RU2732353C2 - Топливная форсунка с радиальным и осевым завихрителями для газовой турбины и газовая турбина - Google Patents

Топливная форсунка с радиальным и осевым завихрителями для газовой турбины и газовая турбина Download PDF

Info

Publication number
RU2732353C2
RU2732353C2 RU2018142182A RU2018142182A RU2732353C2 RU 2732353 C2 RU2732353 C2 RU 2732353C2 RU 2018142182 A RU2018142182 A RU 2018142182A RU 2018142182 A RU2018142182 A RU 2018142182A RU 2732353 C2 RU2732353 C2 RU 2732353C2
Authority
RU
Russia
Prior art keywords
swirler
radial
fuel
axial
fuel injector
Prior art date
Application number
RU2018142182A
Other languages
English (en)
Other versions
RU2018142182A (ru
RU2018142182A3 (ru
Inventor
Маттео ЧЕРУТТИ
Original Assignee
Нуово Пиньоне Текнолоджи Срл
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нуово Пиньоне Текнолоджи Срл filed Critical Нуово Пиньоне Текнолоджи Срл
Publication of RU2018142182A publication Critical patent/RU2018142182A/ru
Publication of RU2018142182A3 publication Critical patent/RU2018142182A3/ru
Application granted granted Critical
Publication of RU2732353C2 publication Critical patent/RU2732353C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • F23D14/04Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner
    • F23D14/08Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner with axial outlets at the burner head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07001Air swirling vanes incorporating fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2206/00Burners for specific applications
    • F23D2206/10Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14021Premixing burners with swirling or vortices creating means for fuel or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14701Swirling means inside the mixing tube or chamber to improve premixing

