RU2739089C1 - Судовой двигатель - Google Patents

Судовой двигатель Download PDF

Info

Publication number
RU2739089C1
RU2739089C1 RU2020102876A RU2020102876A RU2739089C1 RU 2739089 C1 RU2739089 C1 RU 2739089C1 RU 2020102876 A RU2020102876 A RU 2020102876A RU 2020102876 A RU2020102876 A RU 2020102876A RU 2739089 C1 RU2739089 C1 RU 2739089C1
Authority
RU
Russia
Prior art keywords
heat
pipe
channels
cooling
heat carrier
Prior art date
Application number
RU2020102876A
Other languages
English (en)
Inventor
Николай Васильевич Ясаков
Original Assignee
Николай Васильевич Ясаков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Васильевич Ясаков filed Critical Николай Васильевич Ясаков
Priority to RU2020102876A priority Critical patent/RU2739089C1/ru
Application granted granted Critical
Publication of RU2739089C1 publication Critical patent/RU2739089C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к области теплоэнергетики, а именно к нетрадиционным преобразователям тепловой энергии в механическую работу. Судовой двигатель состоит из теплочувствительного элемента (ТЧЭ) в форме тонкостенной трубы, являющейся рабочим валом с подшипниковыми узлами и мультипликатором. Поверхность трубы снаружи и/или внутри разделена оболочками по всей длине на две тепловые зоны: зону нагрева и зону охлаждения. С тепловыми зонами связаны каналы подачи и удаления горячего теплоносителя и, соответственно, каналы охлаждающего теплоносителя. При этом труба в средней части усилена внешней втулкой, контактирующей при изгибе трубы с упорным роликом. Каналы подачи и удаления теплоносителей связаны с теплообменниками теплового насоса. Теплообменник для охлаждающего теплоносителя расположен в контуре испарения рабочего агента теплового насоса, а теплообменник для горячего теплоносителя - в контуре его сжатия за компрессором. Достигается повышение безопасности при эксплуатации двигателя и снижение загрязнения окружающей среды. 3 ил.

