RU2725925C1 - Способ защиты от коррозии конденсаторов паровых турбин - Google Patents

Способ защиты от коррозии конденсаторов паровых турбин Download PDF

Info

Publication number
RU2725925C1
RU2725925C1 RU2019132272A RU2019132272A RU2725925C1 RU 2725925 C1 RU2725925 C1 RU 2725925C1 RU 2019132272 A RU2019132272 A RU 2019132272A RU 2019132272 A RU2019132272 A RU 2019132272A RU 2725925 C1 RU2725925 C1 RU 2725925C1
Authority
RU
Russia
Prior art keywords
steam
condensers
preservation
corrosion protection
preservative
Prior art date
Application number
RU2019132272A
Other languages
English (en)
Inventor
Анастасия Васильевна Кирилина
Владислав Вадимович Козловский
Нурия Фаритовна Галимова
Юлия Викторовна Улановская
Екатерина Федоровна Нартя
Ильдар Раисович Исхаков
Original Assignee
Общество с ограниченной ответственностью "Водные технологии инжиниринг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Водные технологии инжиниринг" filed Critical Общество с ограниченной ответственностью "Водные технологии инжиниринг"
Priority to RU2019132272A priority Critical patent/RU2725925C1/ru
Application granted granted Critical
Publication of RU2725925C1 publication Critical patent/RU2725925C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Изобретение относится к области теплоэнергетики и может быть использовано для защиты от коррозии конденсаторов паровых турбин паросиловых энергоблоков, в том числе парогазовых установок (ПГУ) со стороны охлаждающей среды на время их ремонта или нахождения в резерве. Способ защиты от коррозии конденсаторов паровых турбин включает ввод консерванта в замкнутый контур циркуляции, при этом в качестве консерванта в течение не менее 10 часов используют водный раствор консерванта с концентрацией 15мг/дм3, содержащий в своем составе гетероциклические органические соединения класса азолов, при этом в качестве действующих веществ в консерванте используют замещенные аналоги 3-амино-1,2,4-триазол и 1H-бензотриазол. Технический результат: создание простой, относительно малозатратной и эффективной технологии консервации конденсаторов на время вывода их в резерв (ремонт) с возможностью предварительной очистки от отложений различной природы. 7 з.п. ф-лы, 2 ил., 2 табл.

