RU2729305C1 - Воздухоотделитель для холодильной системы - Google Patents

Воздухоотделитель для холодильной системы Download PDF

Info

Publication number
RU2729305C1
RU2729305C1 RU2020107449A RU2020107449A RU2729305C1 RU 2729305 C1 RU2729305 C1 RU 2729305C1 RU 2020107449 A RU2020107449 A RU 2020107449A RU 2020107449 A RU2020107449 A RU 2020107449A RU 2729305 C1 RU2729305 C1 RU 2729305C1
Authority
RU
Russia
Prior art keywords
valve
output
solenoid valve
controller
outlet
Prior art date
Application number
RU2020107449A
Other languages
English (en)
Inventor
Анастасия Олеговна Точеная
Original Assignee
Анастасия Олеговна Точеная
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анастасия Олеговна Точеная filed Critical Анастасия Олеговна Точеная
Priority to RU2020107449A priority Critical patent/RU2729305C1/ru
Application granted granted Critical
Publication of RU2729305C1 publication Critical patent/RU2729305C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/043Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Изобретение относится к холодильной технике, а именно к воздухоотделителям и может быть использовано для удаления неконденсируемых газов из холодильных установок. Воздухоотделитель холодильной системы содержит корпус со змеевиком, выпускную линию воздуха, линию подачи жидкого хладагента, линию подачи парового хладагента, возвратную линию и расширительный клапан. Вход-выход пульта оператора связан с контроллером. В корпусе установлены датчики температуры, давления, верхнего и нижнего уровня, выходы которых соединены с вторым и первым дискретными входами контроллера. Выходы датчиков температуры и давления соединены с третьим и четвертым аналоговыми входами контроллера. Третий дискретный выход контроллера подключен к управляющему входу четвертого соленоидного клапана, выход которого через трубопровод подключен к входу терморегулирующего клапана и к выходу обратно-запорного клапана, вход которого через третий соленоидный клапан и четвертый запорный клапан подключен через трубопровод к выходу корпуса. Вход четвертого соленоидного клапана соединен с линией подачи жидкого хладагента через второй фильтр и пятый запорный клапан. Управляющий вход третьего соленоидного клапана соединен с четвертым дискретным выходом контроллера. Первый управляющий вход терморегулирующего клапана соединен с баллоном терморегулирующего клапана, установленным на трубопроводе возвратной линии. Второй управляющий вход терморегулирующего клапана подключен через второй запорный клапан к возвратной линии и к выходу змеевика. Выход терморегулирующего клапана связан с входом змеевика. Выход второго запорного клапана соединен с выходом предохранительного клапана, вход которого через трубопровод соединен с корпусом. Управляющий вход второго соленоидного клапана подключен ко второму дискретному выходу контроллера. Вход второго соленоидного клапана через третий запорный клапан и трубопровод подключен к корпусу, а выход через обратный шаровой клапан подключен к выпускной линии. Управляющий вход первого соленоидного клапана соединен с первым дискретным выходом контроллера, вход первого соленоидного клапана подключен через первый запорный клапан к линии подачи парового хладагента, выход первого соленоидного клапана через первый фильтр и регулирующий клапан по трубопроводу подключен к корпусу. Техническим результатом является обеспечение надежного и экологически безопасного удаления неконденсируемых газов из холодильной системы. 1 ил.