Abstract

Варианты выполнения изобретения относятся к топливным форсункам газовых турбин, имеющим радиальный и осевой завихрители, и к газовым турбинам, в которых применяются указанные форсунки. Данное изобретение направлено на решение проблемы, заключающейся в обеспечении надежности работы топливной форсунки и решаемой путем обеспечения стабильности пламени и снижения выбросов NOx. Согласно первым вариантам выполнения, топливная форсунка содержит радиальный завихритель и осевой завихритель, причем радиальный завихритель выполнен с возможностью закручивания первого потока первой смеси топлива и окислителя, а осевой завихритель выполнен с возможностью закручивания второго потока второй смеси топлива и окислителя. Первый поток может подаваться по центральному каналу, а второй поток может подаваться по кольцевому каналу, окружающему центральный канал. С радиальным завихрителем форсунки взаимосвязана первая зона рециркуляции, а с осевым завихрителем форсунки взаимосвязана вторая зона рециркуляции, по меньшей мере частично расположенная ниже по потоку относительно первой зоны рециркуляции. Корпус форсунки имеет центральный канал, который проходит в осевом направлении, начинается от камеры, продолжается сужающейся секцией и оканчивается расширяющейся секцией, при этом первые подающие каналы радиального завихрителя в радиальном направлении тангенциально и оканчиваются в указанной камере. Вторые варианты выполнения изобретения, предложенного в настоящем документе, относятся к газовым турбинам. Согласно вторым вариантам выполнения, газовая турбина содержит по меньшей мере одну вышеописанную топливную форсунку, имеющую радиальный завихритель и осевой завихритель. 2 н. и 10 з.п. ф-лы, 5 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Варианты выполнения изобретения, предложенного в настоящем документе, относятся к топливным форсункам газовых турбин, имеющим радиальный и осевой завихрители, и к газовым турбинам, в которых применяются указанные форсунки.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Важными параметрами топливных форсунок горелки газовой турбины являются стабильность пламени и низкие выбросы NОx. Особенно это относится к «нефтегазовой» отрасли (а именно, к машинам, применяемым в установках по разведке, добыче, хранению, очистке и распределению нефти и/или газа). Для этого в топливных форсунках газовых турбин применяют завихрители. Например, в заявке на патент США №2010126176А1 описан двойной радиальный завихритель. Осевой завихритель описан, например, в заявке на патент США № 2016010856А1. В патенте США №4754600, например, описан завихритель, в котором радиальный и осевой потоки воздуха объединяются с образованием единого потока воздуха; обеспечена единая зона рециркуляции, которой можно управлять.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Данное изобретение направлено на решение проблемы, заключающейся в обеспечении надежности работы топливной форсунки и решаемой путем обеспечения стабильности пламени и снижения выбросов NOx. Для достижения указанной цели как радиальный завихритель, так и осевой завихритель встроены в единую топливную форсунку. Рециркуляция в камере сгорания, представляющая механизм стабилизации, может зависеть от нагрузки газовой турбины, например, низкой нагрузки, средней нагрузки, высокой нагрузки. В зависимости от нагрузки газовой турбины рециркуляция в камере сгорания может быть обеспечена посредством только, или главным образом, радиального завихрителя или посредством только, или главным образом, осевого завихрителя, либо посредством обоих завихрителей. Первые варианты выполнения изобретения, предложенного в настоящем документе, относятся к топливным форсункам газовых турбин. Согласно первым вариантам выполнения, топливная форсунка содержит радиальный завихритель и осевой завихритель, причем радиальный завихритель выполнен с возможностью закручивания первого потока первой смеси топлива и окислителя, а осевой завихритель выполнен с возможностью закручивания второго потока второй смеси топлива и окислителя. Первый поток может подаваться по центральному каналу, а второй поток может подаваться по кольцевому каналу, окружающему центральный канал. С радиальным завихрителем форсунки взаимосвязана первая зона рециркуляции, а