RU2738935C2 - Сульфид свинца в качестве катализатора дегидрирования алканов - Google Patents

Сульфид свинца в качестве катализатора дегидрирования алканов Download PDF

Info

Publication number
RU2738935C2
RU2738935C2 RU2018136790A RU2018136790A RU2738935C2 RU 2738935 C2 RU2738935 C2 RU 2738935C2 RU 2018136790 A RU2018136790 A RU 2018136790A RU 2018136790 A RU2018136790 A RU 2018136790A RU 2738935 C2 RU2738935 C2 RU 2738935C2
Authority
RU
Russia
Prior art keywords
catalyst
dehydrogenation
sulfide
pbs
reactor
Prior art date
Application number
RU2018136790A
Other languages
English (en)
Other versions
RU2018136790A (ru
RU2018136790A3 (ru
Inventor
Пол Эрик ХОЙЛУНД НИЛЬСЕН
Расмус Мунксгор НИЛЬСЕН
Ливед Й. ЛЕМУС-ЮЭГРЕС
Original Assignee
Хальдор Топсёэ А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хальдор Топсёэ А/С filed Critical Хальдор Топсёэ А/С
Publication of RU2018136790A publication Critical patent/RU2018136790A/ru
Publication of RU2018136790A3 publication Critical patent/RU2018136790A3/ru
Application granted granted Critical
Publication of RU2738935C2 publication Critical patent/RU2738935C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/322Catalytic processes with metal oxides or metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/30Regeneration or reactivation of catalysts comprising compounds of sulfur, selenium or tellurium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/18Treating with free oxygen-containing gas with subsequent reactive gas treating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/10Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using elemental hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу дегидрирования алканов до соответствующих алкенов и водорода (H2). Способ включает контактирование алкана с катализатором, содержащим сульфид свинца (II) (PbS) и нанесенным на носитель. Причем указанный катализатор регенерируют в несколько стадий. Технический результат – высокая активность, очень медленная реактивация после регенерации. 5 з.п. ф-лы, 1 табл., 1 ил., 6 пр.

