RU2732721C1 - Способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов - Google Patents

Способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов Download PDF

Info

Publication number
RU2732721C1
RU2732721C1 RU2020111744A RU2020111744A RU2732721C1 RU 2732721 C1 RU2732721 C1 RU 2732721C1 RU 2020111744 A RU2020111744 A RU 2020111744A RU 2020111744 A RU2020111744 A RU 2020111744A RU 2732721 C1 RU2732721 C1 RU 2732721C1
Authority
RU
Russia
Prior art keywords
fuel
nitride
nuclear fuel
fragments
shell
Prior art date
Application number
RU2020111744A
Other languages
English (en)
Inventor
Александр Григорьевич Осипенко
Сергей Валентинович Абрамов
Владимир Иванович Воронин
Алексей Михайлович Потапов
Михаил Валерьевич Мазанников
Петр Николаевич Мушников
Владимир Юрьевич Шишкин
Юрий Павлович Зайков
Александр Борисович Салюлев
Кирилл Рауильевич Каримов
Александр Евгеньевич Дедюхин
Анна Сергеевна Холкина
Андрей Викторович Суздальцев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority to RU2020111744A priority Critical patent/RU2732721C1/ru
Application granted granted Critical
Publication of RU2732721C1 publication Critical patent/RU2732721C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к способу отделения отработавшего нитридного ядерного топлива от оболочки фрагментов тепловыделяющего элемента и может быть использовано в технологии переработки отработавшего нитридного ядерного топлива в составе технологии замкнутого ядерного топливного цикла. Фрагменты тепловыделяющих элементов вместе с оболочкой нагревают до температуры не менее 500 °С и выдерживают в газовой атмосфере, причем выдержку нагретых фрагментов тепловыделяющих элементов осуществляют в атмосфере азота. Техническим результатом является исключение присутствия химически агрессивного газа в процессе отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов, упрощение аппаратурного оформления способа, сокращение побочных компонентов на дальнейших этапах переработки нитридного ядерного топлива, также перевод плотных спеченных образцов нитридного топлива в микродисперсный порошок, что позволяет ускорить дальнейшие операции переработки топлива. 3 ил., 1 табл.

