RU2696006C1 - Способ и устройство обнаружения неподвижных малоразмерных объектов искусственного происхождения - Google Patents

Способ и устройство обнаружения неподвижных малоразмерных объектов искусственного происхождения Download PDF

Info

Publication number
RU2696006C1
RU2696006C1 RU2018107345A RU2018107345A RU2696006C1 RU 2696006 C1 RU2696006 C1 RU 2696006C1 RU 2018107345 A RU2018107345 A RU 2018107345A RU 2018107345 A RU2018107345 A RU 2018107345A RU 2696006 C1 RU2696006 C1 RU 2696006C1
Authority
RU
Russia
Prior art keywords
objects
order
reflected signal
carrier frequency
synchronizer
Prior art date
Application number
RU2018107345A
Other languages
English (en)
Inventor
Михаил Григорьевич Блайвас
Вадим Владимирович Дмитриев
Ирина Николаевна Замятина
Алексей Владимирович Николаев
Original Assignee
Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" filed Critical Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники"
Priority to RU2018107345A priority Critical patent/RU2696006C1/ru
Application granted granted Critical
Publication of RU2696006C1 publication Critical patent/RU2696006C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ) ближнего действия, осуществляющих дистанционное обнаружение на дальностях порядка сотен метров объектов искусственного происхождения, к которым относятся объекты военного назначения. Достигаемый технический результат - повышение вероятности обнаружения неподвижных малоразмерных объектов искусственного происхождения, в том числе и малоразмерных объектов военного назначения, независимо от их функционального состояния, условий окружающей среды и радиолокационного фона. Указанный технический результат достигается за счет использования двухчастотного способа зондирования периодической последовательностью гармонических колебаний с высокой скважностью (не менее 10) на двух разных несущих частотах ƒ1 и ƒ2, причем ƒ12<2ƒ1, с одновременной регистрацией комбинационных составляющих второго (ƒ12) и третьего (2ƒ12) порядка и вторых гармоник 2ƒ1 и 2ƒ2 каждого из зондирующих сигналов (ЗС). При этом несущая частота ƒ1 первого ЗС остается постоянной, а несущая частота