Description

Область использования
Изобретение относится к области теплоэнергетики и может быть использовано для защиты от коррозии конденсаторов паровых турбин паросиловых энергоблоков, в том числе парогазовых установок (ПГУ) со стороны охлаждающей среды на время их ремонта или нахождения в резерве. При необходимости способ и применяемая схема консервации может использоваться для дополнительной предварительной очистки конденсаторов от солевых отложений.
Предшествующий уровень техники
В разные периоды эксплуатации теплоэнергетического оборудования происходит загрязнение конденсаторов солевыми отложениями и коррозия (и/или эррозия) металлических поверхностей. Последствиями данных процессов являются: 1) износ металла, что приводит к выходу из строя или требует дорогостоящего обслуживания оборудования; 2) образование пленок нерастворимых продуктов коррозии и накипеобразования на теплообменных поверхностях, что приводит, к пониженной теплопередаче и последующему снижению производительности; 3) унос ионов меди в оборотную воду, что приводит к развитию гальванической коррозии при осаждении меди на других металлах, а также к нарушениям ПДК меди в водоемах различного назначения (при попадании в них продувочной воды из системы оборотного охлаждения).
Известен способ защиты и предупреждения от образования накипи и коррозии оборудования и трубопроводов пароводяных трактов теплоэнергетических установок с использованием аминосодержащих соединений (Патент RU 2637036 С2, C23F 11/14 [1]). Недостатком данного способа является то, что его применение предусматривает защиту оборудования теплоэнергетических установок со стороны пара, и для его осуществления требуется температура среды не ниже 60°С. При таких условиях защита теплообменников со стороны охлаждающей среды невозможна. Также известны способы ингибирования коррозии медьсодержащих сплавов при использовании ингибиторов коррозии на основе азоловых веществ по технологии непрерывного дозирования в оборотные системы охлаждения. Так, наиболее близким аналогом (прототипом) к заявляемому техническому решению является «композиция и способ контроля уноса меди и эрозии медных сплавов в промышленных системах» (Патент RU № 2520931 С2, C23F 11/14, C23F 14/02 (2006.01), C09K 15/16 [2]).
Недостатком данного способа является необходимость постоянного дозирования ингибитора в охлаждающую воду для поддержания его заданных концентраций, что неприменимо для проточных систем или систем с большой долей продувки, или систем из которых происходит забор воды для технологических нужд.
Раскрытие изобретения
Задачей, на решение которой направлено заявляемое изобретение, является повышение надежности защиты от коррозии конденсаторов паровых турбин паросиловых энергоблоков, в том числе парогазовых установок (ПГУ) со стороны водной среды, снижение концентрации соединений меди в оборотной воде. Техническим результатом изобретения является создание простой, относительно малозатратной и эффективной технологии консервации конденсаторов на время вывода их в резерв (ремонт).
Решение указанной задачи путем достижения указанного технического результата обеспечивается за счет применения способа защиты от стояночной коррозии конденсаторов путем ввода консерванта в отдельный, замкнутый контур консервации (фиг. 1), при этом в качестве консерванта используют водный раствор реагента, содержащий в своем составе гетероциклические органические соединения класса азолов в концентрации 15мг/дм3, при этом в качестве действующих веществ в реагенте-консерванте используются замещенные аналоги 3-амино-1,2,4-триазол и 1H-бензотриазол. Циркуляцию раствора консерванта предпочтительно осуществлять не менее 10 часов по контуру консервации, схема которого представлена на фиг.1 и включает в себя: 1) бак, 2) перекачивающий насос, 3) конденсатор, 4) входная камера, 5) поворотная камера, 6) выходная камера, 7) барботажный кольцевой коллектор, 8) воздушник, 9) запорный вентиль (см. фигуру 1). Предпочтительно также произвести предварительную промывку конденсатора по схеме, указанной на фиг.1 от илистых отложений потоком воды без реагентов и, при необходимости, от накипных отложений с использованием промывочных растворов, которые выбираются для каждого конденсатора отдельно по результатам анализа отложений и вводятся в бак 1 в расчетных дозах для выбранных промывочных растворов.
В хозяйственной и коммерческой деятельности Заявителя указанное основное консервирующее вещество именуется «ВТИАМИН ЗС-6».
Предлагаемый способ позволяет обеспечивать высокую антикоррозионную защиту конденсаторов, изготовленных из медьсодержащих сплавов. Высокая эффективность защиты от коррозии с использованием предложенного способа связана с процессом образования на внутренней поверхности латунных трубок конденсатора плотной малорастворимой, устойчивой при температурах до 200°С пленки, которая обеспечивает полную защиту поверхности медьсодержащих сплавов от локальных разрушений во время простоев оборудования, а также во время работы в межконсервационные периоды. Замещенные аналоги 3-амино-1,2,4-триазола и 1H-бензотриазола проявляют максимальный защитный эффект по отношению к соединениям меди при минимальной токсичности среди всех изученных азолов. Кроме того, они обладают высокой скоростью биоразложния и способностью ингибировать процессы нитрификации водоемов.