Description

Изобретение относится к холодильной технике, а именно к воздухоотделителям и может быть использовано для удаления неконденсируемых газов из холодильных установок.
Одной из проблем, возникающих при работе холодильных систем, является проникновение воздуха и других неконденсируемых газов в контур холодильной системы через щели, возникающие в уплотнениях холодильных систем в результате длительной работы или в результате проведения сервисных операций. Это касается холодильных установок, работающих при низких температурах кипения с давлением ниже атмосферного. Неконденсируемые газы, как правило, скапливаются на стороне высокого давления холодильной системы (конденсаторе, линейном ресивере и т.д.). Наличие таких газов в конденсаторе приводит к ухудшению теплообмена между газообразным хладагентом и охлаждающей средой и, как следствие, к уменьшению производительности конденсатора. Поскольку неконденсируемые газы смешаны с парами хладагента, выпуск этих газов вручную непосредственно в атмосферу без использования специальных средств, приведет к большим потерям хладагента, поэтому в холодильной системе необходимо периодически удалять накопленные неконденсируемые газы.
Известен патент РФ № 2208748 на изобретение: “Холодильная установка”, МПК F25B43/04, F25B1/00, приоритет от 21 февраля 2002 года, содержащая циркуляционный контур, в котором установлены компрессор, конденсатор, теплообменник-выпариватель, регенеративный теплообменник, первый регулирующий вентиль, гидроциклон цилиндрического типа и испаритель, а также второй регулирующий вентиль, размещенный на линии между теплообменником - выпаривателем и гидроциклоном. Установка снабжена системой воздухоотделения, включающей эжектор, установленный между теплообменником - выпаривателем и регенеративным теплообменником и сообщенный с конденсатором, а также соединенные последовательно дополнительный регенеративный теплообменник и воздухоотделитель, установленные на обводной линии между регенеративным теплообменником и регулирующим вентилем. Воздухоотделитель выполнен в виде цилиндрического корпуса, снабженного входным и сливным тангенциальными патрубками и разделенного перегородкой, имеющей калибровочное отверстие, на две накопительные камеры. Верхняя накопительная камера снабжена выходным патрубком с клапаном, соединенным с поплавком, при этом верхняя накопительная камера снабжена сеткой.
Известен патент России №2367856 на изобретение “Холодильная установка”, МПК F25B43/04, F25B1/00, приоритет от 30 июня 2008 года, включающая компрессорные агрегаты, промежуточный сосуд, конденсатор, циркуляционный ресивер, регулирующий вентиль и воздухоохладитель. Установка снабжена компрессорами высокой ступени, на линии всасывания которых установлена смесительная камера, соединенная с линией подачи паров из промежуточного сосуда и линией нагнетания компрессора низкой ступени, промежуточным сосудом, выполненным в виде отделителя жидкости с ресиверной полостью для жидкого хладагента и змеевиком, и соединенным с разделительной колонкой и циркуляционным ресивером, а панельные испарители и воздухоохладитель высокотемпературной холодильной системы снабжены электронными расширительными вентилями с дозированной подачей жидкого аммиака.
Наиболее близким аналогом заявляемого технического решения является техническое решение, описанное в заявке США № 2019/0234661, МПК F25B43/00, F25B43/04, опубликованной 1 августа 2019 года, содержащее корпус с установленным в нем змеевиком, выпускную линию воздуха, линию подачи жидкого хладагента, линию подачи парового хладагента, возвратную линию и расширительный клапан.
Известное устройство не обеспечивает высокой надежности работы и экологической безопасности при удалении неконденсируемых газов, которые содержат также пары хладагента, так как в известном устройстве выпуск этих газов в атмосферу осуществляют вручную без использования специальных средств, а также в известном устройстве не предусмотрен систематический контроль за накоплением неконденсируемых газов.
Задачей, на решение которой направлено заявляемое изобретение является создание воздухоотделителя, обеспечивающего надежную и экологически безопасную работу по удалению неконденсируемых газов из холодильной системы.
Поставленная задача решается тем, что, воздухоотделитель для холодильной системы, содержащий корпус с установленным в нем змеевиком, выпускную линию воздуха, линию подачи жидкого хладагента, линию подачи парового хладагента, возвратную линию и расширительный клапан, согласно изобретению дополнительно содержит пульт оператора, вход-выход которого связан с контроллером, установленные в корпусе датчики температуры, давления, верхнего и нижнего уровней, выходы которых соединены с вторым и первым дискретными входами контроллера, выходы датчиков температуры и давления соединены с третьим и четвертым аналоговыми входами контроллера, третий дискретный выход контроллера подключен к управляющему входу четвертого соленоидного клапана, выход которого через трубопровод подключен к входу терморегулирующего клапана и к выходу обратно-запорного клапана, вход которого через третий соленоидный клапан и четвертый запорный клапан подключен через трубопровод к выходу корпуса, вход четвертого соленоидного клапана соединен с линией подачи жидкого хладагента через второй фильтр и пятый запорный клапан, управляющий вход третьего соленоидного клапана соединен с четвертым дискретным выходом контроллера, первый управляющий вход терморегулирующего клапана соединен с баллоном терморегулирующего клапана, установленным на трубопроводе возвратной линии, второй управляющий вход терморегулирующего клапана подключен через второй запорный клапан к возвратной линии и к выходу змеевика, выход терморегугулирующего клапана связан с входом змеевика, выход второго запорного клапана соединен с выходом предохранительного клапана, вход которого через трубопровод соединен с корпусом, управляющий вход второго соленоидного клапана подключен ко второму дискретному выходу контроллера, вход второго соленоидного клапана через третий запорный клапан и трубопровод подключен к корпусу, а выход через обратный шаровой клапан подключен к выпускной линии, управляющий вход первого соленоидного клапана соединен с первым дискретным выходом контроллера, вход первого соленоидного клапана подключен через первый запорный клапан к линии подачи парового хладагента, выход первого соленоидного клапана через первый фильтр и регулирующий клапан по трубопроводу подключен к корпусу.