с осевым завихрителем форсунки взаимосвязана вторая зона рециркуляции, по меньшей мере частично расположенная ниже по потоку относительно первой зоны рециркуляции. Корпус форсунки имеет центральный канал, который проходит в осевом направлении, начинается от камеры, продолжается сужающейся секцией и оканчивается расширяющейся секцией, при этом первые подающие каналы радиального завихрителя в радиальном направлении тангенциально и оканчиваются в указанной камере. Вторые варианты выполнения изобретения, предложенного в настоящем документе, относятся к газовым турбинам. Согласно вторым вариантам выполнения, газовая турбина содержит по меньшей мере одну вышеописанную топливную форсунку, имеющую радиальный завихритель и осевой завихритель. Вышеописанная конфигурация форсунки обеспечивает достижение технического результата, заключающегося в получении стабильного пламени и снижении выбросов NOx.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Примеры вариантов выполнения предложенного изобретения проиллюстрированы сопроводительными чертежами, которые включены в настоящий документ, составляют его неотъемлемую часть и вместе с подробным описанием объясняют упомянутые варианты выполнения. На чертежах: Фиг.1 изображает горелку газовой турбины, в которой расположена топливная форсунка согласно варианту выполнения, в частичном продольном разрезе, Фиг.2 изображает форсунку, представленную на Фиг.1, в частичном продольном разрезе, Фиг.3 изображает вид спереди в аксонометрии форсунки, представленной на Фиг.1, Фиг.4 изображает вид спереди в аксонометрии форсунки, представленной на Фиг.1, в разрезе по радиальному завихрителю, и Фиг.5 изображает два графика, иллюстрирующие соотношения Wg/Wa для завихрителей.
ПОДРОБНОЕ ОПИСАНИЕ
Приведенное ниже описание примеров вариантов выполнения ссылается на прилагаемые чертежи. Приведенное ниже описание не ограничивает изобретение. Вместо этого, объем изобретения определен прилагаемой формулой изобретения. Используемая на протяжении настоящего описания ссылка на выражение «один вариант выполнения» или «вариант выполнения» означает, что конкретный признак, конструкция или характеристика, описанные применительно к варианту выполнения, относятся по меньшей мере к одному варианту выполнения предложенного изобретения. Таким образом, фразы «в одном варианте выполнения» или «в варианте выполнения», используемые в разных местах описания, не обязательно относятся к одному и тому же варианту выполнения. Более того, конкретные признаки, конструкции или характеристики могут сочетаться любым соответствующим образом в одном или более вариантах выполнения. На Фиг.1 в частичном продольном разрезе изображена горелка 10 газовой турбины 1, в которой расположена топливная форсунка 100 согласно варианту выполнения. Горелка 10 выполнена в форме кольца, имеет ось 11, внутреннюю (например, цилиндрическую) стенку 12 и внешнюю (например, цилиндрическую) стенку 13. Поперечная стенка 14 отделяет питающую камеру 15 горелки 10 от камеры 16 сгорания горелки 10; питающая камера 15 проточно сообщается с выпускной камерой компрессора газовой турбины 1. Горелка 10 содержит множество форсунок 100, расположенных в виде венца вокруг оси 11 указанной горелки. Стенка 14 имеет множество отверстий (например, круговых), в которых установлено соответствующее множество корпусов (например, цилиндрических) форсунок 100. Более того, каждая форсунка 100 имеет выносную опору 130, в частности, L-образный отвод, обеспечивающий фиксацию форсунки 100, в частности, к внешней стенке 13. Форсунка 100 содержит радиальный завихритель, схематически изображенный на Фиг.1 в виде элемента 111, и осевой завихритель, схематически изображенный на Фиг.1 в виде элемента 121В. Как описано далее подробнее со ссылкой на Фиг.2, Фиг.3 и Фиг.4, осевой завихритель по существу состоит из набора лопаток 121, а радиальный завихритель по существу состоит из набора каналов 111; лопатки 121 проходят по существу в осевом направлении, а каналы 111 проходят по существу в радиальном направлении. Следует отметить, что в варианте выполнения, представленном на Фиг.2, Фиг.3 и Фиг.4, каждая лопатка имеет прямолинейную часть 121А и криволинейную часть 121В (расположенную ниже по потоку относительно прямолинейной части 