Description

Настоящее изобретение относится к применению сульфида свинца в качестве катализатора в процессах дегидрирования алканов до соответствующих алкенов.
В основном, каталитическое дегидрирование низших алканов является простой, но все же важной реакцией, которая может быть проиллюстрирована дегидрированием пропана до пропена в соответствии с реакцией:
С3Н8<->С3Н62
При все возрастающем спросе на легкие олефины, то есть, низшие алифатические углеводороды с открытой цепью, имеющие углерод-углеродную двойную связь, возрастает важность каталитического дегидрирования. В частности, дегидрирование пропана и изобутана являются важными реакциями, коммерчески используемыми для производства пропилена и изобутилена соответственно. Пропилен представляет собой важный базовый химический строительный блок для пластиков и смол, и мировой спрос на пропилен неуклонно растет в течение десятилетий. Ожидается, что рост спроса на пропилен в скором времени будет равен или даже выше, чем спрос на этилен. Одним из основных применений изобутилена является использование в качестве исходного сырья при производстве простого метилтретбутилового эфира (МТВЕ).
Процесс, показанный выше, является эндотермическим и требует примерно 125 кДж/моль в качестве теплоты реакции. Таким образом, чтобы достичь разумной степени конверсии, процесс дегидрирования происходит при температуре примерно 600°С. Дегидрирование изобутана аналогично дегидрированию пропана во всех отношениях, кроме требования несколько более низкой температуры.
Существует 3-4 коммерческих способа для дегидрирования алканов, с использованием 3 различных катализаторов. Различия между этими способами в первую очередь касаются обеспечения теплоты реакции. Эти способы и катализаторы будут кратко описаны ниже.
a) Процесс Catofin (Катофин) (Гудри)
Этот процесс характеризуется теплотой реакции, обеспечиваемой предварительным нагревом катализатора. Процесс Catofin осуществляют в 3-8 адиабатических реакторах с неподвижным слоем, с использованием катализатора из оксида хрома/оксида алюминия, содержащего примерно 20% масс. оксида хрома. Этот катализатор может быть дополнен инертным материалом, имеющим высокую теплоемкость, или, в качестве альтернативы, материалом, который будет избирательно сгорать или реагировать с образовавшимся водородом, так называемым тепловыделяющим материалом (HGM). Могут добавляться промоторы, такие как калий.
Процесс Catofin является очень хорошо зарекомендовавшим себя способом и по-прежнему является доминирующим промышленным процессом дегидрирования. Поскольку теплота реакции обеспечивается с помощью катализатора, используется последовательное выполнение операций, во время которого слой катализатора используется для дегидрирования. Затем газ удаляют и катализатор регенерируют/нагревают, а оксид Cr(VI) восстанавливают водородом. Наконец, этот слой перед другим дегидрированием продувают водяным паром.
b) Процесс Snamprogetti-Yarzintez (Снампрогетти-Ярсинтез)
Этот процесс представляет собой вариант вышеуказанного способа с псевдоожиженным слоем, с использованием двойных псевдоожиженных слоев, по одному на процесс и режим регенерации, причем катализатор циркулирует между ними. В эксплуатации находятся многочисленные установки, например, в бывшем Советском Союзе и в Саудовской Аравии.
Деактивация катализатора может быть обусловлена механическими причинами, напряжением, вызванным в процессе циклов нагревания - охлаждения, и твердофазными реакциями, такими как диффузия хрома в решетку оксида алюминия. Это, однако, является вторичным по отношению к желанию избавиться от хрома, что является реальной сложностью в этом процессе, поскольку токсичность хрома представляет собой проблему. Более конкретно, присутствие хрома в катализаторе делает его опасным для окружающей среды и здоровья при обращении с ним. Это тем более так, потому что оксид хрома(VI), CrO3, и соответствующие соединения хрома в степени окисления VI легко образуются при окислении катализатора. Таким образом, каждый вид обращения с катализатором во время производства, транспортировки, загрузки и разгрузки представляет собой потенциальную опасность, и при растущем спросе на способы дегидрирования желательно найти эффективные, менее токсичные катализаторы дегидрирования.
с) Процесс Oleflex (Олефлекс)
В процессе Oleflex используют катализаторы из благородных металлов, в частности, промотированный катализатор из Pt/Al2O3, в реакционной системе из 3-4 реакторов с подвижным слоем, причем катализатор непрерывно регенерируется в отдельном регенерационном контуре. Теплота реакции обеспечивается предварительным нагреванием потока углеводорода. Катализатор из благородного металла подвергается медленной деактивации. Таким образом, в процессе Oleflex катализатор опускается вниз в слое с радиальным течением. Внизу катализатор транспортируется в реактор регенерации, где углерод на катализаторе сжигается и платина повторно диспергируется с помощью обработки хлором. Регенерированный катализатор возвращается обратно в цикл в верхнюю часть реактора дегидрирования. Время цикла составляет до одной недели.
Благородный металл нанесен на носитель из оксида алюминия и является стабилизированным с помощью олова и, возможно, других промоторов. Платина является хорошим выбором катализатора с технической точки зрения и образует стабильные сплавы с оловом. Основной проблемой с этим типом катализаторов является высокая цена, которой в настоящее время противодействуют стремлением уменьшить содержание платины.
d) Процесс STAR
Процесс STAR® (STAR является аббревиатурой для STeam Assisted Reforming) представляет собой общепризнанную коммерческую технологию дегидрирования, которая имеет некоторые привлекательные характеристики.