Сущность изобретения поясняется чертежом, на котором представлена блок-схема воздухоотделителя для холодильной системы.
Воздухоотделитель для холодильной системы в соответствии с чертежом содержит корпус 4 с установленным в нем змеевиком 5, выпускную линию воздуха Г, линию подачи жидкого хладагента А, линию подачи парового хладагента В, возвратную линию Б. Воздухоотделитель содержит пульт 28 оператора, вход-выход которого связан с контроллером 27. В корпусе 4 установлены датчики температуры 15, давления 16, верхнего и нижнего уровня 17, 18, выходы которых соединены с вторым и первым дискретными входами контроллера 27, выходы датчиков температуры 15 и давления 16 соединены с третьим и четвертым аналоговыми входами контроллера 27, третий дискретный выход контроллера 27 подключен к управляющему входу четвертого соленоидного клапана 24, выход которого через трубопровод подключен к входу терморегулирующего клапана 25 и к выходу обратно-запорного клапана 26 вход которого через третий соленоидный клапан 21 и четвертый запорный клапан 20 подключен через трубопровод к выходу корпуса 4. вход четвертого соленоидного клапана 24 соединен с линией подачи жидкого хладагента А через второй фильтр 23 и пятый запорный клапан 22. Управляющий вход третьего соленоидного клапана 21 соединен с четвертым дискретным выходом контроллера 27. Первый управляющий вход терморегулирующего клапана 25 соединен с баллоном 29 терморегулирующего клапана, установленным на трубопроводе возвратной линии Б, второй управляющий вход терморегулирующего клапана 25 подключен через второй запорный клапан 10 к возвратной линии Б и к выходу змеевика 5, выход терморегулирующего клапана 25 связан с входом змеевика 5. Выход второго запорного клапана 10 соединен с выходом предохранительного клапана 11, вход которого через трубопровод соединен с корпусом 4, управляющий вход второго соленоидного клапана 13 подключен ко второму дискретному выходу контроллера 27, вход второго соленоидного клапана 13 через третий запорный клапан 12 и трубопровод подключен к корпусу 4, а выход через обратный шаровой клапан 14 подключен к выпускной линии Г, контроллера 27, вход второго соленоидного клапана 13 через второй запорный клапан 12 и трубопровод подключен к корпусу 4, а выход через обратный шаровой клапан 14 подключен к выпускной линии Г. Управляющий вход первого соленоидного клапана 7 соединен с первым дискретным выходом контроллера 27, вход первого соленоидного клапана 7 подключен через первый запорный клапан 6 к линии подачи парового хладагента В, выход первого соленоидного клапана 7 через первый фильтр 8 и регулирующий клапан 9 по трубопроводу подключен к корпусу 4 воздухоотделителя.
Воздухоотделитель работает следующим образом.
Принцип действия воздухоотделителя основан на том факте, что пары хладагента могут быть охлаждены только до температуры, соответствующей давлению насыщения, при котором они конденсируются. При этом неконденсируемые газы (воздух) могут охлаждаться без ограничений. Таким образом, смесь паров хладагента и неконденсируемых газов может достигнуть температуры, которая значительно ниже температуры насыщения «чистого» пара хладагента при той же температуре. На основании давлений и температур в корпусе воздухоотделителя можно судить присутствии воздуха: если температура смеси ниже температуры насыщения при данном давлении, значит в смеси присутствуют неконденсируемые газы.
Перед началом работы подключают линию подачи парового хладагента к В к конденсатору 1, возвратную линию Б - к отделителю жидкости 2, линию подачи жидкого хладагента А - к жидкостному ресиверу 3 холодильной системы.
Запуск воздухоотделителя в работу осуществляет по внешнему сигналу, например, при запуске компрессора системы, который подается на дискретный вход контроллера 27. При запуске воздухоотделителя открывается соленоидный клапан одной из точек продувки системы от неконденсируемых газов (воздуха) одновременно с первым соленоидным клапаном 7, установленным на линии подачи парового хладагента В. Контроллер 27 поддерживает возможность подключения до трех точек продувки (до трех соленоидных клапанов продувки). По линии подачи парового хладагента В через трубопровод, первый запорный клапан 6, первый соленоидный клапан 7, сетчатый фильтр 8 и регулирующий клапан 9 смесь паров хладагента с воздухом от точки продувки поступает в корпус 4 воздухоотделителя. Внутри корпуса 4 установлен змеевик 5 – испаритель. С запуском воздухоотделителя в работу также подается напряжение на катушку четвертого соленоидного клапана 24 линии А подачи жидкого хладагента высокого давления. Четвертый соленоидный клапан 24 открывается и по трубопроводу А, проходя через пятый запорный клапан 22, жидкий хладагент через второй фильтр 23, соленоидный клапан 24 подается к терморегулирующему клапану 25. В клапане 25 хладагент дросселируется и подаётся внутрь змеевика 5 в виде парожидкостной смеси. Поскольку змеевик 5 соединен со стороной низкого давления холодильной системы (линией всасывания компрессора или отделителем жидкости), а смесь хладагента и воздуха поступает в корпус аппарата с высоким давлением и температурой, хладагент в змеевике 5 начинает кипеть. Газообразный хладагент из змеевика 5 поступает