Description

Изобретение относится к области теплоэнергетики, в частности к нетрадиционным преобразователям тепловой энергии в механическую работу. Оно может быть применено - главным образом - в судостроении, а также на стационарных объектах, расположенных в водных акваториях или на побережьях.
Как известно, практически все самоходные плавсредства оснащены тепловыми двигателями, использующими разные виды топлива, в т.ч. и ядерного. Помимо больших затрат на топливо, это требует содержания заправочных комплексов, их обслуживающего персонала, создания противопожарных систем, причиняет вред окружающей среде в нормальном рабочем режиме судов, а - главное - в аварийных ситуациях.
Альтернативных решений в приводных системах крупных судов не существует.
Однако, поскольку судоходство связано с окружающей водной средой, а она в любых регионах - даже в заполярье - обладает достаточным тепловым ресурсом, то вполне возможно его использование вместо традиционного топлива.
Главной задачей в переходе на альтернативные тепловые ресурсы является разработка системы преобразования их в механическую энергию.
И такая задача решена созданием судового двигателя, который - согласно изобретению - состоит из теплочувствительного элемента (ТЧЭ) в форме тонкостенной трубы, являющейся рабочим валом с подшипниковыми узлами и мультипликатором, при этом поверхность трубы снаружи и/или внутри разделена оболочками по всей длине на две тепловые зоны: зону нагрева и зону охлаждения; с тепловыми зонами связаны каналы подачи и удаления горячего теплоносителя и - соответственно - каналы охлаждающего теплоносителя; при этом труба в средней части усилена внешней втулкой, контактирующей при изгибе трубы с упорным роликом; каналы подачи и удаления теплоносителей связаны с теплообменниками теплового насоса: при этом теплообменник для охлаждающего теплоносителя расположен в контуре испарения его рабочего агента, а теплообменник для горячего теплоносителя - в контуре его сжатия - за компрессором.
Описание заявляемого изобретения поясняется иллюстрациями, где на фиг. 1 дан общий вид двигателя, на фиг. 2 - его сечение "А-А", на фиг. 3 показан вариант размещения всех элементов его конструкции внутри корпуса судна.
Заявляемый судовой двигатель состоит из теплочувствительного элемента (ТЧЭ) в форме тонкостенной трубы 1 (фиг. 1), являющейся рабочим валом с подшипниковыми узлами 2 и мультипликатором 3, передающим вращение другим устройствам. Поверхность трубы 1 снаружи или (и) внутри разделена оболочками по всей длине на две тепловые зоны: зону нагрева 4 и зону охлаждения 5. С тепловыми зонами связаны каналы подачи 6 и удаления 7 горячего теплоносителя и - соответственно - каналы 8 и 9 - охлаждающего теплоносителя. Труба 1 в средней части усилена внешней втулкой 10, контактирующей при изгибе трубы с упорным роликом 11.
Каналы подачи и удаления теплоносителя связаны с теплообменниками (см. фиг. 3) теплового насоса 12, при этом теплообменник для охлаждающего теплоносителя расположен в контуре испарения рабочего агента теплового насоса, а теплообменник для горячего теплоносителя - в контуре его сжатия (за компрессором).
Испаритель теплового насоса может быть расположен как вне судна, например, под кормовой частью, у катамаранов - под водой между корпусами, так и внутри, при этом стенкой испарителя может быть "подводная" часть судового корпуса (см. фиг. 3). В таком случае пространство между внутренними стенками испарительных камер может использоваться как рефрижераторный отсек в транспортных и промысловых судах.
Компрессор теплового насоса и нагнетатели для циркуляции теплоносителей подключены к бортовой электросети с резервными аккумуляторами.
Вариантов исполнения заявляемого привода может быть несколько. Рассмотрим работу наиболее простого из них, в котором тепловые зоны двигателя расположены внутри трубы 1 (в этом случае ее наружная поверхность должна быть теплоизолирована), а теплоносителем системы нагрева и охлаждения является воздух. Испаритель теплового насоса 12 (предпочтительно - не однокамерный с их параллельным включением в контур теплового агента) расположен внутри судна, а теплообменник охлаждающего теплоносителя в виде радиатора ДВС включен в этот контур перед испарителем.
Запуск двигателя происходит при включении вентиляторов в контурах циркуляции теплоносителей и компрессора теплового насоса 12. При этом испаренный тепловой агент, сжимаясь, резко нагревается и отдает свое тепло нагревающему теплоносителю судового двигателя. Этот теплоноситель через канал 6 поступает в зону нагрева 4, где отдает основную часть своего тепла нижнему сегменту трубы 1, верхний же сегмент ее остается холодным. Под действием разности температуры сегментов трубы она испытывает прогиб, при котором с силой F упирается своей втулкой 10 в ролик 11 и под действием силы F1 поворачивается на некоторый угол. При этом в тепловые зоны 4 и 5 перемещаются новые участки стенки, которые, изменяя свою температуру и размер, восстанавливают прежнюю ориентацию прогиба трубы, в результате чего она продолжает поворот с сохранением ориентации прогиба. Труба 1, вращаясь в подшипниках 2, передает через мультипликатор 3 вращение гребному винту и электрогенератору.
При этом в зоне охлаждения 5 низкая температура поддерживается циркулирующим охлаждающим потоком, отдающим свое тепло на преварительный нагрев теплового агента перед испарителем, где главным источником потребляемого тепла является тепловай ресурс забортной воды с повышенным теплообменом при движении судна..
Каналы 6 и 8 подачи теплоносителей создают плавное изменение температуры по окружности трубы на всей ее длине (см. фиг. 2) от Tmin (вверху) до Tmax (внизу).
Параметры всех элементов двигателя и теплового насоса определяются расчетами, исходя из требуемой мощности силовой установки.
Переход на альтернативные энергоресурсы в судоходстве сэкономит традиционное топливо, устранит расходы, связанные с его использованием, повысит безопасность при эксплуатации водного транспорта, снимет экологические проблемы.