121А); при этом, криволинейная часть 121В обеспечивает радиальное закручивание протекающего газа (как объяснено далее), а на прямолинейной части 121А выполнен канал 111, то есть, указанная часть является полой. Корпус форсунки 100 проходит в осевом направлении, то есть, вдоль оси 101, от стороны 103 впуска форсунки к стороне 105 выпуска форсунки; корпус может иметь, например, цилиндрическую форму, коническую форму, форму призмы или пирамиды. Корпус форсунки 100 имеет центральный канал 110, проходящий в осевом направлении 101, и кольцевой канал 120, проходящий в осевом направлении 101 вокруг центрального канала 110. В кольцевом канале 120 расположены лопатки 121. Каналы 111 начинаются на наружной поверхности корпуса, проходят через прямолинейную часть 121А лопаток 121 и оканчиваются в камере 112, расположенной в центральной зоне корпуса; от камеры 112 начинается центральный канал 110. Каналы 111 обеспечивают осевое закручивание протекающего газа (как объяснено далее). Внутренний отвод 130 представлен по меньшей мере первой трубой 131 для подачи первого потока F1 топлива к корпусу форсунки 100, в частности, к стороне 103 впуска указанной форсунки, и второй трубой 132 для подачи второго потока F2 топлива к корпусу форсунки 100, в частности, к стороне 103 впуска указанной форсунки; могут быть предусмотрены и другие трубки, в частности, для подачи других потоков топлива. Первый поток A1 окислителя, в частности, воздуха, поступает в центральный канал 110 из камеры 15 (в частности, от боковой стороны корпуса форсунки по каналам 111); второй поток А2 окислителя, в частности, воздуха, поступает в кольцевой канал 120 из камеры 15 (в частности, от впускной стороны 103 корпуса форсунки). Первый поток F1 топлива вводится в осевом направлении в центральный канал 110 (не показано на Фиг.1, а изображено только на Фиг.2) и смешивается с первым потоком А1 окислителя; второй поток F2 топлива вводится в радиальном направлении в кольцевой канал 120 (не показано на Фиг.1, а изображено только на Фиг.2) и смешивается со вторым потоком А2 окислителя. Каналы 111 расположены тангенциально и предназначены для создания радиального вихревого движения в центральном канале 110 вокруг осевого направления 101. Первый поток F1 топлива поступает в камеру 112 в тангенциальном направлении и смешивается с первым потоком А1 окислителя с образованием, тем самым, первого потока А1 + F1 первой смеси топлива и окислителя с радиально-вихревым движением (в частности, в центре корпуса форсунки). Первый поток А1 окислителя и первый поток F1 топлива являются компонентами первого потока А1 + F1. Второй поток А2 окислителя поступает в кольцевой канал 120 в осевом направлении и смешивается со вторым потоком А2 окислителя, с образованием, в результате, второго потока А2 + F2 второй смеси топлива и окислителя с осевым движением. Второй поток А2 окислителя и второй поток F2 топлива являются компонентами второго потока А2 + F2. Подающие каналы 122 образованы между профильными частями смежных лопаток 121 завихрителя и предназначены для подачи второго потока А2 + F2. Второй поток А2 + F2 протекает в каналах 122 сначала между прямолинейными частями 121А лопаток 121, а затем между криволинейными частями 121В с образованием потока с осевым закручивающим движением (в частности, рядом с выпускной стороной 105 корпуса форсунки). Центральный канал 110 предназначен для подачи первого потока А1 + F1 к выпускной стороне 105 корпуса форсунки, а кольцевой канал 120 предназначен для подачи второго потока А2 + F2 к выпускной стороне 105 корпуса форсунки. Первая зона R1 рециркуляции взаимосвязана с радиальным завихрителем, а вторая зона R2 рециркуляции взаимосвязана с осевым завихрителем. В представленных на чертежах вариантах выполнения вторая зона R2 рециркуляции по меньшей мере частично расположена ниже по потоку относительно первой зоны R1 рециркуляции. Как изображено на Фиг.2, центральный канал 110 начинается от камеры 112, продолжается сужающейся секцией 113 (сходящейся относительно осевого направления 101) и оканчивается расширяющейся секцией 115 (расходящейся относительно осевого направления 101). На Фиг.2 ограниченная секция, образованная за секцией 113 и перед секцией 115, является очень короткой. Сужающаяся секция может