на сторону низкого давления холодильной системы через линию Б. Клапан 25, соединенный с баллоном 29, обеспечивает подачу в змеевик 5 такого количества хладагента, чтобы поддерживать стабильный перегрев паров на выходе из змеевика 5. Баллон 29 заполнен тем же хладагентом, что и змеевик 5 и прикреплен к трубопроводу, идущему от змеевика 5 к клапану 10. У терморегулирующего клапана 25 два управляющих входа - от баллона 29 и от уравнительной линии, которая соединена через трубопровод с вторым запорным клапаном 10 уравнительной линии Б. Давление в баллоне 29 и уравнительной линии Б влияют на закрытие/открытие терморегулирующего клапана 25. При уменьшении температуры газообразного хладагента на выходе из змеевика 5 хладагент в баллоне 29 сжимается, терморегулирующий клапан 25 прикрывается, уменьшая тем самым количество подаваемого хладагента в змеевик 5. При повышении температуры на выходе из змеевика 5 хладагент в баллоне 29 расширяется, терморегулирующий клапан 25 открывается и подача хладагента в змеевик 5 увеличивается. При этом на поверхности змеевика 5 в корпусе 4 воздухоотделителя из смеси паров хладагента и воздуха начинает конденсироваться хладагент. В результате хладагент накапливается в нижней части корпуса 4, а неконденсируемые газы остаются в верхней части. Уровень жидкости в корпусе 4 воздухоотделителя контролируется датчиками нижнего 17 и верхнего 18 уровня, сигналы от которых приходят на дискретные входы контроллера 27. При достижении жидкостью уровня верхнего сигнализатора 18, с дискретного выхода контроллера 27 подается сигнал на закрытие четвертого соленоидного клапана 24 подачи жидкости высокого давления. В то же время с дискретного выхода контроллера 27 подается сигнал на открытие третьего соленоидного клапана 21 и сконденсированный жидкий хладагент из корпуса 4 воздухоотделителя отводится в линию перед терморегулирующим клапаном 25, т.е. в змеевик 5. Таким образом, количество жидкого хладагента, требуемого для подпитки воздухоотделителя извне, минимально. При достижении жидкостью уровня датчика 17 в корпусе 4 воздухоотделителя, происходит обратное переключение соленоидных клапанов: 21 – закрывается, 24 – открывается. Для контроля присутствия неконденсируемых газов в корпусе аппарата, предусмотрены датчик давления 16 и датчик температуры 15, которые подключаются к контроллеру 27. Датчик давления 16 измеряет значение давления в верхней части корпуса 4 воздухоотделителя (газовой). Датчик температуры 15 измеряет значение температуры в нижней (жидкостной) части корпуса 4. Во время работы, контроллер 27 сравнивает фактическое давление в верхней части корпуса 4 с давлением насыщения, соответствующему температуре в нижней части корпуса 4. Как только разница между этими давлениями достигает 1 бара, подаются сигналы с дискретных выходов контроллера 27 на закрытие внешнего соленоидного клапана точки продувки и первого соленоидного клапана 7 линии подачи парового хладагента В и открытие второго соленоидного клапана 13. Неконденсируемые газы (воздух), скопившиеся в верхней части корпуса 4 воздухоотделителя, по трубопроводу Г через третий запорный 12 и обратный шаровый 14 клапаны сбрасываются из корпуса 4. При достижении разницы между фактическим давлением в верхней части корпуса 4 и давлением насыщения, соответствующему температуре в нижней части корпуса 4, в 0.5 бар, с дискретного выхода контроллера 27 подается сигнал на закрытие второго соленоидного клапана 13 и открытие соленоидного клапана 7 линии подачи парового хладагента В и внешнего соленоидного клапана продувки последней точки отбора смеси хладагента с неконденсирующимися газами. Во время работы воздухоотделителя продувка одной точки отбора продолжается 10 минут. Если в течение этого времени хотя бы один раз происходит сброс воздуха из корпуса 4 (происходит открытие второго соленоидного клапана 13 с одновременным закрытием первого соленоидного клапана 7), время работы с данной точкой продлевается еще на 10 минут. Максимальное время продувки одной точки продолжается 30 минут. Если в течение 10 минут продувки одной точки отбора смеси хладагента с неконденсирующимися газами, сброс воздуха из корпуса 4 (открытие второго соленоидного клапана 13 с одновременным закрытием первого соленоидного клапана 7) не происходит ни разу, воздухоотделитель автоматически переходит к продувке следующей точки (закрытию текущего соленоидного клапана продувки и открытию следующего клапана). Если после продувки всех точек отбора сброс воздуха не происходит ни разу (ни разу не происходит открытие второго соленоидного клапана 13 с одновременным закрытием первого соленоидного клапана 7), воздухоотделитель переходит в режим ожидания на 2 часа. Для защиты корпуса от превышения давления предусмотрен предохранительный клапан 11. Для возможности слива хладагента и масла из корпуса воздухоотделителя, предусмотрен сервисный клапан 19 с присоединением G1/2''нар.
Техническое преимущество заявляемого воздухоотделителя заключается в том, что в отличие от ближайшего аналога, он обеспечивает надежную и экологически безопасную работу по удалению неконденсируемых газов из холодильной системы за счет систематического контроля за накоплением неконденсируемых газов, а также в нем предусмотрены специальные средства (датчики уровней, температуры и давления, наличие в каждой из линий подачи парового и жидкого хладагента, возвратной и выпускной линиях системы регулирующих и запорных клапанов, микроконтроллера), которые позволяют в автоматическом режиме без вмешательства человека осуществлять надежную и безопасную работу по удалению неконденсируемых газов из холодильной системы.
Заявляемый в качестве изобретения воздухоотделитель для холодильной системы может быть изготовлен в условиях серийного производства освоенными технологическими методами с использованием существующих материалов и оборудования.