Подробное описание изобретения
Накипеобразование и коррозия являются взаимосвязанными проблемами для большей части теплообменного оборудования электростанций. Данная взаимосвязь обусловлена физико-химическими процессами на поверхности металлических теплопередающих поверхностей.
С одной стороны, вследствие коррозии в кислородсодержащей водной среде поверхность металлов (кроме благородных), как правило, покрыта слоем окислов и окись-гидроокисей которые являются центрами прочного химического связывания анионов (силикатов, карбонатов и т.д.) из охлаждающей воды. С другой стороны, слой отложений, вследствие его физической неоднородности и включений, стимулирует развитие локальной подшламовой коррозии. Особенно остро эта проблема стоит для открытых систем охлаждения, использующих воду из прудов охладителей или рек и для систем, которые невозможно обрабатывать в периоды работы конденсаторов из-за ограничений по ПДК или финансовой нецелесообразности. На примере подобной оборотной системы Приуфимской ТЭЦ во время проведения опытно-промышленных испытаний ингибитора коррозии ВТИАМИН ЗС-6 в июне-августе 2018г. было доказано, что основные процессы коррозии латунных трубок конденсатора происходят в периоды их нахождения в резерве/ремонте и была опробована предлагаемая технология защиты конденсаторов. Для оценки состояния латунных трубок применяли стенд измерения коррозии (схема которого приведена на фиг. 2).
Чертежи и фигуры
Фигура 1 - схема контура циркуляции раствора консерванта;
Фигура 2 - схема стенда измерения коррозии.
На фигуре 1 изображены следующие элементы: бак 1, перекачивающий насос 2, конденсатор 3, входная камера 4, поворотная камера 5, выходная камера 6, барботажный кольцевой коллектор 7, воздушник 8, запорный вентиль 9.
На фигуре 2 стрелки показывают направление движения среды на стенде, а также изображены следующие элементы стенда: вход среды А; ротаметр В; запорная арматура С, регулирующая проток через змеевик с купонами; змеевик D с тремя индикаторными купонами; выход среды Е.
В основе предлагаемой технологии лежит придание поверхности латуни инертных свойств за счет формирования плотной нерастворимой защитной адсорбционно-полимеризационной пленки, которая, с одной стороны, является физическим барьером для агрессивных ионов, экранируя поверхность металла. С другой стороны, она связывает атомы меди, препятствуя ее анодному растворению и уменьшает электрическую проводимость поверхностного слоя.
Проверка эффективности заявляемого способа проводилась на стенде измерения коррозии (фиг. 2) при подключении его к циркуляционной воде системы оборотного охлаждения Приуфимской ТЭЦ. Моделирование периодов работы и нахождения в резерве латунных купонов производилось путем изменения протока циркуляционной воды через них. Купоны выполнены из латуни марки Л-63. Для расчета скорости коррозии использовали гравиметрический метод анализа. Подготовку образцов проводили согласно ГОСТ 9-905-82. Скорость коррозии оценивали количественно по глубинному показателю П, мм/год, рассчитанному по формулам:
Figure 00000001
и
Figure 00000002
где Δm - убыль массы металла за время испытания; S - общая поверхность испытуемого образца (м2); τ - продолжительность испытания (часы).
В качестве контрольного образца использовали необработанные ингибитором купоны. В качестве опытных образцов использовали законсервированные купоны по предлагаемой в данном изобретении схеме: латунные образцы помещались в проток раствора консерванта ВТИАМИН ЗС-6 с концентрацией 15 мг/л на 10 часов.
Контрольные и опытные образцы (купоны) устанавливали в стенд измерения скорости коррозии и выдерживались 30 суток без протока циркуляционной воды (моделирование условий нахождения оборудования в резерве) и 30 суток в протоке (моделирование периода работы оборудования). Скорость коррозии образцов (купонов) оценивалась после каждого этапа. Результаты измерений приведены в таблице 1
Таблица 1. Скорость коррозии латунных образцов в зависимости от способа обработки и условий выдерживания в среде.
Проникающая скорость коррозии, мм/год
Контрольный образец Опытный образец
После 30 дней простоя 0,155 0,01
После 30 дней работы 0,03 0,001
Так же проводились сравнительные анализы по содержанию меди в воде при помещении образцов в проток после 30 дней простоя. Результаты представлены в таблице 2
Таблица 2. Содержание меди в оборотной воде после включения латунных образцов в проток.
Содержание меди, мкг/дм3
Оборотная вода до подключения образцов 28
Оборотная вода с подключенным контрольным образцом 144
Оборотная вода с подключенным законсервированным образцом 30
Анализ полученных результатов показывает, что заявляемый способ консервации проявляет высокую эффективность в отношении ингибирования коррозии латуни.
