RU2738328C2 - Способ получения субмикронных кристаллов нитрида алюминия - Google Patents

Способ получения субмикронных кристаллов нитрида алюминия Download PDF

Info

Publication number
RU2738328C2
RU2738328C2 RU2019112096A RU2019112096A RU2738328C2 RU 2738328 C2 RU2738328 C2 RU 2738328C2 RU 2019112096 A RU2019112096 A RU 2019112096A RU 2019112096 A RU2019112096 A RU 2019112096A RU 2738328 C2 RU2738328 C2 RU 2738328C2
Authority
RU
Russia
Prior art keywords
aluminium
aluminum
crystals
aln
crucible
Prior art date
Application number
RU2019112096A
Other languages
English (en)
Other versions
RU2019112096A (ru
RU2019112096A3 (ru
Inventor
Юрий Дмитриевич Афонин
Дмитрий Витальевич Чайкин
Александр Сергеевич Вохминцев
Илья Александрович Вайнштейн
Борис Владимирович Шульгин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2019112096A priority Critical patent/RU2738328C2/ru
Publication of RU2019112096A publication Critical patent/RU2019112096A/ru
Publication of RU2019112096A3 publication Critical patent/RU2019112096A3/ru
Application granted granted Critical
Publication of RU2738328C2 publication Critical patent/RU2738328C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Products (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к химической технологии субмикронных кристаллов нитрида алюминия в форме гексагональных призм и комбинации гексагональной призмы с дипирамидой и пинакоидом, которое может быть использовано при создании элементов нано-, микро- и оптоэлектроники, а также люминесцентно-активных микроразмерных сенсоров медико-биологического назначения. Гранулы металлического алюминия смешивают с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревают смесь до температуры образования паров субфторида алюминия, равной 1050 − 1150°С, в атмосфере аммиака, подаваемого в пространство над жидким алюминием с объемной скоростью подачи ниже 50 мл/мин при абсолютном давлении 0,03 – 0,07 МПа. Технический результат состоит в получении кристаллов нитрида алюминия с одинаковым фракционным размером от 70 нм до 1 мкм. 3 ил., 2 пр.