Description

Изобретение относится к ядерной энергетике и может быть использовано в технологии переработки отработавшего нитридного ядерного топлива в составе технологии замкнутого ядерного топливного цикла.
Благодаря высокой плотности, нитридное ядерное топливо является одним из наиболее перспективных видов топлива для реакторов на быстрых нейтронах, которые могут быть использованы в технологиях замкнутого ядерного топливного цикла [1]. В настоящее время наряду с разработкой способов синтеза высокочистого нитридного топлива с оптимальным составом, пористостью и плотностью, активно ведется поиск безопасных и простых способов его своевременной переработки после использования по прямому назначению. Этот поиск обусловлен тем, что существующие гидрохимические способы не могут быть использованы для переработки ядерного топлива в рамках замкнутого ядерного топливного цикла, поскольку включают операцию длительного хранения топлива. Кроме этого, гидрохимические способы переработки ядерного топлива обладают рядом существенных недостатков, среди которых образование большого объема радиоактивной воды, необходимость высоких трудовых и энергетических затрат, повышение рисков утечки высокоактивного топлива при транспортировке и хранении [2].
В этой связи, перспективными представляются способы переработки нитридного ядерного топлива в расплавленных солях, устойчивых к радиационному и тепловому воздействию. Основное достоинство таких способов заключается в исключении длительного хранения тепловыделяющих элементов с отработавшим ядерным топливом перед его переработкой. Однако ввиду того, что активное внимание к данным способам появилось сравнительно недавно, все нижеперечисленные способы пока находятся в стадии разработки и лабораторной апробации. Для аппаратурного упрощения, тепловыделяющие элементы, длина которых достигает 4 м, предварительно подвергают фрагментации, после чего подвергают дальнейшим операциям переработки.
Известны способы переработки нитридного ядерного топлива, включающие фрагментацию тепловыделяющих элементов с топливом и конверсию нитридных компонентов топлива в хлориды путем их анодного и химического растворения в хлоридных расплавах, содержащих CdCl2, при температуре от 450 до 700 °С [3, 4]. После конверсии компоненты топлива могут электролитически извлекаться из расплава для изготовления нитридного топлива. Однако переработка фрагментов тепловыделяющих элементов, оболочка которых не отделена от отработавшего нитридного ядерного топлива, представляется неэффективной ввиду загрязнения перерабатываемого топлива компонентами оболочки. Это справедливо и для других способов переработки нитридного ядерного топлива в расплавленных солях.
Следовательно, одной из основных задач разрабатываемых способов переработки ядерного топлива является отделение основной массы топлива от оболочки тепловыделяющего элемента и продуктов деления топлива перед его дальнейшей переработкой.
Известны способы отделения компонентов ядерного топлива от оболочки фрагментов тепловыделяющего элемента, включающие плавление оболочки в расплавленных металлах или сплавах при температуре 600-1000 °С с последующим отделением металла или сплава от отработавшего нитридного ядерного путем механической сепарации или возгонки металла или сплава [5-7]. Существенными недостатками этих способов являются быстрое насыщение образующегося жидкого металла или сплава компонентами топлива и продуктами его деления, а также дополнительное загрязнение компонентов топлива металлом или сплавом, в результате чего не удается достичь полного отделения компонентов оболочки от компонентов топлива, а потому дальнейшие операции переработки компонентов топлива и оболочки представляются сложными и неэффективными.
Наиболее близким к заявленному является способ переработки нитридного ядерного топлива [8], который, как и используемые гидрохимические способы переработки ядерного топлива, включает фрагментацию тепловыделяющих элементов с топливом, нагрев фрагментов тепловыделяющих элементов вместе с оболочкой и топливом до температуры выше 400 °С, преимущественно до температуры от 720 до 850 °С и выдержку при этой температуре в атмосфере газообразных фтора или фторидов азота. Способ позволяет на 100 % переводить компоненты нитридного топлива во фториды для дальнейшей переработки. Однако ввиду высокой химической активности используемых газообразных реагентов фторированию могут подвергаться и компоненты оболочки, вследствие чего переработка топлива известным способом может быть перегружена присутствием в цикле переработки значительной массы элементов оболочки тепловыделяющего элемента. Более того, фтор является очень дорогим и чрезвычайно агрессивным химически, поэтому его использование предполагает соответствующее сложное оборудование с крайне узким диапазоном возможных конструкционных материалов, тщательный контроль и обеспечение дополнительных мер безопасности, что является экономически, экологически и энергетически невыгодным.
Задачей настоящего изобретения является повышение экологической безопасности, экономической и энергетической эффективности.
