RU2730318C1 - Способ очистки дизельного топлива - Google Patents

Способ очистки дизельного топлива Download PDF

Info

Publication number
RU2730318C1
RU2730318C1 RU2019136997A RU2019136997A RU2730318C1 RU 2730318 C1 RU2730318 C1 RU 2730318C1 RU 2019136997 A RU2019136997 A RU 2019136997A RU 2019136997 A RU2019136997 A RU 2019136997A RU 2730318 C1 RU2730318 C1 RU 2730318C1
Authority
RU
Russia
Prior art keywords
diesel fuel
glycerin
particles
cleaning
settling
Prior art date
Application number
RU2019136997A
Other languages
English (en)
Inventor
Егор Сергеевич Дубовой
Федор Сергеевич Зверев
Георгий Викторович Несын
Рустам Зайтунович Сунагатуллин
Ирина Владимировна Черникова
Александр Юрьевич Ляпин
Сергей Борисович Хотничук
Руслан Рафисович Купкенов
Original Assignee
Публичное акционерное общество "Транснефть" (ПАО "Транснефть")
Общество с ограниченной ответственностью "Научно-исследовательский институт трубопроводного транспорта" (ООО "НИИ Транснефть")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Транснефть" (ПАО "Транснефть"), Общество с ограниченной ответственностью "Научно-исследовательский институт трубопроводного транспорта" (ООО "НИИ Транснефть") filed Critical Публичное акционерное общество "Транснефть" (ПАО "Транснефть")
Priority to RU2019136997A priority Critical patent/RU2730318C1/ru
Application granted granted Critical
Publication of RU2730318C1 publication Critical patent/RU2730318C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/16Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Изобретение относится к способу очистки дизельного топлива от дисперсных механических загрязнений. Способ включает в себя введение глицерина в количестве 5-10 мас. % в дизельное топливо при его перемешивании в течение 80-170 мин с последующим отстаиванием смеси в течение 12 ч. Технический результат: повышение качества очистки дизельного топлива. 1 ил., 2 пр.

