RU2739267C1 - Способ дистанционного определения результата поражающего действия электромагнитного излучения на радиоприёмные устройства с помощью зондирующих радиочастотных импульсов - Google Patents

Способ дистанционного определения результата поражающего действия электромагнитного излучения на радиоприёмные устройства с помощью зондирующих радиочастотных импульсов Download PDF

Info

Publication number
RU2739267C1
RU2739267C1 RU2020124321A RU2020124321A RU2739267C1 RU 2739267 C1 RU2739267 C1 RU 2739267C1 RU 2020124321 A RU2020124321 A RU 2020124321A RU 2020124321 A RU2020124321 A RU 2020124321A RU 2739267 C1 RU2739267 C1 RU 2739267C1
Authority
RU
Russia
Prior art keywords
radio
electromagnetic radiation
probing
frequency pulses
radio frequency
Prior art date
Application number
RU2020124321A
Other languages
English (en)
Inventor
Евгений Александрович Бортунов
Евгений Николаевич Бойко
Евгений Викторович Иванов
Дмитрий Юрьевич Сосков
Original Assignee
Федеральное государственное казенное учреждение "12 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное учреждение "12 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное учреждение "12 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации
Priority to RU2020124321A priority Critical patent/RU2739267C1/ru
Application granted granted Critical
Publication of RU2739267C1 publication Critical patent/RU2739267C1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к способу дистанционного определения результата действия электромагнитного излучения на радиоприемные устройства с помощью зондирующих радиочастотных импульсов. Для осуществления способа облучают заведомо работоспособное радиоприемное устройство зондирующими радиочастотными импульсами, осуществляют облучение не менее чем одним зондирующим радиочастотным импульсом до воздействия электромагнитного излучения и не менее чем одним зондирующим радиочастотным импульсом после воздействия электромагнитного излучения, осуществляют прием отраженных зондирующих сигналов и измерение их амплитуд, при этом временные и энергетические параметры зондирующих радиочастотных импульсов до и после воздействия электромагнитным излучением задают полностью идентичными, а длины волн зондирующих радиочастотных импульсов выбирают в диапазоне рабочих частот радиоприемного устройства, сравнивают амплитуды отраженных зондирующих радиочастотных импульсов и по результатам сравнения делают вывод о результате поражающего действия электромагнитного излучения. Обеспечивается возможность дистанционного определения работоспособности радиоприемного устройства после облучения его поражающим электромагнитным излучением.