Для этого предложен способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов, в котором фрагменты тепловыделяющих элементов, как и в прототипе, вместе с оболочкой и топливом нагревают до температуры не менее 500 °С и выдерживают в газовой атмосфере. При этом способ отличается тем, что выдержку нагретых фрагментов тепловыделяющих элементов осуществляют в атмосфере азота.
Сущность заявленного способа заключается в том, что фрагментированные известным образом тепловыделяющие элементы с отработавшим или отбракованным нитридным ядерным топливом, помещают в камеру или реактор с атмосферой азота при температуре 500 °С и выше. При такой обработке происходит встраивание азота в молекулярную решетку компонентов плотного нитридного ядерного топлива, что сопровождается увеличением параметра молекулярной решетки, уменьшением плотности нитридов и разрыхлением спеченных образцов топлива в микродисперсный порошок. Так при обработке азотом мононитрид урана UN с параметром решетки 4.89 ангстрем и плотностью массы 14.3 г/см3 переходит в смесь полуторного нитрида урана U2N3 с динитридом урана UN2 с параметрами решетки 10.67 и 5.48 ангстрем, соответственно. Плотность массы при этом снижается до 11-12 г/см3.
На макроуровне это приводит к появлению напряженности в спеченных образцах нитридного топлива и к их разрушению до микродисперсного порошка, что сопровождается полным отделением топлива от оболочки фрагмента тепловыделяющего элемента. Благодаря открытой пористости образцов спеченного нитридного топлива и высокой подвижности молекулярного азота при температуре осуществления способа перевод спеченных образцов в порошок происходит достаточно интенсивно, при этом беспористая оболочка тепловыделяющего элемента воздействию азота практически не подвергается. Полученные по вышеописанной схеме порошок нитридного ядерного топлива без дополнительных операций может быть подвергнут дальнейшей конверсии в хлориды или оксиды.
Технический результат, достигаемый заявленным способом, заключается в исключении химически агрессивного газа и упрощении аппаратурного оформления способа, сокращении побочных компонентов на дальнейших этапах переработки нитридного ядерного топлива, в переводе плотных спеченных образцов нитридного топлива в микродисперсный порошок, позволяющим существенно ускорить дальнейшие операции переработки топлива.
Изобретение иллюстрируется таблицей с параметрами и результатами экспериментальной апробации способа, а также рисунками, где на фиг. 1 приведена термодинамическая оценка взаимодействий в системе UN+N2(газ) при температуре 500 и 800 °С; на фиг. 2 приведена фотография таблетки UN до и после обработки в азоте при 700 °С, на фиг. 3 приведены области дифрактограмм образца UN до и после обработки в азоте при 700 °С с характерными для разных нитридов урана угловыми рефлексами.
Экспериментальную апробацию заявленного способа осуществляли на модельных образцах UN. Для этого путем прессования и спекания изготавливали плотные таблетки UN, которые после взвешивания и рентгенофазового анализа размещали в кварцевой пробирке с атмосферой азота, нагревали и выдерживали при температуре эксперимента. Азот в кварцевой пробирке поддерживали при слабом избыточном давлении либо продували. По окончании эксперимента образцы извлекали и анализировали при помощи рентгенофазового анализа. В таблице сведены параметры и результаты экспериментальной апробации способа. В ряде экспериментов совместно с таблеткой UN обработке в атмосфере азота подвергли фрагменты стальной трубки, имитирующей оболочку тепловыделяющего элемента. Видно, что во всех случаях при обработке в азоте таблетки UN были переведены в порошкообразные смеси нитридов урана, в то время как образцы стали воздействию практически не подверглись.
На основании термодинамических оценок предположено и экспериментально показано, что уже при 500 °С образцы UN подвергаются азотированию до U2N3 и UN2, однако кинетика процесса сильно затруднена. При повышении температуры процесс азотирования интенсифицируется. Так, при температуре 700 °С для разрушения (выкрашивания) таблетки UN потребовалось пропустить через пробирку 6.11 л азота, а продукты азотирования по данным рентгенофазового анализа содержали смесь кусков UN с порошками U2N3 и UN2.
Таким образом, заявленный способ позволяет отделить компоненты нитридного ядерного топлива от фрагментов тепловыделяющих элементов, сократить содержание побочных компонентов на дальнейших этапах переработки нитридного ядерного топлива, перевести плотные спеченные образцы нитридного топлива в микродисперсный порошок, что позволит существенно ускорить дальнейшие операции переработки топлива известными способами.
Источники.
1. B.M. Ma, Nuclear Reactor Materials and Applications, 1983.
2. Engineering Journal, 2009, Vol.13, pp. 1-28.
3. RU2079909C1, публ. 20.05.1997.
4. WO2019/132710A1, публ. 04.07.2019.
5. RU2296381, публ. 10.06.2006.
6. US3666425, публ. 30.05.1972.
7. RU2194783, публ. 20.12.2002.
8. Известия Томского политехнического университета, 2005, Т. 308, № 5, C. 85-90.