Claims (1)

  1. Судовой двигатель, преобразующий тепловую энергию в механическую, отличающийся тем, что состоит из теплочувствительного элемента (ТЧЭ) в форме тонкостенной трубы, являющейся рабочим валом с подшипниковыми узлами и мультипликатором, при этом поверхность трубы снаружи и/или внутри разделена оболочками по всей длине на две тепловые зоны: зону нагрева и зону охлаждения; с тепловыми зонами связаны каналы подачи и удаления горячего теплоносителя и, соответственно, каналы охлаждающего теплоносителя; при этом труба в средней части усилена внешней втулкой, контактирующей при изгибе трубы с упорным роликом; каналы подачи и удаления теплоносителей связаны с теплообменниками теплового насоса, при этом теплообменник для охлаждающего теплоносителя расположен в контуре испарения рабочего агента теплового насоса, а теплообменник для горячего теплоносителя - в контуре его сжатия за компрессором.
RU2020102876A 2020-01-23 2020-01-23 Судовой двигатель RU2739089C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020102876A RU2739089C1 (ru) 2020-01-23 2020-01-23 Судовой двигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020102876A RU2739089C1 (ru) 2020-01-23 2020-01-23 Судовой двигатель

Publications (1)

Publication Number Publication Date
RU2739089C1 true RU2739089C1 (ru) 2020-12-21

Family

ID=74063067

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020102876A RU2739089C1 (ru) 2020-01-23 2020-01-23 Судовой двигатель

Country Status (1)

Country Link
RU (1) RU2739089C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231223A (en) * 1978-06-09 1980-11-04 Pringle William L Thermal energy scavenger (rotating wire modules)
US20150052894A1 (en) * 2011-10-07 2015-02-26 IFP Energies Nouvelles Ocean thermal energy conversion method and system
RU2636956C1 (ru) * 2016-07-05 2017-11-29 Николай Васильевич Ясаков Безроторный тепломеханический преобразователь
RU2694568C1 (ru) * 2018-11-07 2019-07-16 Николай Васильевич Ясаков Тепловой твердотельный двигатель

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231223A (en) * 1978-06-09 1980-11-04 Pringle William L Thermal energy scavenger (rotating wire modules)
US20150052894A1 (en) * 2011-10-07 2015-02-26 IFP Energies Nouvelles Ocean thermal energy conversion method and system
RU2636956C1 (ru) * 2016-07-05 2017-11-29 Николай Васильевич Ясаков Безроторный тепломеханический преобразователь
RU2694568C1 (ru) * 2018-11-07 2019-07-16 Николай Васильевич Ясаков Тепловой твердотельный двигатель

Similar Documents

Publication Publication Date Title
RU2420413C2 (ru) Система охлаждения выхлопных газов транспортного средства-амфибии
KR101326081B1 (ko) 선박 항해용 해빙 장치
SE515966C2 (sv) Motoraggregat omfattande en förbränningsmotor och en ångmotor
JP5819221B2 (ja) 船用燃料供給システム
CA2828658C (en) Ship
US11820473B2 (en) Hull thermal management system
JP2011063166A (ja) 流体抵抗低減装置
US4360350A (en) Hollow keel heat exchanger for marine vessels
JP6653158B2 (ja) 船舶に搭載された回転電気機械の冷却装置
RU2739089C1 (ru) Судовой двигатель
US20150300237A1 (en) Water craft jet pump heat exchanger
US20230211863A1 (en) Marine drive unit comprising a closed cooling circuit
JPH1170894A (ja) ウォータージェット推進機の軸系構造
EP3672865B1 (en) Cooling system for a water-borne vessel
RU2699510C1 (ru) Винто-рулевая колонка судна
CN109494935A (zh) 船舶推进装置的冷却系统和船舶推进装置
KR200456118Y1 (ko) 온도차를 이용한 발전장치를 장착한 에너지절약형 선박
RU2507107C1 (ru) Модульная атомная подводная лодка
KR20110037632A (ko) 선박 냉각 시스템
KR102389117B1 (ko) 전기 추진 선박의 감속기
RU2506198C1 (ru) Атомная подводная лодка
KR102144114B1 (ko) 선박용 엔진의 냉각장치
KR20120033620A (ko) 선박의 냉각 시스템
GB2471852A (en) Use of a rankine cycle apparatus on a vessel to convert energy from waste streams to mechanical energy
EP4227498B1 (en) Cold recovery facility and marine vessel