Description

Изобретение относится к химической технологии получения соединений алюминия, а именно к технологии получения субмикронных кристаллов нитрида алюминия в форме гексагональных призм и в форме комбинации гексагональной призмы с дипирамидой и пинакоидом, имеющих одинаковый фракционный размер от 70 нм до 1 мкм. Изобретение может быть использовано при разработке нано-, микро- и оптоэлектронных устройств, подложек и элементов, включая элементы нано-оптоэлектроники и люминесцентно-активные микроразмерные сенсоры медико-биологического назначения.
Нитрид алюминия AlN является перспективным материалом для создания мощных светоизлучающих и лазерных устройств в УФ и видимой области спектра благодаря широкой запрещенной зоне 6.2 эВ, высокой теплопроводности и электроизоляционным свойствам (Т. Я. Косолапова, Т. В. Андреева, Т. Б. Бартницкая и др. Неметаллические тугоплавкие соединения. М. Металлургия, 1985, − 224 с.). Однако, как правило, частицы коммерческих порошков AlN имеют размеры, превышающие 1 мкм.
Известен способ выращивания объемных монокристаллов нитрида алюминия из смеси азота и паров алюминия, включающий размещение в ростовой камере друг напротив друга подложки и источника паров алюминия, нагрев и поддержание рабочих температур источника и подложки, обеспечивающих соответственно образование паров алюминия в составе смеси, и рост монокристалла нитрида алюминия на подложке (патент РФ №2330905, МПК С30В 23/00, опубл. 10.08.08. Бюл. №22). В известном способе для очищения подложки и источника паров алюминия от летучих примесей предварительно осуществляют нагрев подложки до температуры 1500 − 1700°С при давлении не выше 10-3 мм рт.ст. Затем для подавления излишнего испарения и исключения возможности роста поликристаллов в ростовую камеру напускают азот до давления 0.9 – 1 атм, после чего продолжают нагрев до рабочей температуры. Однако известный способ не позволяет получать кристаллы AlN размером менее 1 мкм.
Разработан способ получения монокристаллов AlN путем газофазной эпитаксии из смеси, содержащей источники AlN и NH3, включающий размещение в ростовой камере друг напротив друга источника Al и обращенной к нему ростовой поверхностью подложки, образующих ростовую зону, создание в ростовой зоне потока NH3, нагрев источника Al и подложки до температур, обеспечивающих рост монокристалла AlN на подложке (патент РФ №2468121, МПК С30В 23/00, опубл. 27.11.12. Бюл. №33). В качестве источника Al используют только свободный Al, подложку предварительно обрабатывают Ga и/или In, после чего охлаждают источник Al до температуры 800 − 900°С и осуществляют отжиг подложки путем нагрева ее до температуры 1300 − 1400°С с последующим ее охлаждением до температуры нитридизации ее ростовой поверхности; после охлаждения подложки в ростовую зону подают NH3 в течение 8 − 15 минут, а затем повышают температуру источника Al и вместе с NH3 подают в ростовую зону пары Al; монокристалл AlN на начальном этапе роста до достижения толщины 1 − 10 мкм выращивают со скоростью не более 10 мкм/час, а затем увеличивают скорость роста до 100 − 200 мкм/час. Однако описанный способ не позволяет получать субмикронные кристаллы AlN и требует для своего осуществления дорогостоящего вакуумного оборудования.
Монокристаллический нитрид алюминия может быть получен выращиванием монокристалла AlN на затравочном кристалле с использованием устройства для производства монокристаллического AlN, содержащего тигель, причем тигель содержит внутренний тигель и внешний тигель; внутренний содержит исходный AlN и затравочный кристалл, указанные исходный AlN и затравочный кристалл расположены внутри внутреннего тигля таким образом, чтобы находится напротив друг друга; внутренний тигель содержит единый корпус из металла, имеющего ионный радиус, превышающий ионный радиус Al, или содержит нитрид металла; внешний тигель содержит нитрид бора, и внешний тигель также покрывает внутренний тигель, причем способ включает: стадию заполнения внутренней части тигля атмосферой газообразного азота, а также стадии нагрева тигля и уменьшения давления внутри внутреннего тигля (патент РФ №2485219, МПК С30В 23/00, опубл. 20.06.13. Бюл. №17). Однако реализация способа требует значительного времени из-за использования множества различных исходных материалов.
Существует способ производства нитрида алюминия в виде нитевидных кристаллических волокон со средним диаметром менее 100 нм и с соотношением длины волокна к диаметру более 100, включающий взаимодействие нагретого алюминия с азотом и галогенидами алюминия (III), скорость подачи которых находится на уровне 0.1 − 6.0 см3/мин на каждый 1 см2 поверхности конденсации, весь процесс синтеза ведут в реакционной камере, куда в процессе синтеза нитевидных волокон AlN поступают реагенты в результате испарения порошка тригалогенида алюминия из находящегося внутри реакционной камеры внешнего тигля, а конденсацию ведут на поверхности жидкого Al, находящегося в малом внутреннем тигле, который в свою очередь находится внутри внешнего тигля в той же реакционной камере. Реакционная камера во время процесса синтеза заполняется азотсодержащим газом, подаваемым в необходимом количестве в область над жидким Al (патент РФ №2617495, МПК С30В 23/00, опубл. 25.04.17. Бюл. №12). Недостатком получаемых волокон по известному способу является их малый диаметр (менее 100 нм), что ограничивает возможности их применения в качестве подложек для микро- и оптоэлектроники.