Claims (1)

  1. Воздухоотделитель для холодильной системы, содержащий корпус с установленным в нем змеевиком, выпускную линию воздуха, линию подачи жидкого хладагента, линию подачи парового хладагента, возвратную линию и расширительный клапан, отличающийся тем, что дополнительно содержит пульт оператора, вход-выход которого связан с контроллером, установленные в корпусе датчики температуры, давления, верхнего и нижнего уровня, выходы которых соединены с вторым и первым дискретными входами контроллера, выходы датчиков температуры и давления соединены с третьим и четвертым аналоговыми входами контроллера, третий дискретный выход контроллера подключен к управляющему входу четвертого соленоидного клапана, выход которого через трубопровод подключен к входу терморегулирующего клапана и к выходу обратнозапорного клапана, вход которого через третий соленоидный клапан и четвертый запорный клапан подключен через трубопровод к выходу корпуса, вход четвертого соленоидного клапана соединен с линией подачи жидкого хладагента через второй фильтр и пятый запорный клапан, управляющий вход третьего соленоидного клапана соединен с четвертым дискретным выходом контроллера, первый управляющий вход терморегулирующего клапана соединен с баллоном терморегулирующего клапана, установленным на трубопроводе возвратной линии, второй управляющий вход терморегулирующего клапана подключен через второй запорный клапан к возвратной линии и к выходу змеевика, выход терморегулирующего клапана связан с входом змеевика, выход второго запорного клапана соединен с выходом предохранительного клапана, вход которого через трубопровод соединен с корпусом, управляющий вход второго соленоидного клапана подключен ко второму дискретному выходу контроллера, вход второго соленоидного клапана через третий запорный клапан и трубопровод подключен к корпусу, а выход через обратный шаровой клапан подключен к выпускной линии, управляющий вход первого соленоидного клапана соединен с первым дискретным выходом контроллера, вход первого соленоидного клапана подключен через первый запорный клапан к линии подачи парового хладагента, выход первого соленоидного клапана через первый фильтр и регулирующий клапан по трубопроводу подключен к корпусу.
RU2020107449A 2020-02-19 2020-02-19 Воздухоотделитель для холодильной системы RU2729305C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020107449A RU2729305C1 (ru) 2020-02-19 2020-02-19 Воздухоотделитель для холодильной системы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020107449A RU2729305C1 (ru) 2020-02-19 2020-02-19 Воздухоотделитель для холодильной системы