Claims (1)

  1. Способ отделения отработавшего нитридного ядерного топлива от оболочки фрагментов тепловыделяющего элемента, в котором фрагменты тепловыделяющих элементов вместе с оболочкой нагревают до температуры не менее 500 °С и выдерживают в газовой атмосфере, отличающийся тем, что выдержку нагретых фрагментов тепловыделяющих элементов осуществляют в атмосфере азота.
RU2020111744A 2020-03-23 2020-03-23 Способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов RU2732721C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020111744A RU2732721C1 (ru) 2020-03-23 2020-03-23 Способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020111744A RU2732721C1 (ru) 2020-03-23 2020-03-23 Способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов

Publications (1)

Publication Number Publication Date
RU2732721C1 true RU2732721C1 (ru) 2020-09-22

Family

ID=72922401

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020111744A RU2732721C1 (ru) 2020-03-23 2020-03-23 Способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов

Country Status (1)

Country Link
RU (1) RU2732721C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775563C1 (ru) * 2021-12-21 2022-07-04 Российская Федерация от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ окислительной обработки отработавшего нитридного ядерного топлива

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284090A (ja) * 1999-03-31 2000-10-13 Sumitomo Metal Mining Co Ltd 使用済み核燃料の再処理方法
RU2194783C1 (ru) * 2001-04-13 2002-12-20 Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" Способ извлечения керамического ядерного топлива из тепловыделяющих элементов и тепловыделяющих сборок
RU2296381C2 (ru) * 2004-12-30 2007-03-27 Институт высокотемпературной электрохимии Уральского отделения Российской академии наук Способ вскрытия оболочки тепловыделяющего элемента
RU2522814C1 (ru) * 2013-01-09 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ получения порошков нитрида урана
US8795610B2 (en) * 2010-05-27 2014-08-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for reprocessing spent nuclear fuel not requiring a plutonium-reducing stripping operation
US9428401B1 (en) * 2012-09-18 2016-08-30 U.S. Department Of Energy Separation of the rare-earth fission product poisons from spent nuclear fuel
RU2627682C2 (ru) * 2010-09-27 2017-08-10 Диаморф Аб Нитридное ядерное топливо и способ его получения
WO2019132710A1 (ru) * 2017-12-29 2019-07-04 Российская Федерация от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284090A (ja) * 1999-03-31 2000-10-13 Sumitomo Metal Mining Co Ltd 使用済み核燃料の再処理方法
RU2194783C1 (ru) * 2001-04-13 2002-12-20 Государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" Способ извлечения керамического ядерного топлива из тепловыделяющих элементов и тепловыделяющих сборок
RU2296381C2 (ru) * 2004-12-30 2007-03-27 Институт высокотемпературной электрохимии Уральского отделения Российской академии наук Способ вскрытия оболочки тепловыделяющего элемента
US8795610B2 (en) * 2010-05-27 2014-08-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for reprocessing spent nuclear fuel not requiring a plutonium-reducing stripping operation
RU2627682C2 (ru) * 2010-09-27 2017-08-10 Диаморф Аб Нитридное ядерное топливо и способ его получения
US9428401B1 (en) * 2012-09-18 2016-08-30 U.S. Department Of Energy Separation of the rare-earth fission product poisons from spent nuclear fuel
RU2522814C1 (ru) * 2013-01-09 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ получения порошков нитрида урана
WO2019132710A1 (ru) * 2017-12-29 2019-07-04 Российская Федерация от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Известия Томского политехнического университета, 2005, Т. 308. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775564C1 (ru) * 2021-11-29 2022-07-04 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ высокотемпературной обработки отработавшего нитридного ядерного топлива
RU2775563C1 (ru) * 2021-12-21 2022-07-04 Российская Федерация от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ окислительной обработки отработавшего нитридного ядерного топлива

Similar Documents

Publication Publication Date Title
RU2732721C1 (ru) Способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов
Carrott et al. The chemistry of (U, Pu) O2 dissolution in nitric acid
Pavliuk et al. Thermodynamic simulation of equilibrium composition of reaction products at dehydration of a technological channel in a uranium-graphite reactor
Maher Current headend technologies and future developments in the reprocessing of spent nuclear fuels
RU2622500C2 (ru) Способ обработки оболочки, содержащей прокаленный гидрид кальция
Parkison et al. Hydride formation process for the powder metallurgical recycle of zircaloy from used nuclear fuel
RU2707562C1 (ru) Способ переработки тепловыделяющих элементов
RU2775564C1 (ru) Способ высокотемпературной обработки отработавшего нитридного ядерного топлива
Krivov et al. Thermogravimetric study of mixed uranium-plutonium fuel for prospective generation IV reactors
Barbin et al. Composition of the gas-plasma phase in the radioactive graphite-water vapor system
Burris et al. Developments in melt refining of reactor fuels
Bresee et al. Chemical Pre-Treatment of used Fuel for Long–Term Storagea
Roth et al. Effects of matrix composition on instant release fractions from high burn-up nuclear fuel
Setyadji et al. Characteristics of uranium dioxide (UO2) kernel produced by sintering process using modified sintering reactor
Pitner Fast Reactor Irradiation of Boron Carbide Powder
Owen The role of alloying elements on grain boundary complexions in nuclear materials
Tikhonov et al. Plasma immobilization of silts in storage pools with low radioactive waste
Kumar et al. Thermal decomposition studies of aqueous and nitric solutions of hydroxyurea
RU2660804C1 (ru) Способ подготовки графитовых радиоактивных отходов к захоронению
Kang et al. Tritium extraction in aluminum metal by heating method without melting
Guibaldo et al. Preparation of UF4 by carbochlorination of U3O8 and solid-state halogen exchange reaction
Mashirev Metal powder production from metal ingots by the hydriding-dehydriding method
Hamman et al. Radiation effects on boron-containing compounds
Tjaelldin The Thermox Process
RU2174943C2 (ru) Способ изготовления деталей из гидрида металла

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210413