Наиболее близким к заявляемому является способ получения микрокристаллов нитрида алюминия правильной гексагональной формы из смеси газа и паров алюминия, включающий размещение нанопорошка Al между полюсами постоянного магнита и его нагрев в режиме теплового взрыва. Процесс осуществляют в атмосфере воздуха при давлении 1 атм и магнитном поле напряженностью 1500 эрстед (патент РФ №2437968, МПК С30В 23/00, опубл. 27.12.11. Бюл. №36). Данный способ позволяет получить кристаллы AlN преимущественно микронного размера. Другим недостатком является необходимость использовать нанопорошок Al в качестве источника Al и дополнительно прикладывать магнитное поле для получения кристаллов правильной гексагональной формы, что приводит к высокой стоимости синтезированных образцов AlN, полученных данным способом.
Технической проблемой является создание способа, возможности/характеристики которого удовлетворяют требованиям снижения размеров кристаллов нитрида алюминия, имеющих, во-первых, близкий к одинаковому фракционный размер, и во-вторых, имеющих размер существенно не превышающий 1 мкм.
Решение данной проблемы обеспечивается при осуществлении способа, включающего взаимодействие паров алюминия с трифторидом алюминия и аммиаком и последующую конденсацию конечно продукта. Внутри реакционной камеры смешивали гранулы металлического алюминия с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревали до температуры 1050 − 1150ºС достаточной для образования паров субфторида алюминия. Во внутреннее пространство реакционной камеры в область над жидким алюминием подавали аммиак с объемной скорость подачи ниже 50 мл/мин при абсолютном давлении 0.03 – 0.07 МПа. При большей скорости подачи возможно удаление газообразных реагентов из зоны реакции. Конденсацию конечного продукта вели на поверхности жидкого алюминия и стенках реакционной камеры.
Суть метода заключается в следующем: расплавленный Al взаимодействует с парами AlF3 с образованием газообразного AlF по реакции:
2Alжид. + AlF3газ. = 3AlFгаз.
В газовой фазе AlF реагирует с NH3 и в результате образуются зародыши твердой фазы AlN. Продуктом реакции также является H2, поток которого поддерживает зародыши в газовом объеме.
3AlFгаз. + 2NH3газ. = 2AlNтв. + 3H2газ. + AlF3газ.
В процессе синтеза зародыши увеличиваются и осаждаются, а затем из них формируются субмикронные кристаллы AlN в форме гексагональных призм, а также в форме комбинации гексагональной призмы с дипирамидой и пинакоидом с характерными размерами от 70 нм до 1 мкм (фиг. 1). Образующийся также AlF3 может повторно вступать в реакцию с Al.
Способ иллюстрируется следующими примерами выполнения.
Пример 1. Способ получения субмикронных кристаллов нитрида алюминия
Исходные гранулы металлического Al смешивают с порошком AlF3 в тигле в соотношении 1:1 и испаряют в реакционной камере при температуре 1050°С. В пространство над тиглем подают NH3 с объемной скоростью ниже 50 мл/мин при абсолютном давлении 0.03 МПа. Продолжительность процесса синтеза составляла 4.5 часа. За это время на стенках тигля и поверхности жидкого Al образовался белый порошок из микрочастиц кристаллического AlN. Анализ снимков, полученных с помощью растрового электронного микроскопа Sigma VP Carl Zeiss, показал, что AlN представляет собой кристаллы в виде гексагональных призм правильной геометрической формы и комбинации гексагональной призмы с дипирамидой и пинакоидом, имеющие фракционный размер от 70 нм до 1 мкм (фиг. 2) По результатам химического анализа с использованием энергодисперсионного детектора X-max Oxford Instruments определено, что микрочастицы имеют нестехиометрию по Al с соотношением Al:N = 0.9:1. Основными примесями являются O (1.6 ат. %) и Si (0.5 ат. %). С помощью рентгенофазового анализа на дифрактометре X'PertPro MPD PANalytical установлено, что продуктом синтеза является гексагональный нитрид алюминия.
Пример 2. Способ получения субмикронных кристаллов нитрида алюминия
Исходные гранулы металлического Al смешивают с порошком AlF3 в тигле в соотношении 3:1 и испаряют в реакционной камере при температуре 1150°С. В пространство над тиглем подают NH3 с объемной скоростью ниже 50 мл/мин при абсолютном давлении 0.07 МПа. Продолжительность процесса синтеза составляла 4.5 часа. За это время на стенках тигля и поверхности жидкого Al образовался белый порошок из микрочастиц кристаллического AlN. РЭМ-снимки этих кристаллов приведены на фиг. 3. Как видно из фиг. 3, AlN имеет вюрцитную гексагональную структуру с преимущественным размером фракции в диапазоне 0.1 – 0.6 мкм. Рентгенофазовый анализ конечного продукта показал, что синтезированный субмикронный порошок состоит из кристаллов гексагонального AlN.
Техническим результатом является расширение арсенала известных технологий получения нитрида алюминия путем создания дополнительного способа получения субмикронных гексагональных кристаллов нитрида алюминия с одинаковым фракционным размером от 70 нм до 1 мкм.