В качестве разбавителя используют водяной пар, и процесс протекает в трубчатом реакторе, таком как установка для парового риформинга, размещенном в печи. Теплота реакции обеспечивается путем обжига с помощью природного газа. Катализатор представляет собой платину (Pt), нанесенную на шпинель ZnAl2O4. Цинк (Zn) и Pt образуют некоторые очень устойчивые сплавы. Некоторое осаждение углерода имеет место, и катализатор необходимо регенерировать каждые восемь часов. Этот процесс иногда рассматривается со вторым реактором, в котором происходит селективное сжигание водорода наряду с дальнейшим дегидрированием. Очевидно, здесь также используется катализатор из благородного металла.
Как и в описанном выше процессе Oleflex, проблемой в данном случае является стоимость благородного металла. Поэтому было бы желательно заменить благородный металл основным металлом, то есть, обычным и недорогим металлом.
В настоящее время установлено, что дегидрирование алканов возможно с использованием конкретного представителя нового поколения катализаторов из сульфида металла, которые легко изготавливаются и остаются в своей активной фазе во время работы. Конкретным рассматриваемым сульфидом металла является сульфид свинца (II), PbS.
Таким образом, настоящее изобретение относится к катализатору для дегидрирования алканов до алкенов, причем указанный катализатор содержит каталитически активный материал, нанесенный на носитель, где этот каталитически активный материал представляет собой сульфид свинца (II) (PbS), и где катализатор регенерируется в несколько стадий.
Стадии регенерации включают в себя (а) окисление в разбавленном воздухе, (b) превращение в соответствующий сульфат и (с) превращение обратно в сульфид путем восстановления в разбавленном водороде, содержащем некоторое количество сероводорода. Окисление на стадии (а) предпочтительно проводят при температуре между 350 и 750°С, наиболее предпочтительно при температуре между 400 и 600°С.
Кроме того, изобретение относится к способу дегидрирования алканов до соответствующих ненасыщенных алкенов и водорода (Н2), включающему в себя контактирование алкана с катализатором, нанесенным на носитель, причем указанный катализатор содержит сульфид свинца (II) (PbS). Дегидрирование предпочтительно проводят при температуре между 500 и 650°С, наиболее предпочтительно при температуре между 520 и 620°С.
Дегидрирование проводят при давлении от на 0,5 бар ниже давления окружающей среды до на 5 бар выше давления окружающей среды, предпочтительно при давлении окружающей среды или при давлении от на 0,5 бар ниже давления окружающей среды до давления окружающей среды.
В этом способе подаваемый газ содержит серу в количестве, определенном так, что равновесная реакция PbS+Н2<->Pb+H2S смещается в направлении PbS на всем протяжении реактора. Это означает, что в реакторе должно постоянно присутствовать достаточно H2S для обеспечения присутствия PbS.
Термодинамические данные для этой реакции можно найти в HSC Chemistry for Windows, Outo-kompi, Finland (2002).
Понятие «сульфид свинца» относится к двум соединениям, содержащим свинец и серу, то есть, сульфиду свинца (II), PbS, содержащему свинец в степени окисления +2, встречающемуся в природе как минерал, называемый галенит, и сульфиду свинца (IV), PbS2, содержащему свинец в степени окисления +4. Настоящее изобретение рассматривает конкретно катализаторы дегидрирования, содержащие PbS.
Использование сульфидов свинца в качестве катализаторов до сих пор было достаточно немногочисленным. Однако сульфиды никеля, кадмия и свинца использовались в качестве катализаторов в восстановлении в паровой фазе нитробензола еще в 1930 гг (O.W. Brown and R.J. Hartmen, J. Phys. Chem., 34, 2651 -2665 (1930)), а сульфид свинца, в частности, оказался эффективным катализатором для этой цели.
Европейский патент ЕР 0568303 А2 раскрывает катализатор дегидрирования органических соединений, таких как алканы, до алкенов, который содержит сульфидированную комбинацию никеля и свинца на обработанном основанием некислотном носителе. Сера добавляется к потоку исходного сырья для поддержания селективности катализатора, но не раскрывается, что это добавление сдвигает равновесие в сторону сульфида металла.
Патент США US 2.768.931 описывает применение катализатора из сульфида свинца в процессе десульфуризации нефти, известном как процесс Bender™, где нефть, которая подлежит десульфуризации, после смешивания с подходящими реагентами пропускают через слой катализатора, содержащий сульфид свинца (II), нанесенный на инертный носитель. Используемый катализатор из сульфида свинца после этого может быть регенерирован, как указано в патенте США US 3.117.937. Катализаторы из сульфида свинца(II) для использования в процессах десульфуризации нефти, кроме того, описаны в патентах США US 3,247,089 и US 3,720,627. Ни один из этих патентов США не описывает эти катализаторы как пригодные для использования в качестве катализаторов дегидрирования.
Помимо этих старых документов из предшествующего уровня техники, в литературе, кажется, нет никакого упоминания, касающегося применения сульфида свинца в качестве катализаторов. Вероятно, это связано с тем, что может быть приведен ряд экологических соображений для отказа от использования свинцовых катализаторов.
Использование сульфидов металлов в более широком смысле, то есть, когда металл в первую очередь выбран из цинка (Zn), меди (Cu), марганца (Mn), молибдена (Мо), железа (Fe), кобальта (Со) и никеля (Ni), для дегидрирования изобутана до изобутена, известно из ряда документов из предшествующего уровня техники. Например, способы получения алкенов из алканов с использованием катализаторов из сульфидов металлов описаны в патенте Великобритании GB 488.651 (1938) и в патенте США US 3.280.210 (1966). Совсем недавно в статье Guowei Wang, Chunyi Li and Honghong Shan (ACS Catal 4 (4), 1139-1143, 2014) и ряде находящихся на рассмотрении китайских заявок на патенты (CN 104607168 A, CN 104069778 A, CN 104607168 А и CN 103861619 А) касаются дегидрирования алканов до алкенов и катализаторов для этой цели.