соответствовать резкому (как изображено на Фиг.2) или постепенному уменьшению поперечного сечения. Расширяющаяся секция, как правило, соответствует постепенному увеличению поперечного сечения. В варианте выполнения, представленном на Фиг.2, конец расширяющейся секции 115 центрального канала 110 и конец кольцевого канала 120 выровнены в осевом направлении на выпускной стороне 105 корпуса форсунки. В варианте выполнения, представленном на Фиг.2, подающие каналы 111 оканчиваются в зоне центрального канала 110, в частности, в камере 112, перед сужающейся секцией 113 центрального канала 110. Как изображено на Фиг.2, внутри корпуса форсунки выполнены кольцевые трубы, обеспечивающие подачу первого входного потока F1 топлива в центральный канал 110 через первое множество небольших (боковых) отверстий, в частности, в камеру 112, и второго входного потока F2 топлива в кольцевой канал 120 через второе множество небольших (передних) отверстий (смотри Фиг.4). Форсунка, представленная на Фиг.2, Фиг.3 и Фиг.4, дополнительно содержит пилотный инжектор 140, расположенный в центре центрального канала 110, а именно, частично в камере 112. Пилотный инжектор 140 принимает третий поток F3 топлива из третьей трубы, расположенной в середине выносной опоры форсунки. Пилотный инжектор 140 имеет коническую форму на конце, а подачу третьего потока F3 топлива к концу инжектора обеспечивает внутренняя труба. Множество небольших отверстий, выполненных на конце (смотри Фиг.4), обеспечивает выброс топлива в центральный канал 110, в частности, в камеру 112, а именно, непосредственно выше по потоку от сужающейся секции 113. На Фиг.5 изображены два графика: первый график (сплошная линия, обозначенная как RAD) представляет возможную кривую соотношения между массовым расходом Wg потока топливного газа и массовым расходом Wa потока газа-окислителя (как правило, воздуха) для радиального завихрителя, и второй график (пунктирная линия, обозначенная как АХ) представляет возможную кривую соотношения между массовым расходом Wg потока топливного газа и массовым расходом Wa потока газа-окислителя (как правило, воздуха) для осевого завихрителя. Известно, что температура пламени связана с соотношением между массовым расходом потока топливного газа и массовым расходом потока газа-окислителя. Обе кривые начинаются от нуля при нулевой (или примерно нулевой) нагрузке Lgt газовой турбины. Согласно настоящему варианту выполнения, например, обе кривые оканчиваются приблизительно в одной и той же точке (две точки необязательно совпадают) при полной (или примерно полной) нагрузке Lgt газовой турбины. По сути, может быть преимущественным, чтобы пламя, обусловленное радиальным завихрителем, и пламя, обусловленное осевым завихрителем, имели примерно одинаковую температуру. Согласно настоящему варианту выполнения, например, соотношение для осевого завихрителя является достаточно постоянным и примерно равно нулю между 0% и 30% нагрузки газовой турбины. Согласно настоящему варианту выполнения, например, для осевого завихрителя соотношение является достаточно постоянным (точнее, медленно уменьшается) между 50% и 100% нагрузки газовой турбины. Согласно настоящему варианту выполнения, например, для радиального завихрителя соотношение постепенно увеличивается между 0% и 30% нагрузки газовой турбины. Согласно настоящему варианту выполнения, например, для радиального завихрителя соотношение постепенно увеличивается между 50% и 100% нагрузки газовой турбины. Согласно настоящему варианту выполнения, например, для радиального завихрителя соотношение резко уменьшается между 30% и 50% нагрузки газовой турбины. Согласно настоящему варианту выполнения, например, для осевого завихрителя соотношение резко увеличивается между 30% и 50% нагрузки газовой турбины. Массовый расход потока газового топлива в радиальном завихрителе, в осевом завихрителе или в обоих завихрителях можно регулировать посредством системы управления, содержащей, например, управляемый клапан или управляемую подвижную диафрагму. Массовый расход потока газа-окислителя в радиальном завихрителе, в осевом завихрителе или в обоих завихрителях можно регулировать посредством системы управления, содержащей, например, управляемый клапан или управляемую подвижную диафрагму.