Description

Изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (HPЛ) ближнего действия, осуществляющих дистанционное обнаружение на дальностях порядка сотен метров объектов искусственного происхождения, к которым относятся объекты военного назначения, а именно, современные танки, БМП, артиллерийские установки и другая военная и специальная техника, имеющая в своем составе нелинейные элементы (наружное оборудование с радио и электронными устройствами, точечными прижимными контактами, обладающие нелинейными электромагнитными свойствами). Также изобретение может быть использовано для наведения оружия (противотанковых управляемых ракет, управляемых ракет класса «земля-земля», специальных боеприпасов и т.п.) на такие неподвижные малоразмерные объекты военного назначения с малой величиной эффективной площади рассеяния (ЭПР), в том числе и находящихся на закрытых огневых позициях, в условиях сильных фоновых радиоотражений.
В линейной ближней радиолокации для обнаружения танков, БМП, артиллерийских установок и другой военной и специальной техники широко применяется способ, основанный на эффекте Доплера, вызванный движением малоразмерного объекта военного назначения. Обнаружение осуществляется за счет регистрации собственного движения объектов на марше или за счет «засечки» полета траекторий снарядов и боеприпасов, выпущенных ими [1]. Использованию других способов радиолокационного обнаружения препятствуют отражения радиоволны от подстилающей поверхности.
Для дистанционного обнаружения наземных неподвижных объектов, в том числе укрытых с применением табельных и подручных средств маскировки, данный способ обнаружения не подходит, т.к. во-первых, будет отсутствовать эффект Доплера, во-вторых, дальность обнаружения объектов во многом будет зависеть от наличия на объекте радиопоглощающих покрытий, а также высоты объекта над уровнем земли и высоты подъема антенны средства обнаружения (последнее, как известно, также снижает заметность самого средства обнаружения).
Известны также акустические, тепловизионные способы обнаружения объектов военного назначения.
Недостатками данных способов обнаружения являются их низкая имитостойкость к имитаторам целей, отсутствие возможности обнаружения объекта при условии одинакового контраста между объектом и фоном (землей), кроме того сложные метео и искусственные условия (снег, дождь, применение специальных аэрозолей) приводят к снижению их эффективности.
Поэтому, задача обнаружения неподвижных малоразмерных объектов искусственного происхождения, в том числе и малоразмерных объектов военного назначения, независимо от их функционального состояния, условий окружающей среды и радиолокационного фона остается весьма актуальной, но ее можно решить с помощью нелинейной радиолокации.
Наличие в составе малоразмерных объектов искусственного происхождения, в том числе и малоразмерных объектов военного назначения, наружного оборудования с радио и электронными устройствами, точечных прижимных контактов, обладающих нелинейными электромагнитными свойствами, позволяет применить для их обнаружения HPЛ, т.к. отражение от таких объектов поиска происходит не только на основной частоте зондирующего сигнала (ЗС), но и на его гармониках и комбинационных составляющих, возникающих при нелинейном преобразовании в элементах, являющихся их составной частью - нелинейных элементах (НЭ). Какие гармоники и комбинационные составляющие появляются в спектре отраженного от объекта поиска сигнала, зависит от вольт-амперной характеристики (ВАХ) НЭ и типа ЗС. Так, согласно [2], отражение от объектов поиска, в состав которых входят радио и электронные устройства, происходит на спектральных составляющих второго порядка из-за квадратичного характера их ВАХ; если же в состав объектов поиска входят прижимные контакты (контактирующие металлические поверхности), то отражение от них происходит на спектральных составляющих третьего порядка из-за кубичного характера их ВАХ.
Для эффективного обнаружения объектов поиска, содержащих НЭ, особенно находящихся в условиях сильных фоновых радиоотражений, в условиях сложной окружающей среды, необходимо добиться максимального выигрыша в характеристиках отраженного от объекта поиска сигнала (значениях отклика на той или иной спектральной составляющей, фазовых и поляризационных характеристиках т.д.), и правильного выбора того или иного нелинейного эффекта для использования его в поисковой системе, которые определяются типом обнаруживаемых объектов, ожидаемыми условиями их установки, необходимыми дальностью и скоростью поиска и т.д.
Отражательная способность любого объекта поиска характеризуется эффективной площадью рассеяния (ЭПР). В частности, для объектов, содержащих НЭ, величина нелинейной ЭПР (НЭПР) зависит от их вида ВАХ и вольткулонных характеристик и частотных свойств, размеров и ориентации в пространстве по отношению к передающей и приемной антеннам, материалов из которых они изготовлены, длины волны ЗС и т.д.
Следовательно, и положение максимума диаграммы обратного рассеяния (ДОР) (зависимость НЭПР от угла отражения) сильно зависит от многих факторов. В работе [3], были сделаны теоретические выводы, которые подтверждены экспериментально, что форма ДОР нелинейных малоразмерных объектов определяется отношением их размера к длине волны зондирующего и отраженного сигнала, т.е. несущей частотой ЗС и номером используемой гармоники, и может иметь изрезанный характер и несколько максимумов. Это создает предпосылки к управлению формой ДОР нелинейных малоразмерных объектов при их поиске за счет плавной перестройки несущей частоты и одновременного приема нескольких гармоник, причем в качестве ЗС необходимо использовать непрерывный сигнал или периодическую последовательность гармонических колебаний с высокой скважностью. Данное обстоятельство позволит согласовать пространственное положение одного из максимумов ДОР и антенны приемного канала НРЛ, и тем самым увеличить отраженный сигнал от объекта поиска, а следовательно, увеличить контрастность, дальность обнаружения и захвата цели.