Прилагаемая фигура показывает дегидрирование пропана с использованием катализатора, содержащего 14%масс.Pb (атомная масса 207,2) в виде PbS. Отработанный катализатор продемонстрировал очень большие кристаллы PbS (~700 А). Таким образом, относительно поверхности, PbS может действительно быть очень активным.
Одно испытание, показанное на фигуре, показало активность 130 нл пропена/кг катализатора/час и энергию активации 1,6 эВ.
Повторные испытания с использованием свинцовых катализаторов, кроме того, показали признаки, такие как очень медленная реактивация после регенерации, как видно на фигуре. PbSO4 является одним из наиболее стабильных существующих сульфатов, и, вероятно, подвергается медленному восстановлению сульфата в сульфид. Другими очень стабильными сульфатами являются ZnSO4 и SnSO4.
В процессах дегидрирования, таких как процесс Oleflex, обычной практикой является добавление в процесс значительных количеств серы для защиты материала. Таким образом, на в основном стандартной установке будет использоваться количество диметилдисульфида, соответствующее концентрации H2S в газовой фазе, составляющей 20-100 м.д.
Свойства катализатора из сульфида свинца, применяемого в соответствии с настоящим изобретением, можно суммировать следующим образом: он имеет температуру плавления 1118°С и значение Kp (H2/H2S) при 600°С, равное 247.
Изобретение далее иллюстрируется в следующих примерах.
Испытания катализатора проводились в трубчатом реакторе, специально построенном для применения при высокой температуре, такого как риформинг смолы, и поэтому он подходит для испытаний, требующих газов, содержащих сульфиды. Реактор имеет длину примерно 100 см и внутренний диаметр 10 мм. Катализаторы, которые подлежат испытаниям, помещают на решетку, соединенную с передвижной термопарой, которая измеряет температуры на входе. Изотермический контроль обеспечивается с помощью четырех независимых зон нагрева. Испытания проводятся с использованием 10% пропана в смеси с азотом, к которой могут быть добавлены водород, азот и H2S. Типичная концентрация H2S может варьироваться от 50 м.д. до 0,5%, хотя низкие значения связаны с некоторой неточностью вследствие пристеночных эффектов. Это означает, что соотношение H2S/H2 может варьироваться от 10-3 до 10-1.
Типичными условиями испытаний были температура между 560 и 600°С, с использованием 5 г катализатора, подлежащего испытанию, во фракциях 2-5 мм. Некоторые из газов для испытаний перечислены в таблице ниже. В идеальном случае давление должно быть низким, но вследствие случаев падения давления в системе типичное давление находилось между 0,2 и 0,3 МПа. Цикл испытаний, как правило, будет заканчиваться газом 1 при 600°С, и оценка активностей будет основана на их эффективности при этом условии.
Figure 00000001
*) Расход измеряется в нл/ч; ост. представляет собой остальную часть; вх = на входе; вых = на выходе
Газы на выходе анализируют с помощью газовой хроматографии.
Контрольные испытания, проведенные как с пустым реактором, так и с 5 г носителя катализатора, дали тот же неожиданный результат, что образование СН4, С2Н4 было почти исключительно благодаря пустому реактору, а также что некоторое дегидрирование имело место, скорее всего, на стенке реактора. Для типичных условий испытаний, 560-600°С, количество пропена соответствовало, в пересчете на углерод, количеству C1 и С2. Расчеты диссоциации вследствие пустого пространства в реакторе хорошо согласуются с экспериментальными результатами. Следует отметить, что эти гомогенные реакции, протекающие при повышенных температурах, скорее всего, являются причиной пониженной селективности промышленных реакций, в частности, процесса Oleflex, в котором газ перед входом в реактор дегидрирования предварительно четыре раза нагревают до 650°С. Каталитическая реакция является высокоселективной; на самом деле, когда результаты корректируются с учетом вклада пустого реактора, достигается селективность, близкая к 100%. Образование этана было констатировано в присутствии катализаторов. Однако по сравнению с количеством, которое должно было бы присутствовать при образовании равновесного количества, гидрирование этилена было далеко не полным, указывая на то, что этилен является первичным продуктом из гомогенной диссоциации пропана.
Первые испытания проводились с использованием реактора с гильзой для термопары, изготовленной из того же материала. Они показали значительную сульфидную коррозию. Таким образом, в другой реактор и гильзу для термопары было внесено изменение. Этот реактор имел внутренний диаметр 15 мм, по сравнению с диаметром 10 мм в предыдущем. Это увеличило количество C1 и С2 на 50%.
Полученный результат был скорректирован с учетом селективности 50% в пустом реакторе. Таким образом, в пересчете на углерод, углерод в C1 и С2 оказывается равным пропилену, образованному с помощью пустого реактора. Показатель для катализатора была скорректирован с учетом этого вклада.
Пример 1
15 г Pb(NO3)2 растворяют в 37,5 г воды. Этот раствор используют для пропитывания 50 г носителя (pv=1 мл/г). Образец прокатывают в течение 1 часа, сушат в течение ночи при 100°С и прокаливают при 500°С в течение 2 часов (период повышения температуры 4 часа).
Затем образец промывают в 100 мл 2%-ного раствора K2CO3 в течение 1 часа (доска для прокатывания). После этого образец дважды промывают 200 мл воды (каждый раз по одному часу, доска для прокатывания). Образец отфильтровывают и сушат в течение ночи при 100°С. Катализатор содержит 14% масс. Pb и 0,8% масс. K.
Пример 2
20 г Pb(СН3СОО)2⋅3H2O растворяют в 37,5 г воды. Этот раствор используют для пропитывания 50 г носителя (pv=1 мл/г). Образец прокатывают в течение 1 часа, сушат в течение ночи при 100°С и прокаливают при 500°С в течение 2 часов (период повышения температуры 4 часа).