Claims (15)

1. Топливная форсунка (100) для газовой турбины (1), содержащая радиальный завихритель (111) и осевой завихритель (121), причем радиальный завихритель (111) выполнен с возможностью закручивания первого потока (А1 + F1) первой смеси топлива и окислителя, а осевой завихритель (121) выполнен с возможностью закручивания второго потока (А2 + F2) второй смеси топлива и окислителя, при этом с радиальным завихрителем (111) взаимосвязана первая зона (R1) рециркуляции, а с осевым завихрителем (121) взаимосвязана вторая зона (R2) рециркуляции, при этом вторая зона (R2) рециркуляции по меньшей мере частично расположена ниже по потоку относительно первой зоны (R1) рециркуляции,
корпус форсунки (100) имеет центральный канал (110), проходящий в осевом направлении (101),
причем центральный канал (110) начинается от камеры (112), продолжается сужающейся секцией (113) и оканчивается расширяющейся секцией (115),
при этом первые подающие каналы (111) радиального завихрителя проходят в радиальном направлении тангенциально и оканчиваются в указанной камере (112).
2. Топливная форсунка (100) по п. 1, которая проходит в осевом направлении (101) от стороны (103) впуска к стороне (105) выпуска и содержит кольцевой канал (120), проходящий в осевом направлении (101) вокруг центрального канала (110), причем центральный канал (110) предназначен для подачи указанного первого потока (А1 + F1), а кольцевой канал (120) предназначен для подачи указанного второго потока (А2 + F2).
3. Топливная форсунка (100) по п. 2, в которой кольцевой канал (120) содержит множество лопаток (121) завихрителя, выполненных с возможностью закручивания второго потока (А2 + F2) осевым образом.
4. Топливная форсунка (100) по п. 3, в которой лопатки (121) завихрителя являются полыми и выполнены с возможностью подачи первого компонента (А1) указанного первого потока (А1 + F1) в центральный канал (110) в радиальном направлении.
5. Топливная форсунка (100) по любому из пп. 1-4, в которой указанные первые подающие каналы (111) расположены внутри лопаток (121) завихрителя и выполнены с возможностью подачи указанного первого компонента (А1), причем первые подающие каналы (111) расположены тангенциально с обеспечением тем самым создания радиально закручивающего движения в центральном канале (110) вокруг осевого направления (101).
6. Топливная форсунка (100) по п. 5, выполненная с возможностью введения второго компонента (F1) указанного первого потока (А1 + F1) в центральный канал (110) и смешивания указанного компонента с первым компонентом (А1) с образованием тем самым указанного первого потока (А1 + F1) с радиально закручивающим движением.
7. Топливная форсунка (100) по любому из пп. 3-6, в которой между профильными частями смежных лопаток (121) завихрителя образованы вторые подающие каналы (122), выполненные с возможностью подачи указанного второго потока (А2 + F2).
8. Топливная форсунка (100) по п. 7, выполненная с возможностью смешивания первого компонента (А2) и второго компонента (F2) указанного второго потока (А2 + F2) в кольцевом канале (120) выше по потоку относительно лопаток (121) завихрителя.
9. Топливная форсунка (100) по п. 7 или 8, в которой лопатки (121) завихрителя содержат первые по существу прямолинейные части (121А) и вторые криволинейные части (121В), при этом вторые части (121В) расположены ниже по потоку относительно первых частей (121А) и выполнены с возможностью осевого закручивания второго потока (А2 + F2).
10. Топливная форсунка (100) по п. 9, в которой первые подающие каналы (111) расположены в пределах первых частей (121А) лопаток (121) завихрителя.
11. Топливная форсунка (100) по любому из пп. 2-10, дополнительно содержащая пилотный инжектор (140), расположенный в центре центрального канала (110).
12. Газовая турбина (1), содержащая по меньшей мере одну топливную форсунку (100) по любому из пп. 1-11.
RU2018142182A 2016-05-31 2017-05-30 Топливная форсунка с радиальным и осевым завихрителями для газовой турбины и газовая турбина RU2732353C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITUA2016A003988A ITUA20163988A1 (it) 2016-05-31 2016-05-31 Ugello carburante per una turbina a gas con swirler radiale e swirler assiale e turbina a gas / fuel nozzle for a gas turbine with radial swirler and axial swirler and gas turbine
IT102016000056306 2016-05-31
PCT/EP2017/063044 WO2017207573A1 (en) 2016-05-31 2017-05-30 Fuel nozzle for a gas turbine with radial swirler and axial swirler and gas turbine