В нелинейной радиолокации широкое применение нашли многочастотные ЗС, несколько ЗС на разных несущих частотах (в частности на двух), что позволяет получить в спектре отраженного сигнала не только гармоники, но и комбинационные составляющие. Дальнейшие совместный прием и обработка отраженного сигнала на гармониках и комбинационных составляющих повысят эффективность обнаружения объектов поиска с нелинейными свойствами.
В качестве прототипа выбрано изобретение [4]. Способ и устройство, описанные в нем, основаны на использовании как минимум двух ЗС на разных несущих частотах ƒ1 и ƒ2, а прием отраженного сигнала осуществляется как минимум на одной из комбинационных составляющих nƒ1 + m ƒ2, где пит любое целое число, не равное нулю. Причем можно использовать различные варианты исполнения изобретения в части числа ЗС (не менее двух) и числа приемных каналов (как минимум одного). Передача ЗС осуществляется синхронно. В качестве ЗС используются простые короткие гармонические сигналы длительностью 1÷100 нсек. Приемопередающие антенные системы крепятся на одном основании и могут работать как стационарно, облучая определенную область пространства, так и в сканирующем режиме, что позволяет определять местоположение объекта поиска, в частности азимут. Причем приемопередающие антенные системы экранированы друг от друга, чтобы предотвратить попадание паразитных составляющих между ними. В общем, это универсальное устройство определения местоположения одиночных объектов поиска.
Недостатком данного изобретения является низкая вероятность обнаружения малоразмерных объектов поиска (такие объекты поиска обладают малой НЭПР) при условии одинакового контраста между объектом и фоном, условий окружающей среды, которые вносят затухание в отраженный сигнал от объекта поиска и неразличимость его с отраженным сигналом от фона.
Техническим результатом предлагаемого изобретения является повышение вероятности обнаружения неподвижных малоразмерных объектов искусственного происхождения, в том числе и малоразмерных объектов военного назначения, независимо от их функционального состояния, условий окружающей среды и радиолокационного фона за счет использования двухчастотного способа зондирования периодической последовательностью гармонических колебаний с высокой скважностью (не менее 10) на двух разных несущих частотах ƒ1 и ƒ2, причем ƒ12<2ƒ1, с одновременной регистрацией комбинационных составляющих второго (ƒ12) и третьего (2ƒ12) порядка и вторых гармоник 2ƒ1 и 2ƒ2 каждого из ЗС. При этом несущая частота ƒ1 первого ЗС остается постоянной, а несущая частота
Figure 00000001
второго ЗС медленно перестраивается со скоростью порядка 10 Гц/сек.
Из теории нелинейной радиолокации известно [3], что наведенные токи на НЭ объекта поиска напрямую зависят от амплитудных, фазовых и частотных характеристик ЗС. Сопоставление теоретических и экспериментальных результатов показывает, что медленное изменение частоты (со скоростью перестройки порядка 10 Гц/сек) приводит к изменению ДОР, а именно к изменению положения в пространстве ее максимумов и минимумов, появляются резонансные всплески, а также увеличивается сектор обнаружения. Наблюдаемый эффект объясняется изменением фазы тока, наведенного ЗС с медленно изменяющейся несущей частотой на НЭ объекта поиска. Таким образом, плавная перестройка несущей частоты ЗС обеспечит управление ДОР и создание таких условий, при которых положение максимума ДОР сосредоточивается в направлении антенны приемного канала НРЛ на гармонике или комбинационной составляющей. Также, согласно проведенным экспериментам [3], плавная перестройка несущей частоты ЗС является весьма эффективным методом, обеспечивающим улучшение условий проникновения сверхвысокочастотных сигналов в экранированные корпуса радиоэлектронных устройств через их антенный вход. Использование в качестве ЗС периодической последовательности гармонических колебаний позволит применить на выходе обработки накопитель с пороговым устройством, что дополнительно улучшит отношение сигнал/шум на выходе приемного канала. Данные обстоятельства позволяют получить максимальный отклик от объекта поиска с нелинейными свойствами на гармонике или комбинационной составляющей и повысить дальность и вероятность обнаружения объекта поиска.
Основными нелинейными элементами малоразмерных объектов поиска являются полупроводниковые радиодетали их электронных устройств, а также точечные прижимные металлические контакты элементов конструкции, которые, согласно их ВАХ при двухчастотном способе зондирования, имеют максимальный отклик на вторых гармониках 2ƒ1 и 2ƒ2 каждого из ЗС, на суммарной комбинационной составляющей второго порядка ƒ12 и разностной комбинационной составляющей третьего порядка 2ƒ12. Поэтому одновременный прием отраженного сигнала на этих частотах позволит дополнительно повысить вероятность обнаружения таких объектов поиска на фоне окружающей обстановки.
Одновременный прием отраженного сигнала на нескольких составляющих (вторых гармониках, суммарной комбинационной составляющей второго порядка и разностной комбинационной составляющей третьего порядка) с применением на выходе обработки накопителя с пороговым устройством, обеспечат обнаружение любых неподвижных малоразмерных объектов искусственного происхождения вне зависимости от их нелинейного элемента по превышению накопленного сигнала над порогом в любом из приемных каналах.