Затем образец промывают в 100 мл 2%-ного раствора K2CO3 в течение 1 часа (доска для прокатывания). После этого образец дважды промывают 200 мл воды (каждый раз по одному часу, доска для прокатывания). Образец отфильтровывают и сушат в течение ночи при 100°С. Катализатор содержит 18% масс. Pb и 0,8% масс. K.
Пример 3
15 г Pb(NO3)2 и 1,5 г KNO3 растворяют в 37,5 г воды. Этот раствор используют для пропитывания 50 г носителя (pv=1 мл/г). Образец прокатывают в течение 1 часа, сушат в течение ночи при 100°С и прокаливают при 500°С в течение 2 часов (период повышения температуры 4 часа). Катализатор содержит 14% масс. Pb и 1% масс. K.
Пример 4
20 г Pb(СН3СОО)2⋅3H2O и 1,6 г KNO3 растворяют в 37,5 г воды. Этот раствор используют для пропитывания 50 г носителя (pv=1 мл/г). Образец прокатывают в течение 1 часа, сушат в течение ночи при 100°С и прокаливают при 500°С в течение 2 часов (период повышения температуры 4 часа). Катализатор содержит 18% масс. Pb и 1% масс. K.
Пример 5
5,0 г катализатора, приготовленного в Примере 1, помещали в трубчатый реактор с поршневым потоком из нержавеющей стали (длиной 1,0 м и с внутренним диаметром 15 мм). Катализатор помещался в середину реактора и удерживался на решетке. В верхней части, а также на дне слоя катализатора была размещена термопара.
Давления на входе и выходе регистрировалось датчиками давления. Перед каталитическими испытаниями были проведены контрольные испытания, и результаты этих контрольных испытаний были вычтены из последующих каталитических испытаний. Контрольные испытания обычно показывали конверсию 4% при 560°С и конверсию 12% при 600°С, в обоих случаях с селективностью по пропену, равной 50%.
Сначала катализатор восстанавливали и сульфидировали в газе, состоящем из 50 нл/ч N2, 4,5 нл/ч Н2 и 0,5 нл/ч H2S, нагревая в этом газе от комнатной температуры до температуры реакции 600°С в течение периода 60 минут.
При 600°С катализатор подвергали испытаниям в газе, содержащем 45 нл/ч N2, 5 нл/ч С3Н8, 1,8 нл/ч Н2 и 0,2 нл/ч H2S. Он показал образование (после вычитания вклада реактора) 0,2 нл/ч пропена, соответствующее 40 нл/ч пропена/кг катализатора/ч. Вычитание вклада реактора показало селективность 100% в пределах экспериментальной погрешности. Эксперимент проводили при давлении 0,26 МПа, и измерения регистрировали после 10 часов реакции.
Пример 6
После 40 часов реакции катализатор подвергали регенерации в течение 6 часов при 560°С в присутствии газа, содержащего 49,5 нл/ч N2 и 0,5 нл/ч О2. Затем его восстанавливали и сульфидировали в течение 2 часов в газе, содержащем 50 нл/ч N2, 9 нл/ч Н2 и 1 нл/ч H2S. Затем его подвергали испытаниям в течение 20 часов при 560°С в газе, содержащем 45 нл/ч N2, 5 нл/ч пропана, 0,9 нл/ч Н2 и 0,1 нл/ч H2S. Было обнаружено образование 0,21 нл/ч пропена (после вычитания вклада реактора) при селективности приблизительно 100%, соответствующей 124 нл/ч пропена/кг катализатора/ч. Давление составляло 0,22 МПа.
Температуру повышали до 600°С с использованием той же реакционной смеси. По прошествии суммарного времени реакции 85 часов было обнаружено образование пропена (после вычитания вклада реактора) 0,62 нл/ч, что соответствует 124 нл/ч пропена/кг катализатора/ч. Давление составляло 0,22 МПа.
Катализатор регенерировали после более чем 50 последовательных часов в пропаносодержащем газе. Было зарегистрировано количество СО2, и было сделано заключение, что менее 1% конвертированного пропана оказалось в виде углерода на катализаторе и стенке реактора.
Катализатор восстанавливали и сульфидировали, а затем снова испытывали при 600°С, используя те же условия, что и выше. Он по-прежнему демонстрировал ту же производительность.
После охлаждения в азоте катализатор анализировали с помощью порошковой рентгеновской дифракции. Помимо материала носителя, наблюдался только PbS. Он имел средний размер кристаллитов 64 нм.
Катализатор согласно изобретению медленно деактивируется в результате осаждения углерода и поэтому его необходимо регенерировать, подобно коммерчески доступным катализаторам на основе платины или оксида хрома. Регенерация происходит путем обжигания в разбавленном воздухе, то есть, 1% O2 и 99% N2, при 560-600°С.
Регенерация большинства сульфидов металлов с использованием N2 с 1% О2 приведет к образованию соответствующего сульфата. Чтобы сохранить серу на катализаторе, регенерация должна начинаться при 400°С с последующим удалением углерода при 600°С.
Регенерация заставляет катализатор пройти через две стадии фазового перехода: от сульфида до сульфата или оксида и снова обратно в сульфид. Фазовые переходы включают не только структурные преобразования, но также изменения объема. Ожидается, что спекание/диспергирование системы достигнет стационарного состояния после ряда регенераций.
Во время дегидрирования на катализаторе осаждается некоторое количество углерода, что приводит к медленной деактивации. Дегидрирование происходит в течение нескольких часов с последующей регенерацией катализатора в N2, содержащем 1% O2. За этим обычно следует сульфидирование или прямое возвращение к дегидрированию. В этом случае имеет место прямая реакция между сульфатом и пропаном, что приводит к большому образованию CO2.
Носитель обрабатывают разбавленным щелочным соединением и затем промывают для удаления кислотных центров. Предпочтительно, разбавленное щелочное соединение представляет собой карбонат калия или любое другое соединение калия.
В экспериментах носитель погружали в разбавленный раствор карбоната калия с последующей двухстадийной промывкой в деминерализованной воде, получая в результате содержание калия 0,15% масс. Кислотные центры были удалены, но не обязательно все из них. Результаты показывают влияние давления на образование углерода, а также они указывают на то, что образование углерода происходит из пропилена, а не из пропана. Кроме того, результаты показывают, что во время регенерации происходит полное удаление углерода.