Publications (3)

Publication Number Publication Date
RU2018142182A RU2018142182A (ru) 2020-07-09
RU2018142182A3 RU2018142182A3 (ru) 2020-07-09
RU2732353C2 true RU2732353C2 (ru) 2020-09-15

Family

ID=57045319

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018142182A RU2732353C2 (ru) 2016-05-31 2017-05-30 Топливная форсунка с радиальным и осевым завихрителями для газовой турбины и газовая турбина

Country Status (6)

Country Link
US (1) US11649965B2 (ru)
AU (2) AU2017272607A1 (ru)
CA (1) CA3025267A1 (ru)
IT (1) ITUA20163988A1 (ru)
RU (1) RU2732353C2 (ru)
WO (1) WO2017207573A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU205176U1 (ru) * 2021-04-20 2021-06-29 Азат Анисович Шавалиев Инжектор парогенератора

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102583226B1 (ko) * 2022-02-07 2023-09-25 두산에너빌리티 주식회사 다단 연료 공급부가 구비된 마이크로 믹서 및 이를 포함하는 가스 터빈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899074A (en) * 1994-04-08 1999-05-04 Hitachi, Ltd. Gas turbine combustor and operation method thereof for a diffussion burner and surrounding premixing burners separated by a partition
EP1909030A2 (en) * 2006-09-29 2008-04-09 General Electric Company Methods and apparatus to facilitate decreasing combustor acoustics
RU2471081C2 (ru) * 2007-01-22 2012-12-27 Снекма Двухступенчатая топливная форсунка, камера сгорания, оборудованная такой форсункой, и газовая турбина, снабженная такой камерой
EP2716976A1 (en) * 2011-06-02 2014-04-09 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572463B1 (fr) * 1984-10-30 1989-01-20 Snecma Systeme d'injection a geometrie variable.
FR2596102B1 (fr) 1986-03-20 1988-05-27 Snecma Dispositif d'injection a vrille axialo-centripete
US5295352A (en) * 1992-08-04 1994-03-22 General Electric Company Dual fuel injector with premixing capability for low emissions combustion
GB9326367D0 (en) * 1993-12-23 1994-02-23 Rolls Royce Plc Fuel injection apparatus
US5836164A (en) * 1995-01-30 1998-11-17 Hitachi, Ltd. Gas turbine combustor
FR2752917B1 (fr) * 1996-09-05 1998-10-02 Snecma Systeme d'injection a degre d'homogeneisation avancee
GB9809371D0 (en) * 1998-05-02 1998-07-01 Rolls Royce Plc A combustion chamber and a method of operation thereof
US6272840B1 (en) * 2000-01-13 2001-08-14 Cfd Research Corporation Piloted airblast lean direct fuel injector
US6389815B1 (en) * 2000-09-08 2002-05-21 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
US20020162333A1 (en) * 2001-05-02 2002-11-07 Honeywell International, Inc., Law Dept. Ab2 Partial premix dual circuit fuel injector
US6862889B2 (en) * 2002-12-03 2005-03-08 General Electric Company Method and apparatus to decrease combustor emissions
US20080276622A1 (en) * 2007-05-07 2008-11-13 Thomas Edward Johnson Fuel nozzle and method of fabricating the same
US7926744B2 (en) * 2008-02-21 2011-04-19 Delavan Inc Radially outward flowing air-blast fuel injector for gas turbine engine
US8499564B2 (en) * 2008-09-19 2013-08-06 Siemens Energy, Inc. Pilot burner for gas turbine engine
EP2192347B1 (en) 2008-11-26 2014-01-01 Siemens Aktiengesellschaft Tubular swirling chamber
EP2239501B1 (en) * 2009-04-06 2012-01-04 Siemens Aktiengesellschaft Swirler, combustion chamber, and gas turbine with improved swirl
EP2405200A1 (en) * 2010-07-05 2012-01-11 Siemens Aktiengesellschaft A combustion apparatus and gas turbine engine
US8312724B2 (en) * 2011-01-26 2012-11-20 United Technologies Corporation Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone
US9920932B2 (en) * 2011-01-26 2018-03-20 United Technologies Corporation Mixer assembly for a gas turbine engine
JP5773342B2 (ja) * 2011-06-03 2015-09-02 川崎重工業株式会社 燃料噴射装置
JP5772245B2 (ja) * 2011-06-03 2015-09-02 川崎重工業株式会社 燃料噴射装置
GB201112434D0 (en) * 2011-07-20 2011-08-31 Rolls Royce Plc A fuel injector
US9182123B2 (en) * 2012-01-05 2015-11-10 General Electric Company Combustor fuel nozzle and method for supplying fuel to a combustor
JP5988261B2 (ja) * 2012-06-07 2016-09-07 川崎重工業株式会社 燃料噴射装置
JP5924618B2 (ja) * 2012-06-07 2016-05-25 川崎重工業株式会社 燃料噴射装置
US9447974B2 (en) * 2012-09-13 2016-09-20 United Technologies Corporation Light weight swirler for gas turbine engine combustor and a method for lightening a swirler for a gas turbine engine
EP2966350B1 (en) 2014-07-10 2018-06-13 Ansaldo Energia Switzerland AG Axial swirler
JP6351071B2 (ja) * 2014-08-18 2018-07-04 川崎重工業株式会社 燃料噴射装置
EP3043116A1 (en) * 2015-01-09 2016-07-13 United Technologies Corporation Mixer assembly for a gas turbine engine
JP6638935B2 (ja) * 2015-12-22 2020-02-05 川崎重工業株式会社 燃料噴射装置
EP3403028B1 (en) * 2016-01-15 2021-02-24 Siemens Energy Global GmbH & Co. KG Combustor for a gas turbine
US10352569B2 (en) * 2016-11-04 2019-07-16 General Electric Company Multi-point centerbody injector mini mixing fuel nozzle assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899074A (en) * 1994-04-08 1999-05-04 Hitachi, Ltd. Gas turbine combustor and operation method thereof for a diffussion burner and surrounding premixing burners separated by a partition
EP1909030A2 (en) * 2006-09-29 2008-04-09 General Electric Company Methods and apparatus to facilitate decreasing combustor acoustics
RU2471081C2 (ru) * 2007-01-22 2012-12-27 Снекма Двухступенчатая топливная форсунка, камера сгорания, оборудованная такой форсункой, и газовая турбина, снабженная такой камерой
EP2716976A1 (en) * 2011-06-02 2014-04-09 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU205176U1 (ru) * 2021-04-20 2021-06-29 Азат Анисович Шавалиев Инжектор парогенератора