Description

Изобретение относится к области радиотехники и может быть использовано для дистанционного определения функционального состояния подвергшихся воздействию электромагнитным излучением радиоприемных устройств.
В настоящее время отмечается интенсивное развитие новых средств ведения вооруженной борьбы, основанных на ранее не использовавшихся физических, биологических и других принципах действия и технических решениях. Одним из наиболее перспективных направлений развития вооружений стало создание и развертывание комплексов электромагнитного оружия, предназначенных для поражения разнотипных радиоэлектронных средств. При этом в качестве объектов воздействия могут выступать радиолокационные станции, наземные робототехнические комплексы, беспилотные летательные аппараты, средства высокоточного оружия (ВТО) и т.д.
Вместе с тем современный уровень развития техники не позволяет создавать электромагнитное оружие, способное обеспечить физическое уничтожение целей. Возможным на сегодняшний день является только специфическое деструктивное воздействие на электронные элементы средств и систем. В этом случае в условиях вооруженного противоборства не всегда представляется возможным однозначно определить результаты поражающего действия электромагнитного излучения на облучаемую цель. Например, это может быть ВТО (радиоуправляемая противотанковая ракета, крылатая ракета) на участке траектории движения от пусковой установки до цели. Что касается наземных робототехнических комплексов, то в качестве причины прекращения их движения может выступать как отказ определенных функциональных узлов, так и программно заложенные действия, связанные с особенностями выполняемой тактической задачи.
В связи с этим актуальной становится разработка способа дистанционного определения функционального состояния подвергшегося воздействию электромагнитным излучением радиоэлектронного устройства входящего в состав объекта вооружения, военной и специальной техники (ВВСТ).
При этом очевидно, что наиболее чувствительными к воздействию электромагнитным излучением являются объекты (цели), оснащенные радиоприемными устройствами, в частности их входные каскады, непосредственно связанные с антенно-фидерными трактами.
Известен способ поиска, обнаружения и распознавания электронных устройств с полупроводниковыми элементами несанкционированно установленных на контролируемом объекте [патент РФ на изобретение №2432583]. Он заключается в облучении обследуемого объекта импульсным электромагнитным полем зондирующих сигналов с изменяющейся поочередно частотой в пределах трех диапазонов и одинаковой мощностью излучения. Синхронно с облучением в каждом диапазоне частот осуществляется прием вторых гармоник отраженных сигналов, выделение максимального уровня второй гармоники и установление по нему соответствующей частоты зондирующего сигнала импульсного излучения, по которой судят о наличии на объекте устройства с полупроводниковыми элементами и его рабочем диапазоне частот. Также по направлению ориентации электрической оси антенны зондирующего сигнала определяется зона расположения устройства. Данный способ позволяет осуществлять поиск местонахождения электронного устройства, но не способен определить его функциональное состояние.
Известен способ, реализуемый с помощью устройства дистанционного разминирования [патент РФ на изобретение №2638886]. Он заключается в обнаружении минно-взрывных устройств с металлическими элементами с помощью сверхвысокочастотного (СВЧ) излучения. Кроме того, использование СВЧ излучения обеспечивает дистанционное бесконтактное обезвреживание замаскированных радиоуправляемых взрывных устройств. Недостатком данного способа является его применимость исключительно для поиска и обезвреживания мин с электронными взрывателями и неприспособленность для дистанционного определения функционального состояния обнаруженного радиоэлектронного устройства.
Известен способ диагностики фазированной антенной решетки (ФАР) [патент РФ на изобретение №2695765]. Он основан на измерении диаграммы направленности ФАР радиолокационной станции (РЛС) путем сканирования луча и измерения уровня сигнала на выходе диагностируемого устройства от вынесенного источника при различных угловых положениях луча.
Сканирование луча осуществляют в процессе обзора пространства с помощью РЛС, а в качестве сигнала используют ее зондирующий сигнал, отраженный от одиночного отражателя. Полученную таким образом диаграмму направленности сравнивают с эталонной, полученной от исправной ФАР. В зависимости от их соответствия принимается решение об исправности или неисправности ФАР РЛС.
Указанный способ выбран в качестве прототипа.
Его главным недостатком является то, что он предназначен исключительно для дистанционной диагностики работоспособности источника электромагнитного излучения и не позволяет определять функциональное состояние облучаемого объекта.
Технический результат, на решение которого направлено изобретение заключается в дистанционном определении работоспособности радиоприемного устройства после облучения его поражающим электромагнитным излучением.
Достижение технического результата обеспечивается тем, что в заявляемом способе дистанционное определение результата воздействия электромагнитным излучением на радиоприемные устройства осуществляется облучением заведомо работоспособного радиоприемного устройства зондирующими радиочастотными импульсами - не менее чем одним зондирующим радиочастотным импульсом до воздействия электромагнитным излучением и не менее чем одним зондирующим радиочастотным импульсом после воздействия электромагнитным излучением, осуществляют прием отраженных зондирующих сигналов и измерение их амплитуд, при этом временные и энергетические параметры зондирующих радиочастотных импульсов до и после воздействия электромагнитным излучением задают полностью идентичными, а длины волн зондирующих радиочастотных импульсов выбирают в диапазоне рабочих частот радиоприемного устройства, сравнивают амплитуды отраженных зондирующих радиочастотных импульсов и по результатам сравнения делают вывод о результате поражающего действия электромагнитного излучения.
Известно, что поле рассеяния антенн, нагруженных на согласованную нагрузку и облучаемых внешним источником, является существенным демаскирующим фактором радиосистемы как в режиме работы, так и в режиме "молчания" [Аль-Рифаи Абдульмуин Эффективная площадь рассеяния вибраторных антенн в широкой полосе частот // Доклады Белорусского государственного университета информатики и радиоэлектроники, 2007, №2(18), с. 59-63]. В этом случае в линии «антенна-нагрузка» будет распространяться бегущая волна [Теоретические основы электротехники. Версия 1.0 [Электронный ресурс]: конспект лекций/ Иванова С.Г. ИПК СФУ, Красноярск, www.studmed.ru, 2008]. Важным является тот факт, что выход из строя каких-либо функциональных узлов нагрузки (например, полупроводниковых элементов интегрированных в печатную плату) неизбежно приведет к ее рассогласованию, следствием чего станет распространение в линии «антенна-нагрузка», облучаемой внешним источником, стоячей волны [Теоретические основы электротехники. Версия 1.0 [Электронный ресурс]: конспект лекций / Иванова С.Г. ИПК СФУ, Красноярск, www.studmed.ru, 2008].
Таким образом, при согласованной нагрузке большая часть энергии зондирующего радиочастотного импульса будет затухать в ней, а при рассогласованной нагрузке отразится от радиоприемного устройства, так как наибольшие значения коэффициент отражения принимает в режимах короткого замыкания и холостого хода [Иванова С.Г. Теоретические основы электротехники. Версия 1.0 [электронный ресурс]: конспект лекций / ИПК СФУ, Красноярск, www. studmed.ru, 2008; Семенов А.А. Теория электромагнитных волн. М.: Издательство Московского университета, 1968].
При этом качество согласования антенны с линией передачи определяется коэффициентом стоячей волны, который представляет собой отношение наибольшего значения амплитуды напряженности поля стоячей волны в линии передачи к наименьшему [ГОСТ 18238-72]. Отсюда следует, что в качестве ключевого параметра отраженного зондирующего радиочастотного импульса в данном случае выступает его амплитуда.
Указанный подход позволяет рассматривать зондирующий радиочастотный импульс, отраженный от заведомо исправного радиоприемного устройства (согласованной антенны), как эталонный. Сравнение его амплитуды с амплитудой импульса отраженного от подвергшегося воздействию электромагнитным излучением объекта (цели) позволяет определить функциональное состояние последнего, так как амплитуда радиочастотного импульса, отраженного от радиоприемного устройства с рассогласованной нагрузкой будет превышать амплитуду эталонного импульса. При равенстве амплитуд отраженных сигналов можно сделать вывод о том, что устройство, подвергшееся поражающему действию электромагнитным излучением, сохранило свою работоспособность.
Реализацию патентуемого способа демонстрирует следующий пример. Известно, что пользовательская аппаратура (в данном случае оборудование, установленное на ОВВСТ) систем глобального позиционирования является беззапросной, то есть предназначенной исключительно для приема сигнала. Сами радиоприемные устройства современных систем глобального позиционирования включают в себя широкополосную антенну с диапазоном рабочих частот от 1,1 ГГц до 1,67 ГГц [патент РФ на изобретение №2543521]. Исходя из этого, зондирующие радиочастотные импульсы, используемые для определения функционального состояния указанных устройств, также должны лежать в обозначенных границах.
Обнаруженный объект-цель, оснащенный заведомо исправным радиоприемным устройством системы глобального позиционирования, облучается зондирующим радиочастотным импульсом, лежащем в диапазоне частот от 1,1 ГГц до 1,67 ГГц, и осуществляется прием отраженного от радиоприемного устройства сигнала, который в дальнейшем будет восприниматься как эталонный. Следующим этапом является силовое поражающее воздействие на объект (цель) электромагнитным излучением. Завершающий этап представляет собой повторное облучение объекта (цели) зондирующим радиочастотным импульсом, полностью идентичным первоначальному зондирующему импульсу, с приемом отраженного сигнала. Определение функционального состояния облученного радиоприемного устройства системы глобального позиционирования осуществляется путем сравнения амплитуды отраженного сигнала, полученного на завершающем этапе, с амплитудой эталонного сигнала. Равенство амплитуд говорит о сохранении радиоприемным устройством работоспособного состояния, превышение амплитуды отраженного сигнала, полученного на завершающем этапе, над амплитудой эталонного сигнала, говорит о выходе его из строя.
Таким образом, заявленный технический результат достигается сравнением амплитуд зондирующих сигналов, отраженных от поражаемого радиоприемного устройства до воздействия электромагнитным излучением и после него.