Claims (6)

1. Способ дегидрирования алканов до соответствующих алкенов и водорода (H2), включающий контактирование алкана с катализатором, содержащим сульфид свинца (II) (PbS) и нанесенным на носитель, причем указанный катализатор регенерируют в несколько стадий.
2. Способ по п. 1, где дегидрирование проводят при температуре между 500 и 650°С, предпочтительно при температуре между 520 и 620°С.
3. Способ по п. 1, где дегидрирование проводят при давлении от на 0,5 бар ниже давления окружающей среды до на 5 бар выше давления окружающей среды.
4. Способ по п. 3, где дегидрирование проводят при давлении окружающей среды или при давлении от на 0,5 бар ниже давления окружающей среды до давления окружающей среды.
5. Способ по любому из пп. 1-4, где подаваемый газ содержит серу в количестве, определенном так, что равновесная реакция PbS + H2 <-> Pb + H2S смещается в направлении PbS на всем протяжении реактора.
6. Способ по п. 1, где стадии регенерации катализатора включают в себя (а) окисление в разбавленном воздухе при температуре между 350 и 750°С, (b) превращение в соответствующий сульфат и (c) превращение обратно в сульфид путем восстановления в разбавленном водороде, содержащем сероводород.
RU2018136790A 2016-03-22 2017-03-07 Сульфид свинца в качестве катализатора дегидрирования алканов RU2738935C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201600175 2016-03-22
DKPA201600175 2016-03-22
PCT/EP2017/055289 WO2017162431A1 (en) 2016-03-22 2017-03-07 Lead sulfide as alkane dehydrogenation catalyst