Description

Изобретение относится к способу очистки дизельного топлива от дисперсных механических загрязнений.
В процессе получения и транспортировки дизельного топлива высокого качества возникает проблема очистки его от механических примесей. Нефтепродуктопроводы в силу определенной степени изношенности могут служить источником загрязнения: мельчайшие частицы железной окалины (оксида железа), образующиеся на внутренней поверхности трубы вследствие коррозионных процессов, вымываются потоком дизельного топлива. Твердые частицы оксида железа могут быть столь мелкими по размерам (порядка 5 мкм), что способны проникать сквозь фильтры тонкой очистки. При этом, подчиняясь законам броуновского движения, они не оседают на дно резервуара при хранении дизельного топлива. Исследования показали, что несмотря на мельчайшие размеры, такие частицы могут вызывать дополнительный абразивный износ стенок цилиндро-поршневой группы.
Использование центробежных сепараторов для очистки дизельного топлива от механических примесей ограничено высокой стоимостью и энергоемкостью данного типа оборудования, а также сложностью и трудоемкостью их сборки, наладки и обслуживания.
Для очистки жидкости, например, может использоваться фильтрующая центрифуга, описанная в патенте RU 2250804 С2, опубликованном 24.04.2005, в которой под влиянием центробежных сил загрязняющие примеси оттесняются к стенкам фильтрующего элемента. Однако производительность установок по центрифугированию не отвечает масштабам очистки дизельного топлива, транспортируемого по магистральным нефтепродуктопроводам.
Основной проблемой очистки дизельного топлива и отработанного масла является удаление ультрадисперсных металлических частиц. В большинстве известных методов сначала проводят коагуляцию таких частиц в более крупные, а затем их отфильтровывают.
В последнее время быстрыми темпами развивается мембранная фильтрация. Она представляет собой способ физического разделения, и его движущая сила есть разность давлений на мембране. При использовании различных типов мембран можно разделять молекулы различных размеров. Мембранная фильтрация может использоваться для микрофильтрации, ультрафильтрации, нанофильтрации и обратного осмоса, раскрытая в патенте RU 2638661 С2, опубликованном 15.12.2017. Например, микрофильтрация и ультрафильтрация используются для обработки водных систем для отделения соединений в биологических бульонах или других жидких средах. В индустрии напитков микрофильтрация применяется для очистки пива и вина; в молочной промышленности микрофильтрация и ультрафильтрация могут быть применены для обработки сырной сыворотки и молока. Микрофильтры используются также для осветления воды как следует из описания патента RU 2294794 С1, опубликованном 10.03.2007.
Известен способ очистки масла от ультрадисперсных частиц металла, раскрытый в патенте RU 2255795 С2, опубликованном 10.07.2005. Микрофильтрацию масла осуществляют при 50-60°С через наполненную кизельгуром или бентонитом фторполимерную мембрану с размером пор 0,1-0,5 мкм. Вязкость подогретого до 50°С индустриального масла (3,5-10 мм2/с) вполне сопоставима с вязкостью дизельного топлива (1,5-6 мм2/с), используемого в настоящей заявке. Недостатком способа, как и большинства мембранных технологий, является невысокая производительность, необходимость сооружения специальной фильтрующей установки, а также использования избыточного давления.
Наиболее близким к предполагаемому изобретению является способ очистки отработанного масла от твердых примесей, описанный в патенте RU 2023005 С1, опубликованном 15.11.1994. Очистку осуществляют обработкой масла органическим спиртом, с последующим отделением очищенного масла. В качестве очистителя используют полифторированный спирт, жидкий при нормальной температуре, имеющий ограниченную растворимость в масле и т.кип. 80-200°С.
Недостатком является трудность промышленного применения из-за сложности технологии и высокой стоимости полифторированного спирта.
Технической задачей настоящего изобретения является разработка высокопроизводительного способа очистки дизельного топлива от дисперсных механических загрязнений, пригодного для промышленного применения.
Техническим результатом, достигаемым при реализации заявленного изобретения, является повышение качества очистки дизельного топлива за счет выпадения в осадок дисперсных частиц оксида с глицерином, с последующим отстаиванием.
Указанная техническая задача решается, а технический результат достигается за счет того, способ очистки дизельного топлива включает в себя введение глицерина в количестве 5-10 мас. % в дизельное топливо при его перемешивании в течение 80-170 мин с последующим отстаиванием смеси в течение 12 ч.
