2003-07-22 2007-01-25 Aloys Wobben Flow channel for liquids
GB2489551A (en) * 2011-03-31 2012-10-03 Nicholas Paul Robinson Drag-reducing arrangement for marine vessels
JP2018016244A (ja) * 2016-07-29 2018-02-01 Ntn株式会社 船艇
RU2651949C1 (ru) * 2017-02-14 2018-04-24 Борис Никифорович Сушенцев Многоструйный реактивный движитель для высокоскоростных судов, движущихся по поверхности воды, над поверхностью воды и под водой (варианты)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057006A1 (en) * 1998-05-06 1999-11-11 Luigi Mascellaro Hull for shipping with a mono-three-catamaran architecture
RU2169097C2 (ru) * 1998-06-22 2001-06-20 Альпин Александр Яковлевич Способ для снижения сопротивления при обтекании тела потоком жидкой или газовой среды
US20070017588A1 (en) * 2003-07-22 2007-01-25 Aloys Wobben Flow channel for liquids
GB2489551A (en) * 2011-03-31 2012-10-03 Nicholas Paul Robinson Drag-reducing arrangement for marine vessels
JP2018016244A (ja) * 2016-07-29 2018-02-01 Ntn株式会社 船艇
RU2651949C1 (ru) * 2017-02-14 2018-04-24 Борис Никифорович Сушенцев Многоструйный реактивный движитель для высокоскоростных судов, движущихся по поверхности воды, над поверхностью воды и под водой (варианты)

Similar Documents

Publication Publication Date Title
RU2651949C1 (ru) Многоструйный реактивный движитель для высокоскоростных судов, движущихся по поверхности воды, над поверхностью воды и под водой (варианты)
DK2570341T3 (en) propeller nozzle
KR101326621B1 (ko) 선박용 추진 및 조타 장치
US3455268A (en) Nonsymmetric shroud-propeller combination for directional control
JP2008018927A (ja) 船舶推進システム
US20050215132A1 (en) Line design and propulsion system for a directionally stable, seagoing boat with rudder propeller drive system
KR20190004090A (ko) 유동 저항감소를 위한 선박의 선미구조
US6647909B1 (en) Waveless hull
RU2739626C1 (ru) Способ снижения гидродинамического сопротивления корпуса судна и скоростное судно с использованием данного способа
RU2738488C1 (ru) Способ снижения гидродинамического сопротивления корпуса судна и скоростное судно с использованием данного способа
KR20160128337A (ko) 주 및 이차 추진 디바이스들에 의해 제공되는 선박 추진과 관련된 개선 사항들
KR101225175B1 (ko) 추진장치 및 이를 포함하는 선박
KR20090106118A (ko) 선박의 유동 박리 제어장치
KR102061840B1 (ko) 허브 볼텍스 캐비테이션 저감형 러더 벌브
US7144282B1 (en) Contoured rudder maneuvering of waterjet propelled sea craft
RU2301761C1 (ru) Гребной винт с направляющей насадкой конструкции землякова
RU2106279C1 (ru) Катамаран
RU2653983C1 (ru) Надводно-подводный аппарат с изменяемой геометрией формы корпуса
KR101790434B1 (ko) 물 튀김 방지 구조의 보트
KR20090117486A (ko) 스크류 프로펠러로 추진되는 선박
RU2457146C1 (ru) Корпус транспортного средства
CN212861810U (zh) 船舶三叉戟舵鳍
KR20230017270A (ko) 수상 이동체에 필요한 추진 동력을 저감시키는 장치
RU2672347C1 (ru) Гибридный подводный движитель
KR102288939B1 (ko) 러더벌브를 포함하는 선박용 방향타