Структурная схема заявленного устройства обнаружения показана на фигуре, где обозначено:
1 - нелинейный объект поиска,
2 - первое передающее устройство постоянной несущей частоты ƒ1,
3 - второе передающее устройство перестраиваемой несущей частоты
Figure 00000002
4 - приемный канал комбинационной составляющей
Figure 00000003
5 - приемный канал комбинационной составляющей
Figure 00000004
6 - приемный канал гармоники второго порядка первого ЗС 2ƒ1,
7 - приемный канал гармоники второго порядка второго ЗС
Figure 00000005
8 - синхронизатор.
Как видно из фигуры, предлагаемое устройство обнаружения содержит два передающих устройства, четыре приемных канала и синхронизатор, связанный первым выходом с передающими устройствами, вторым - с приемными каналами и третьим - со вторым входом второго передающего устройства.
Передающее устройство 2 формирует периодическую последовательность гармонических колебаний на несущей частоте ƒ1Передающее устройство 3 формирует периодическую последовательность гармонических колебаний с медленной (плавной) перестройкой несущей частоты
Figure 00000006
Плавная перестройка несущей частоты может осуществляться по любому из линейный законов либо генератором линейного изменения напряжения в задающем генераторе передающего устройства 3, либо по сигналу от цифрового синтезатора частоты, который может быть введен в состав синхронизатора 8, при условии, что скорость перестройки будет составлять порядка 10 Гц/сек.
Приемный канал 4 принимает отраженный сигнал от нелинейного объекта поиска на разностной комбинационной составляющей третьего порядка
Figure 00000007
Приемный канал 5 принимает отраженный сигнал от нелинейного объекта поиска на суммарной комбинационной составляющей второго порядка
Figure 00000008
Приемный канал 6 принимает отраженный сигнал от нелинейного объекта поиска на второй гармонике первого ЗС 2⋅ƒ1.
Приемный канал 7 принимает отраженный сигнал от нелинейного объекта поиска на второй гармонике второго ЗС
Figure 00000009
Синхронизатор 8 обеспечивает согласованную работу всех передающих и приемных устройств во времени и управление перестройкой несущей частоты передающего устройства 3.
Синхронизатор 8 формирует импульсы для запуска передающих устройств 2 и 3. Два сформированных зондирующих сигнала передающим устройством 2 и передающим устройством 3 излучаются в пространство, где происходит их сложение. Результатом взаимодействия такого сигнала с объектом поиска, содержащим НЭ, является наличие в отраженном сигнале набора гармоник и комбинационных составляющих, соответствующих нелинейному преобразованию второго и третьего порядка в объекте поиска.
Отраженный от объекта поиска сигнал поступает в приемные каналы 4…7 согласно преобразованию в объекте поиска. За счет плавной перестройки несущей частоты передающего устройства 3 обеспечивается увеличение отклика от объекта поиска с нелинейными свойствами на гармонике или комбинационной составляющей на входе приемных каналов 4, 5, 7, т.к. при этом положение максимума ДОР объекта поиска сосредоточивается в направлении антенны соответствующего приемного канала НРЛ на гармонике или комбинационной составляющей. Составной частью каждого приемного канала является накопитель с пороговым устройством, который позволяет увеличить отношение сигнал/шум на его выходе. Как и в прототипе, обнаружение объекта поиска происходит при превышении сигнала над порогом в любом из приемных каналов. За счет увеличения чувствительности приемников комбинационных частот на 20-25дБ [2, 5], собственные гармоники передающих устройств 2 и 3 не проникают во входные устройства приемных каналов. Это дополнительно позволяет увеличить дальность обнаружения объектов поиска, которая определяется известным в радиолокации способом и составляет порядка сотен метров.
Приемопередающие антенные системы крепятся на одном основании и могут работать как стационарно, облучая определенную область пространства, так и в сканирующем режиме, что позволяет определять азимут объекта поиска. Приемопередающие антенные системы экранированы друг от друга, что предотвращает попадание паразитных составляющих между ними.
Таким образом, применение в двухчастотном нелинейном локаторе плавной перестройки одной из несущих частот ЗС и организация одновременного приема отраженного сигнала от объекта поиска на комбинационных составляющих второго
Figure 00000010
и третьего
Figure 00000011
порядка и вторых гармониках частоты каждого из ЗС с последующим накоплением, позволяет увеличить отраженный сигнал от объекта поиска, а следовательно, повысить саму вероятность обнаружения неподвижных малоразмерных объектов искусственного происхождения, в том числе и малоразмерных объектов военного назначения, независимо от их функционального состояния, условий окружающей среды и радиолокационного фона, а также увеличить контрастность, дальность обнаружения и захвата цели.
Литература
1. Средства разведки, обнаружения стрельбы и управления оружием. Учебник М: OA ВС РФ, 2008. - 236 с.
2. Щербаков Г.Н. Обнаружение скрытых объектов - для гуманитарного разминирования, криминалистики, археологии, строительства и борьбы с терроризмом. М: «Арбат-информ», 2004. - 304 с.
3. Щербаков Г.Н., Анцелевич М.А. Новые методы обнаружения скрытых объектов. М, 2011.
4. Изобретение US 20090009380 м, кл. G01S 13/00 08.01.2009.
5. Николаев А.В. Использование электромагнитного спектра при нелинейно-параметрической локации рукотворных объектов полупроводящих средах. // Специальная техника, №1, 2011 г.