Сущность изобретения поясняется фиг., на которой приведен график зависимости содержания железа в дизельном топливе, определенное методом рентгено-флуоресцентного анализа, от продолжительности перемешивания.
Содержание железа в дизельном топливе определялось после отстаивания двухфазной системы дизтопливо - глицерин. Отстаивание осуществляли в течение 12 часов.
Многоатомные спирты и некоторые их производные не смешиваются с углеводородами нефти и имеют плотность от 1,11 г/см3 (этиленгликоль) до 1,26 г/см3 (глицерин). Они широко используются в технике (теплоносители, антифризы, гидравлические жидкости, сырье для производства пластиков и др.). Гидроксильные группы спиртов могут образовывать водородные связи с атомами железа частиц оксида, за счет которых последние удерживаются на поверхности капелек полиатомных спиртов. Однако все они, кроме глицерина обладают недостатками: либо они частично растворяются в дизельном топливе (этиленгликоль, эфиры глицерина), либо являются дорогостоящими продуктами (четырех- и пятиатомные спирты).
Рассмотрим подробнее в качестве примера применение полиатомного спирта, а именно глицерина, в качестве тяжелой несмешивающейся жидкости где происходит концентрирование частиц оксида железа.
Экспериментально было установлено, что необходимо введение глицерина в количестве 5-10 мас. %, так как при количестве менее 5 мас. % эффективность очистки дизельного топлива недостаточно высокая, а введение более 10 мас. % - экономически не целесообразно.
Пример 1.
В стеклянную емкость объемом 1000 мл поместили 900 мл дизельного топлива, прошедшего фильтры тонкой очистки. Светло-коричневый цвет топлива свидетельствовал в пользу его загрязнения дисперсными частицами оксида железа. Предварительное тестирование пробы на рентгено-флуоресцентном анализаторе Спектроскан MAKC-GVM показало содержание железа в топливе в количестве 11,2 ppm. Затем включили верхнеприводную лопастную мешалку со скоростью 1500 об/мин и при перемешивании через делительную воронку тонкой струей влили 100 мл глицерина. Перемешивание продолжали 80 мин и после его выключения смеси дали отстояться в течение 12 часов. При этом смесь полностью разделилась на две фазы, где глицерин, имеющий плотность 1260 кг/м3, находился в нижней фазе, а дизельное топливо, имеющее плотность 840 кг/м3, в верхней. Глицерин после перемешивания и отстаивания приобрел «ржавую» окраску, а верхний слой дизтоплива стал прозрачным. Анализ пробы дизельного топлива показал, что содержание железа в нем снизилось до 6,9 ppm.
Пример 2.
Двухфазную систему из примера 1, полученную после отстоя, вновь подвергли перемешиванию в течение 90 мин и дали отстояться в течение 12 часов. Анализ пробы дизельного топлива показал снижение содержания железа до 5,3 ppm.
Таким образом, суммарно после 170 мин перемешивания двухфазной системы содержание железа в дизельном топливе снизилось более, чем в 2 раза.
Из графика следует, что содержание дисперсных частиц оксида железа в верхнем слое дизельного топлива существенно уменьшается.
В процессе отстаивания происходит процесс полного разделения жидкостей, при этом частицы оксида железа концентрируются в нижней глицериновой фазе, чья плотность выше плотности дизельного топлива. Ее отделяют, а очищенное дизельное топливо анализируют на присутствие железа.
По результатам проведенных опытов установлено следующее.
Перемешивании смеси менее 80 мин приводит к недостаточно высокой очистке дизельного топлива, при более 170 мин содержание железа от продолжительности перемешивания изменяется слабо.
Отстаивание смеси менее 12 ч не гарантирует полного отсутствия капелек глицерина в дизельном топливе, которое как раз идентифицируется после 12-часового отстаивания.
Приведенные примеры показывают, что с целью очистки дизельного топлива от взвешенных дисперсных частиц оксида железа необходимо на достаточном расстоянии от приема в резервуарный парк в трубопровод ввести 5-10 мас. % глицерина. Поскольку режим течения дизельного топлива, как правило, турбулентный, глицерин, попадая в зону интенсивного перемешивания, диспергируется на мелкие капли, которые адсорбируют на себя частицы оксида железа. При попадании обработанного дизельного топлива в резервуар капли глицерина с частицами оксида железа достаточно быстро оседают, образуя нижний глицериновый слой. Далее очищенное дизельное топливо направляется потребителю, а глицерин отбирается из нижнего слоя на регенерацию.