Claims (1)

  1. Способ дистанционного определения результата действия электромагнитного излучения на радиоприемные устройства с помощью зондирующих радиочастотных импульсов, заключающийся в облучении заведомо работоспособного радиоприемного устройства зондирующими радиочастотными импульсами, отличающийся тем, что осуществляют облучение не менее чем одним зондирующим радиочастотным импульсом до воздействия электромагнитным излучением и не менее чем одним зондирующим радиочастотным импульсом после воздействия электромагнитным излучением, осуществляют прием отраженных зондирующих сигналов и измерение их амплитуд, при этом временные и энергетические параметры зондирующих радиочастотных импульсов до и после воздействия электромагнитным излучением задают полностью идентичными, а длины волн зондирующих радиочастотных импульсов выбирают в диапазоне рабочих частот радиоприемного устройства, сравнивают амплитуды отраженных зондирующих радиочастотных импульсов и по результатам сравнения делают вывод о результате поражающего действия электромагнитного излучения.
RU2020124321A 2020-07-22 2020-07-22 Способ дистанционного определения результата поражающего действия электромагнитного излучения на радиоприёмные устройства с помощью зондирующих радиочастотных импульсов RU2739267C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020124321A RU2739267C1 (ru) 2020-07-22 2020-07-22 Способ дистанционного определения результата поражающего действия электромагнитного излучения на радиоприёмные устройства с помощью зондирующих радиочастотных импульсов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020124321A RU2739267C1 (ru) 2020-07-22 2020-07-22 Способ дистанционного определения результата поражающего действия электромагнитного излучения на радиоприёмные устройства с помощью зондирующих радиочастотных импульсов