Publications (1)

Publication Number Publication Date
RU2729305C1 true RU2729305C1 (ru) 2020-08-05

Family

ID=72085899

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020107449A RU2729305C1 (ru) 2020-02-19 2020-02-19 Воздухоотделитель для холодильной системы

Country Status (1)

Country Link
RU (1) RU2729305C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2208748C1 (ru) * 2002-01-21 2003-07-20 Государственное общеобразовательное учреждение Дальневосточный государственный технический рыбохозяйственный университет Холодильная установка
JP2011075208A (ja) * 2009-09-30 2011-04-14 Ebara Refrigeration Equipment & Systems Co Ltd 抽気回収装置とその運転方法及びそれを備えたターボ冷凍機
WO2017184823A1 (en) * 2016-04-22 2017-10-26 Daikin Applied Americas Inc. Non-condensable gas purge system for refrigeration circuit
CN208635391U (zh) * 2018-06-26 2019-03-22 上海理工大学 一种自动处理不凝性气体的装置
US20190234661A1 (en) * 2018-01-30 2019-08-01 Carrier Corporation Low pressure integrated purge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2208748C1 (ru) * 2002-01-21 2003-07-20 Государственное общеобразовательное учреждение Дальневосточный государственный технический рыбохозяйственный университет Холодильная установка
JP2011075208A (ja) * 2009-09-30 2011-04-14 Ebara Refrigeration Equipment & Systems Co Ltd 抽気回収装置とその運転方法及びそれを備えたターボ冷凍機
WO2017184823A1 (en) * 2016-04-22 2017-10-26 Daikin Applied Americas Inc. Non-condensable gas purge system for refrigeration circuit
US20190234661A1 (en) * 2018-01-30 2019-08-01 Carrier Corporation Low pressure integrated purge
CN208635391U (zh) * 2018-06-26 2019-03-22 上海理工大学 一种自动处理不凝性气体的装置

Similar Documents

Publication Publication Date Title
US11635239B2 (en) Refrigeration system with purge and acid filter
DK2718642T3 (en) Multi-evaporator cooling circuits
US4304102A (en) Refrigeration purging system
EP2339265B1 (en) Refrigerating apparatus
US20100199707A1 (en) Refrigeration system
JP6343156B2 (ja) 圧縮式冷凍機
US20220003473A1 (en) Method for controlling ejector capacity in a vapour compression system
US2453033A (en) Vacuum drying apparatus using a refrigerant system for heating and cooling
CN110822774A (zh) 冷媒净化系统以及包含该冷媒净化系统的换热系统
US6018958A (en) Dry suction industrial ammonia refrigeration system
RU2729305C1 (ru) Воздухоотделитель для холодильной системы
CN108131854B (zh) 一种直膨式供液的多并联螺杆低温冷水机组
WO2020221635A1 (en) Refrigerating device
KR101829909B1 (ko) 반도체 웨이퍼 척의 냉각 시스템
JP2003336918A (ja) 冷却装置
CN205980563U (zh) 血浆速冻机制冷系统
EP4211405A1 (en) Carbon dioxide refrigeration system and a method of operating the refrigeration system
JP2018151116A (ja) ターボ冷凍機
CN105972933A (zh) 血浆速冻机制冷系统
JP2018119746A (ja) 冷凍装置
KR101996561B1 (ko) 열풍장치
EP3907445A1 (en) Condenser subassembly with integrated flash tank
RU2367856C1 (ru) Холодильная установка
JPH07294073A (ja) 冷凍装置
US1471732A (en) Process and apparatus for multiple-stage compression for refrigeration