Claims (1)

  1. Способ очистки дизельного топлива, включающий в себя введение глицерина в количестве 5-10 мас. % в дизельное топливо при его перемешивании в течение 80-170 мин с последующим отстаиванием смеси в течение 12 ч.
RU2019136997A 2019-11-19 2019-11-19 Способ очистки дизельного топлива RU2730318C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019136997A RU2730318C1 (ru) 2019-11-19 2019-11-19 Способ очистки дизельного топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019136997A RU2730318C1 (ru) 2019-11-19 2019-11-19 Способ очистки дизельного топлива

Publications (1)

Publication Number Publication Date
RU2730318C1 true RU2730318C1 (ru) 2020-08-21

Family

ID=72237740

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019136997A RU2730318C1 (ru) 2019-11-19 2019-11-19 Способ очистки дизельного топлива

Country Status (1)

Country Link
RU (1) RU2730318C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876362A (zh) * 2012-10-22 2013-01-16 常州大学 一种柴油精制脱色方法
RU2477303C1 (ru) * 2012-02-22 2013-03-10 Государственное научное учреждение Всероссийский научно-исследовательский институт использования техники и нефтепродуктов Российской академии сельскохозяйственных наук (ГНУ ВНИИТиН Россельхозакадемии) Способ очистки дизельного топлива
RU2584697C1 (ru) * 2015-02-03 2016-05-20 Александр Иванович Пойманов Способ очистки дизельного топлива от соединений серы
RU2645676C1 (ru) * 2017-03-27 2018-02-27 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт использования техники и нефтепродуктов в сельском хозяйстве" (ФГБНУ ВНИИТиН) Способ очистки дизельного топлива
RU2670990C1 (ru) * 2018-05-07 2018-10-29 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Способ выделения полярных соединений нефти в процессе ее транспортировки по магистральному нефтепроводу

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477303C1 (ru) * 2012-02-22 2013-03-10 Государственное научное учреждение Всероссийский научно-исследовательский институт использования техники и нефтепродуктов Российской академии сельскохозяйственных наук (ГНУ ВНИИТиН Россельхозакадемии) Способ очистки дизельного топлива
CN102876362A (zh) * 2012-10-22 2013-01-16 常州大学 一种柴油精制脱色方法
RU2584697C1 (ru) * 2015-02-03 2016-05-20 Александр Иванович Пойманов Способ очистки дизельного топлива от соединений серы
RU2645676C1 (ru) * 2017-03-27 2018-02-27 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт использования техники и нефтепродуктов в сельском хозяйстве" (ФГБНУ ВНИИТиН) Способ очистки дизельного топлива
RU2670990C1 (ru) * 2018-05-07 2018-10-29 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Способ выделения полярных соединений нефти в процессе ее транспортировки по магистральному нефтепроводу

Similar Documents

Publication Publication Date Title
Chew et al. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update
US5944998A (en) Rotary filtration device with flow-through inner member
US10376842B2 (en) Non-dispersive oil recovery from oil industry liquid sources
US8506812B2 (en) Method, equipment and specific drawer for membrane separation utilizing concentration polarization
Muro et al. Membrane separation process in wastewater treatment of food industry
Salahi et al. Oily wastewater treatment using ultrafiltration
Charcosset Ultrafiltration, microfiltration, nanofiltration and reverse osmosis in integrated membrane processes
KR101391709B1 (ko) 공업용수로 재이용이 가능한 유화 오일폐수의 처리 방법
Peleka et al. Removal of phosphates from water by a hybrid flotation–membrane filtration cell
RU2730318C1 (ru) Способ очистки дизельного топлива
Al-Alawy et al. Microfiltration membranes for separating oil/water emulsion
KR20070102531A (ko) 계면활성제를 함유하는 폐수 스트림의 처리 방법
CN216604777U (zh) 二次两级切向流分离纯化和浓缩外泌体的超滤装置
CN205892904U (zh) 用于自动处理污水的一体化设备
CN114471163A (zh) 二次两级切向流分离纯化和浓缩外泌体的超滤装置及方法
CN111410327A (zh) 一种餐饮废水的处理工艺及系统
Vatsa et al. Nanofiltration: principles, process modeling, and applications
Choi et al. Impacts of highly turbid water on microfiltration with coagulation pretreatment
Bodzek et al. Fouling of membranes during ultrafiltration of surface water (NOM)
Muthukumarappan et al. Membrane processing
US20210032134A1 (en) Filtration system and method for removing contaminants from liquids
Baysan et al. Frequently Used Membrane Processing Techniques for Food Manufacturing Industries
CN203139910U (zh) 一种应用于发酵液提纯的纳滤膜系统
Nandi et al. Microfiltration membranes: fabrication and application
JP6720104B2 (ja) 取水方法及び取水装置