Claims (1)

  1. Способ получения субмикронных кристаллов нитрида алюминия, включающий взаимодействие паров алюминия с азотсодержащим газом, отличающийся тем, что гранулы металлического алюминия смешивают с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревают смесь до температуры 1050 − 1150°С в атмосфере аммиака, подаваемого в пространство над жидким алюминием с объемной скоростью подачи ниже 50 мл/мин при абсолютном давлении 0,03 – 0,07 МПа.
RU2019112096A 2019-04-22 2019-04-22 Способ получения субмикронных кристаллов нитрида алюминия RU2738328C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019112096A RU2738328C2 (ru) 2019-04-22 2019-04-22 Способ получения субмикронных кристаллов нитрида алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019112096A RU2738328C2 (ru) 2019-04-22 2019-04-22 Способ получения субмикронных кристаллов нитрида алюминия

Publications (3)

Publication Number Publication Date
RU2019112096A RU2019112096A (ru) 2020-10-22
RU2019112096A3 RU2019112096A3 (ru) 2020-10-22
RU2738328C2 true RU2738328C2 (ru) 2020-12-11

Family

ID=72944284

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019112096A RU2738328C2 (ru) 2019-04-22 2019-04-22 Способ получения субмикронных кристаллов нитрида алюминия

Country Status (1)

Country Link
RU (1) RU2738328C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2074109C1 (ru) * 1995-05-30 1997-02-27 Акционерное общество открытого типа "Машиностроительный завод" Способ получения нитрида алюминия
RU2312060C2 (ru) * 2005-01-28 2007-12-10 Общество с ограниченной ответственностью "Центр научно-технических разработок" (ООО "Центр научно-технических разработок") Способ получения порошка нитрида алюминия
RU2437968C1 (ru) * 2010-07-01 2011-12-27 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения микрокристаллов нитрида алюминия
RU2617495C1 (ru) * 2016-01-25 2017-04-25 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ получения нитевидного нитрида алюминия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2074109C1 (ru) * 1995-05-30 1997-02-27 Акционерное общество открытого типа "Машиностроительный завод" Способ получения нитрида алюминия
RU2312060C2 (ru) * 2005-01-28 2007-12-10 Общество с ограниченной ответственностью "Центр научно-технических разработок" (ООО "Центр научно-технических разработок") Способ получения порошка нитрида алюминия
RU2437968C1 (ru) * 2010-07-01 2011-12-27 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения микрокристаллов нитрида алюминия
RU2617495C1 (ru) * 2016-01-25 2017-04-25 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ получения нитевидного нитрида алюминия

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLEN A.SLACK et al, Growth of high purity AlN crystals, "Journal of Crystal Growth", 1976, Vol.34, No.2, pp 263-279. *

Also Published As

Publication number Publication date
RU2019112096A (ru) 2020-10-22
RU2019112096A3 (ru) 2020-10-22

Similar Documents

Publication Publication Date Title
US6001748A (en) Single crystal of nitride and process for preparing the same
JP4558584B2 (ja) 窒化アルミニウム単結晶の製造方法
US8414855B2 (en) Spherical boron nitride nanoparticles and synthetic method thereof
Yano et al. Growth of nitride crystals, BN, AlN and GaN by using a Na flux
Devi et al. A Study of Bisazido (dimethylamino‐propyl) gallium as a Precursor for the OMVPE of Gallium Nitride Thin Films in a Cold‐Wall Reactor System under Reduced Pressure
US20020104478A1 (en) Silicon carbide single crystal and process for producing the same
JP2002293696A (ja) GaN単結晶の製造方法
CN101233265A (zh) AlN晶体、用于生长AlN晶体的方法以及AlN晶体衬底
JPWO2009066663A1 (ja) 窒化アルミニウム単結晶多角柱状体及びそれを使用した板状の窒化アルミニウム単結晶の製造方法
CN107190323A (zh) 一种生长低缺陷碳化硅单晶的方法
Roman et al. Aluminium nitride films made by low pressure chemical vapour deposition: Preparation and properties
US5356608A (en) Preparation of a high purity aluminum nitride antenna window by organometallic pyrolysis
US7294199B2 (en) Nitride single crystal and producing method thereof
CN108118394B (zh) 一种降低碳化硅单晶中氮杂质含量的方法
KR20050040753A (ko) SiC 피복 탄소계 재료와 SiC 피복용 탄소계 재료
Liang et al. Low temperature synthesis of LiSi 2 N 3 nanobelts via molten salt nitridation and their photoluminescence properties
Bockowski Growth and doping of GaN and AlN single crystals under high nitrogen pressure
RU2738328C2 (ru) Способ получения субмикронных кристаллов нитрида алюминия
CN110203933B (zh) 一种降低碳化硅粉体中氮杂质含量的方法
JP4350484B2 (ja) 窒化アルミニウム単結晶の製造方法
JPH04292499A (ja) 炭化珪素単結晶の製造方法
US4913887A (en) Production of boron nitride
Wu et al. Growth temperature dependence of morphology of GaN single crystals in the Na-Li-Ca flux method
Sakamoto et al. Development of gas-solid phase hybrid synthesis method of single crystal Ba2SiO4: Eu2+
EP0946411A1 (en) Method for the synthesis of group iii nitride crystals