Also Published As

Publication number Publication date
AU2017272607A1 (en) 2018-11-29
ITUA20163988A1 (it) 2017-12-01
US11649965B2 (en) 2023-05-16
CA3025267A1 (en) 2017-12-07
AU2022291560A1 (en) 2023-02-02
RU2018142182A (ru) 2020-07-09
RU2018142182A3 (ru) 2020-07-09
WO2017207573A1 (en) 2017-12-07
US20190170356A1 (en) 2019-06-06
AU2022291560B2 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US10072848B2 (en) Fuel injector with premix pilot nozzle
KR101867690B1 (ko) 가스 터빈 연소기
US8033821B2 (en) Premix burner for a gas turbine
US20080078183A1 (en) Liquid fuel enhancement for natural gas swirl stabilized nozzle and method
CA2820071C (en) Axial swirler for a gas turbine burner
RU2430307C2 (ru) Устройство впрыскивания смеси воздуха с топливом, камера сгорания и газотурбинный двигатель, снабженные таким устройством
US20100050647A1 (en) Swirler for a fuel injector
AU2022291560B2 (en) Fuel nozzle for a gas turbine with radial swirler and axial swirler and gas turbine
JP2009270816A (ja) ガスタービンエンジン用の燃料ノズル及びそれを製作する方法
JP2009192214A (ja) ガスタービンエンジン用の燃料ノズル及びその製造方法
JP2011196681A (ja) 予混合一次燃料ノズルアセンブリを有する燃焼器
JPH09178121A (ja) 熱発生器に用いられるバーナ
US9182124B2 (en) Gas turbine and fuel injector for the same
US10352570B2 (en) Turbine engine fuel injection system and methods of assembling the same
JP2018096683A (ja) ノズル
JP2018096684A (ja) ノズル
JP2014048040A (ja) 予混合バーナ
US20160230995A1 (en) Gas Turbine Combustor and Steam Injected Gas Turbine
EP3465009B1 (en) Fuel nozzle for a gas turbine with radial swirler and axial swirler and gas turbine
CN115451431A (zh) 一种用于燃气轮机燃烧室的燃料喷嘴预混系统
JP5991025B2 (ja) バーナ及びガスタービン燃焼器
US10724741B2 (en) Combustors and methods of assembling the same
RU2224954C2 (ru) Топливовоздушная горелка камеры сгорания газотурбинного двигателя
RU2406934C1 (ru) Топливовоздушная горелка камеры сгорания газотурбинного двигателя
US20130152594A1 (en) Gas turbine and fuel injector for the same