Publications (1)

Publication Number Publication Date
RU2739267C1 true RU2739267C1 (ru) 2020-12-22

Family

ID=74062840

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020124321A RU2739267C1 (ru) 2020-07-22 2020-07-22 Способ дистанционного определения результата поражающего действия электромагнитного излучения на радиоприёмные устройства с помощью зондирующих радиочастотных импульсов

Country Status (1)

Country Link
RU (1) RU2739267C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU74217U1 (ru) * 2008-03-17 2008-06-20 Открытое акционерное общество "Концерн "Гранит-Электрон" Комплекс для проверки корабельной радиолокационной системы
RU2499277C1 (ru) * 2012-07-30 2013-11-20 Федеральное государственное казенное образовательное учреждение высшего профессионального образования "Калининградский пограничный институт Федеральной службы безопасности Российской Федерации" Импульсный нелинейный радиолокатор
RU2533659C1 (ru) * 2013-04-09 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Автономное радиолокационное устройство селекции воздушной цели
RU2541886C2 (ru) * 2012-06-09 2015-02-20 Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО "ТНИИС") Комплекс радиоэлектронного подавления системы радиосвязи
CN104380136A (zh) * 2012-06-25 2015-02-25 奥托里夫Asp股份有限公司 用于三维探测的双通道单脉冲雷达

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU74217U1 (ru) * 2008-03-17 2008-06-20 Открытое акционерное общество "Концерн "Гранит-Электрон" Комплекс для проверки корабельной радиолокационной системы
RU2541886C2 (ru) * 2012-06-09 2015-02-20 Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО "ТНИИС") Комплекс радиоэлектронного подавления системы радиосвязи
CN104380136A (zh) * 2012-06-25 2015-02-25 奥托里夫Asp股份有限公司 用于三维探测的双通道单脉冲雷达
RU2499277C1 (ru) * 2012-07-30 2013-11-20 Федеральное государственное казенное образовательное учреждение высшего профессионального образования "Калининградский пограничный институт Федеральной службы безопасности Российской Федерации" Импульсный нелинейный радиолокатор
RU2533659C1 (ru) * 2013-04-09 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Автономное радиолокационное устройство селекции воздушной цели

Similar Documents

Publication Publication Date Title
Budge et al. Basic RADAR analysis
Mazzaro et al. Nonlinear radar for finding RF electronics: System design and recent advancements
US8275572B2 (en) Difference frequency detection with range measurement
US8063813B1 (en) Active improvised explosive device (IED) electronic signature detection
US8054212B1 (en) Multi-band receiver using harmonic synchronous detection
Pace Detecting and classifying low probability of intercept radar
US7512511B1 (en) Improvised explosive device countermeasures
US20130063299A1 (en) Systems, Methods and Apparatuses for Remote Device Detection
US20060082488A1 (en) Advanced electromagnetic location of electronic equipment
Skolnik Fifty years of radar
RU2285939C1 (ru) Способ контроля воздушного пространства, облучаемого внешними источниками излучения, и радиолокационная станция для его реализации
EP2312339B1 (en) Multiple beam directed energy system and operating method thereof
Shoykhetbrod et al. A scanning FMCW-radar system for the detection of fast moving objects
RU2739267C1 (ru) Способ дистанционного определения результата поражающего действия электромагнитного излучения на радиоприёмные устройства с помощью зондирующих радиочастотных импульсов
Matuszewski Jamming efficiency of land-based radars by the airborne jammers
Hudec et al. Multimode adaptable microwave radar sensor based on leaky-wave antennas
US8068048B1 (en) Wireless microwave interferer for destructing, disabling, or jamming a trigger of an improvised explosive device
RU2556708C1 (ru) Посадочный радиолокатор
Pisa et al. Evaluating the radar cross section of the commercial IRIS drone for anti-drone passive radar source selection
RU2741057C1 (ru) Способ радиолокационного распознавания классов воздушно-космических объектов для многодиапазонного разнесенного радиолокационного комплекса с фазированными антенными решетками
RU2205418C1 (ru) Способ защиты радиолокационных станций от противорадиолокационных ракет и разведывательных летательных аппаратов
RU223776U1 (ru) Координатор цели самоприцеливающегося боевого элемента
RU2696006C1 (ru) Способ и устройство обнаружения неподвижных малоразмерных объектов искусственного происхождения
Popela et al. The test and verification of parameters of particular radars using a MRP-4M
RU2211458C2 (ru) Способ радиолокационного обнаружения и измерения координат объектов