Claims (2)

1. Способ обнаружения неподвижных малоразмерных объектов искусственного происхождения, основанный на использовании двухчастотного способа зондирования пространства двумя зондирующими сигналами (ЗС) на разных несущих частотах ƒ1 и ƒ2 и приема отраженного сигнала на одной из комбинационных составляющих в спектре отраженного сигнала, отличающийся тем, что в качестве ЗС используется периодическая последовательность гармонических колебаний с высокой скважностью (не менее 10), причем ƒ12<2ƒ1, при этом несущую частоту ƒ2 медленно перестраивают со скоростью порядка
Figure 00000012
а прием отраженного сигнала осуществляют одновременно на комбинационных составляющих
Figure 00000013
и гармониках
Figure 00000014
2. Устройство для осуществления способа по п. 1, содержащее два передающих устройства для излучения двух зондирующих сигналов (ЗС) на разных несущих частотах ƒ1 и ƒ2 в направлении интересующего пространства и первый приемный канал, осуществляющий прием отраженного сигнала на одной из комбинационных составляющих, а также синхронизатор для управления во времени работой передающих устройств по первому выходу и приемного канала по второму выходу, отличающийся тем, что зондирующие сигналы представляют собой периодическую последовательность гармонических колебаний с высокой скважностью (не менее 10), причем ƒ12<2ƒ1, третий выход синхронизатора соединен со вторым входом второго передающего устройства для управления его частотой излучения
Figure 00000015
со скоростью порядка
Figure 00000012
кроме того, в заявленное устройство дополнительно введено три приемных канала, управляющие входы которых соединены со вторым выходом синхронизатора, причем в состав каждого из четырех приемных каналов, осуществляющих прием отраженных сигналов каждый на своей комбинационной составляющей
Figure 00000016
или гармонике
Figure 00000017
дополнительно включен накопитель сигналов с пороговым устройством, при этом второе передающее устройство выполнено с возможностью медленной перестройки несущей частоты
Figure 00000018
а синхронизатор выполнен с возможностью управления перестройкой несущей частоты
Figure 00000015
второго передающего устройства.
RU2018107345A 2018-02-27 2018-02-27 Способ и устройство обнаружения неподвижных малоразмерных объектов искусственного происхождения RU2696006C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018107345A RU2696006C1 (ru) 2018-02-27 2018-02-27 Способ и устройство обнаружения неподвижных малоразмерных объектов искусственного происхождения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018107345A RU2696006C1 (ru) 2018-02-27 2018-02-27 Способ и устройство обнаружения неподвижных малоразмерных объектов искусственного происхождения

Publications (1)

Publication Number Publication Date
RU2696006C1 true RU2696006C1 (ru) 2019-07-30

Family

ID=67586823

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018107345A RU2696006C1 (ru) 2018-02-27 2018-02-27 Способ и устройство обнаружения неподвижных малоразмерных объектов искусственного происхождения

Country Status (1)

Country Link
RU (1) RU2696006C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791818C1 (ru) * 2022-06-10 2023-03-13 Дмитрий Анатольевич Дрынкин Способ обнаружения вибрирующих объектов, основанный на анализе интерференционной картины, получаемой с использованием лазерных локационных станций гетеродинного типа