Publications (3)

Publication Number Publication Date
RU2018136790A RU2018136790A (ru) 2020-04-22
RU2018136790A3 RU2018136790A3 (ru) 2020-05-21
RU2738935C2 true RU2738935C2 (ru) 2020-12-18

Family

ID=58261664

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018136790A RU2738935C2 (ru) 2016-03-22 2017-03-07 Сульфид свинца в качестве катализатора дегидрирования алканов

Country Status (9)

Country Link
US (1) US20190047921A1 (ru)
EP (1) EP3433012B1 (ru)
KR (1) KR20180126512A (ru)
CN (1) CN108883401A (ru)
CA (1) CA3015144A1 (ru)
ES (1) ES2822343T3 (ru)
PL (1) PL3433012T3 (ru)
RU (1) RU2738935C2 (ru)
WO (1) WO2017162431A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315107A (en) * 1941-04-29 1943-03-30 Shell Dev Catalytic dehydrogenation
US2768931A (en) * 1954-07-19 1956-10-30 Sinclair Refining Co In a lead sulfide sweetening process adding dissolved lead oxide to maintain activity of lead sulfide
US3117937A (en) * 1960-02-25 1964-01-14 Petrolite Corp Production and regeneration of lead sulfide catalyst
RU2154031C1 (ru) * 1999-02-15 2000-08-10 Открытое акционерное общество "Органический синтез" Способ извлечения серебра из сточных вод и отработанных технологических растворов
RU2488439C1 (ru) * 2012-04-10 2013-07-27 Леонид Асхатович Мазитов Способ получения композиционного сорбента на основе сульфида свинца

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB488651A (en) 1936-12-07 1938-07-07 Ig Farbenindustrie Ag Improvements in or relating to the production of hydrocarbon products of low boilingpoint by the treatment of carbonaceous materials of elevated temperatures
US3247089A (en) 1962-09-05 1966-04-19 Petrolite Corp Process of sweetening distillates
US3280210A (en) 1964-09-08 1966-10-18 Phillips Petroleum Co Dehydrogenation of paraffins using molybdenum sulfide-alumina catalyst
US3755480A (en) * 1969-10-20 1973-08-28 Universal Oil Prod Co Dehydrogenation with a platinumlead catalytic composite
US3720627A (en) 1971-04-15 1973-03-13 Petrolite Corp Ready-to-use lead sulfide catalyst
US4172853A (en) * 1973-12-06 1979-10-30 Uop Inc. Hydrocarbon dehydrogenation with a multimetallic catalytic composite
CA2094766A1 (en) 1992-04-27 1993-10-28 Vincent A. Durante Process and catalyst for dehydrogenation of organic compounds
CN103861619A (zh) 2012-12-11 2014-06-18 江苏省海洋石化股份有限公司 一种烷烃脱氢硫化物催化剂及烷烃脱氢的方法
CN104069778B (zh) 2013-03-27 2016-08-31 中国石油天然气集团公司 一种在线硫化烷烃脱氢制烯烃的流化床反应装置和方法
CN104607168B (zh) 2015-01-05 2017-11-28 中国石油大学(华东) 一种用于烷烃催化脱氢的催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315107A (en) * 1941-04-29 1943-03-30 Shell Dev Catalytic dehydrogenation
US2768931A (en) * 1954-07-19 1956-10-30 Sinclair Refining Co In a lead sulfide sweetening process adding dissolved lead oxide to maintain activity of lead sulfide
US3117937A (en) * 1960-02-25 1964-01-14 Petrolite Corp Production and regeneration of lead sulfide catalyst
RU2154031C1 (ru) * 1999-02-15 2000-08-10 Открытое акционерное общество "Органический синтез" Способ извлечения серебра из сточных вод и отработанных технологических растворов
RU2488439C1 (ru) * 2012-04-10 2013-07-27 Леонид Асхатович Мазитов Способ получения композиционного сорбента на основе сульфида свинца

Also Published As

Publication number Publication date
EP3433012B1 (en) 2020-08-05
ES2822343T3 (es) 2021-04-30
US20190047921A1 (en) 2019-02-14
EP3433012A1 (en) 2019-01-30
CN108883401A (zh) 2018-11-23
PL3433012T3 (pl) 2021-01-11
CA3015144A1 (en) 2017-09-28
RU2018136790A (ru) 2020-04-22
RU2018136790A3 (ru) 2020-05-21
KR20180126512A (ko) 2018-11-27
WO2017162431A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
RU2734917C2 (ru) Катализаторы дегидрирования алканов на основе сульфидов
EP2569266B1 (en) Process for the production of light olefins from synthesis gas
US20220111359A1 (en) Catalyst for dehydrogenation of light alkanes
CN114466695A (zh) 用于选择性氢燃烧的金属氧化物
US20190023640A1 (en) Production of products from natural resources
AU2016428083B2 (en) Catalytic conversion of DSO in presence of water
RU2738935C2 (ru) Сульфид свинца в качестве катализатора дегидрирования алканов
US20210139394A1 (en) A process for the dehydrogenation of alkanes to alkenes and iron-based catalysts for use in the process
CN112745189A (zh) 一种正己烷羰基化生产芳烃的方法
US20200353452A1 (en) Catalyst and Method Related Thereto
US10947172B2 (en) Highly active catalyst for dehydrogenation of alkanes and method of preparation thereof
Lefferts et al. Heterogeneous Catalysis
CN115279492A (zh) 由烷烃族气体制备烯烃的脱氢催化剂及其制备方法
CN117881647A (zh) 使用乙醇从乙烷odh产物料流中除氧