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191343A (en) * 1992-02-10 1993-03-02 United Technologies Corporation Radar target signature detector
US5631655A (en) * 1995-12-21 1997-05-20 Hughes Electronics System and method for radar receiver harmonic distortion and spurious response control
WO2006124909A2 (en) * 2005-05-17 2006-11-23 Explo Track, Llc System and method for detecting, monitoring, tracking and identifying explosive materials
US20090009380A1 (en) * 2005-07-12 2009-01-08 Rafael-Armament Development Authority Ltd. Radar system and method
RU2012128368A (ru) * 2012-07-06 2014-01-20 Федеральное Государственное Военное Образовательное Учреждение Высшего Профессионального Образования "Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Академия Вооруженных Сил Российской Федерации" Способ и устройство обнаружения неподвижных малоразмерных объектов военного назначения
RU2510517C2 (ru) * 2012-05-21 2014-03-27 федеральное автономное учреждение "Государственный научно-исследовательский испытательный институт проблем технической защиты информации Федеральной службы по техническому и экспортному контролю" Нелинейный радиолокатор обнаружения радиоэлектронных устройств
RU2614038C1 (ru) * 2016-01-19 2017-03-22 Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" Способ и устройство обнаружения объектов поиска, содержащих металлические контакты, в нелинейных радиолокаторах ближнего действия
RU2643199C1 (ru) * 2016-10-10 2018-01-31 Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" Способ улучшения характеристик нелинейного радиолокатора

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191343A (en) * 1992-02-10 1993-03-02 United Technologies Corporation Radar target signature detector
US5631655A (en) * 1995-12-21 1997-05-20 Hughes Electronics System and method for radar receiver harmonic distortion and spurious response control
WO2006124909A2 (en) * 2005-05-17 2006-11-23 Explo Track, Llc System and method for detecting, monitoring, tracking and identifying explosive materials
US20090009380A1 (en) * 2005-07-12 2009-01-08 Rafael-Armament Development Authority Ltd. Radar system and method
RU2510517C2 (ru) * 2012-05-21 2014-03-27 федеральное автономное учреждение "Государственный научно-исследовательский испытательный институт проблем технической защиты информации Федеральной службы по техническому и экспортному контролю" Нелинейный радиолокатор обнаружения радиоэлектронных устройств
RU2012128368A (ru) * 2012-07-06 2014-01-20 Федеральное Государственное Военное Образовательное Учреждение Высшего Профессионального Образования "Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Академия Вооруженных Сил Российской Федерации" Способ и устройство обнаружения неподвижных малоразмерных объектов военного назначения
RU2614038C1 (ru) * 2016-01-19 2017-03-22 Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" Способ и устройство обнаружения объектов поиска, содержащих металлические контакты, в нелинейных радиолокаторах ближнего действия
RU2643199C1 (ru) * 2016-10-10 2018-01-31 Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" Способ улучшения характеристик нелинейного радиолокатора

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791818C1 (ru) * 2022-06-10 2023-03-13 Дмитрий Анатольевич Дрынкин Способ обнаружения вибрирующих объектов, основанный на анализе интерференционной картины, получаемой с использованием лазерных локационных станций гетеродинного типа

Similar Documents

Publication Publication Date Title
US10670707B2 (en) Interrogator and system employing the same
Knott et al. Radar cross section
Skolnik Introduction to radar
RU2453864C2 (ru) Радар формирования подповерхностного изображения
Skolnik Fifty years of radar
EP2342581B1 (en) Clutter reduction in detection systems
US8275572B2 (en) Difference frequency detection with range measurement
Taylor Ultra-wideband radar overview
Neng-Jing Radar ECCMs new area: anti-stealth and anti-ARM
Denk Detection and jamming low probability of intercept (LPI) radars
Zohuri et al. Fundaments of radar
Shoykhetbrod et al. A scanning FMCW-radar system for the detection of fast moving objects
Kuschel VHF/UHF radar. Part 2: Operational aspects and applications
Aytun Frequency diverse array radar
RU2696006C1 (ru) Способ и устройство обнаружения неподвижных малоразмерных объектов искусственного происхождения
Immoreev Ten questions on UWB [ultra wide band radar]
Rahman FMCW radar signal processing for antarctic ice shelf profiling and imaging
RU2741057C1 (ru) Способ радиолокационного распознавания классов воздушно-космических объектов для многодиапазонного разнесенного радиолокационного комплекса с фазированными антенными решетками
Sujatmiko et al. A review of radars to detect survivors buried under earthquake rubble
O’Donnell Introduction to radar systems
Mohseni Interception FMCW radar using Wigner-Ville distribution (WVD)
Sai FORWARD SHIFTING FALSE TARGET JAMMING FOR LINEAR FREQUENCY MODULATION RADARS
Anoosha RADAR TARGET ECHO CANCELLATION USING ISRJ
Phelan Theory, Design, Analysis, and Implementation of a Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) Forward-Looking Ground Penetrating Radar
Pun How Radar Technology Changed the Course of the World after World War II-Science and Technology