Примеры использования
Применение заявляемого способа иллюстрируется исчерпывающими примерами:
Пример 1. Консервация конденсатора после останова турбоагрегата без дополнительных промывок.
В этом случае монтируется схема консервации без подачи пара и барботажного устройства 7, указанная на фиг.1. В баке 1 готовится раствор ВТИАМИН ЗС-6 концентрацией 15 мг/л. Вентиль 8 закрыт, вентиль 9 открыт. Включается перекачивающий насос 2. Циркуляция среды поддерживается в течение 10 часов. Насос 2 останавливают. Конденсатор при необходимости вывода его в ремонт дренируют. Если конденсатор планируется оставить в резерве, консервирующий раствор допускается оставлять в нем. При выводе конденсатора из ремонта или резерва каких-либо мер по расконсервации или промывке не требуется. Включение в работу происходит согласно существующей на электростанции штатной схеме.
Данный пример применим в случае отсутствия загрязнения конденсатора
Пример 2. Консервация конденсатора после останова с предварительной водной отмывкой.
В этом случае монтируется схема консервации, указанная на фиг.1 без подачи пара и барботажного устройства 7. В бак 1 подается техническая вода, вентиль 8 открыт, вентиль 9 закрыт; включается перекачивающий насос. Сброс воды из конденсатора ведется через дренаж (8) до осветления воды. По завершении процесса, дренаж 8 закрывают, вентиль 9 открывают; в баке 1 готовится раствор ВТИАМИН ЗС-6 концентрацией 15 мг/л. Дальнейшие действия осуществляют по примеру 1.
Данный пример применим в случаях, когда в конденсаторе отсутствуют или незначительны твердые накипные отложения, но присутствует в значительном количестве ил, мусор.
Пример 3. Консервация конденсатора после останова с предварительной промывкой для удаления отложений.
В этом случае монтируется схема промывки/консервации указанная на фигуре 1 в полном объеме. В бак 1 вводятся промывочные реагенты, вода, при необходимости (согласно рекомендациям по работе с выбранным промывочным реагентом) раствор барботируется паром до нужной температуры. Проводится циркуляция промывочного раствора до стабилизации показателей, контролируемых во время промывки. Промывочный раствор сбрасывается через дренаж 8 методом вытеснения. Для этого открывается вентиль 8, закрывается вентиль 9, в бак 1 подается постоянно вода. Отмывка проводится до осветления воды на сбросе и стабилизации величины рН (относительно промывочной воды). По окончании отмывки проводится консервация. Для этого закрывают дренаж 8, открывают запорный вентиль 9, в баке 1 готовят раствор ВТИАМИН ЗС-6 концентрацией 15 мг/л, включают перекачивающий насос. Консервация проводится не менее 12 часов. По завершении процесса дальнейшие действия осуществляются по примеру 1.
Данный пример применим в случае наличия в конденсаторе плотных, накипных отложений, ила, мусора. В качестве промывочных реагентов могут использоваться любые известные реагенты применимые для очистки медьсодержащих сплавов от накипных отложений в концентрациях рекомендуемых изготовителем реагентов.
При всех способах консервации раствор консерванта может оставаться для повторного использования при условии поддержания в нем концентрации консерванта на уровне 15 мг/л путем добавления свежего реагента, в случае снижения его концентрации в баке.
Промышленная применимость
Заявляемая технология отвечает условию «промышленная применимость» и может найти широкое применение на тепловых электростанциях, в системах оборотного охлаждения, где существуют ограничения по ПДК меди, а также отсутствует возможность постоянного дозирования ингибиторов коррозии во время работы оборотной системы, либо при маневренных режимах работы оборудования, когда оно достаточно долго находится в резерве/ремонте. Технология экологически безопасная и практически не оказывает техногенного воздействия на окружающую среду, так как не требует утилизации токсичных стоков. Кроме того, она позволяет выводить конденсаторы паровых турбин в работу после резерва/ремонта без дополнительных мер по расконсервации.

Claims (8)

1. Способ защиты от коррозии конденсаторов паровых турбин паросиловых энергоблоков, включающий создание замкнутого контура циркуляции и отличающийся тем, что в качестве консерванта в течение не менее 10 часов используют водный раствор реагента, содержащего в своем составе гетероциклические органические соединения класса азолов с концентрацией 15 мг/дм3, при этом в качестве действующих веществ в реагенте-консерванте используют замещенные аналоги 3-амино-1,2,4-триазол и 1H-бензотриазол.
2. Способ по п.1, отличающийся тем, что консервацию осуществляют в отношении парогазовых установок (ПГУ) со стороны охлаждающей среды на время их ремонта или нахождения в резерве.
3. Способ по п.1, отличающийся тем, что консервацию осуществляют без дополнительных мероприятий по очистке конденсаторов.
4. Способ по п.1, отличающийся тем, что производят предварительную очистку конденсатора от илистых отложений путем изменения потоков отмывочной воды.
5. Способ по п.1, отличающийся тем, что в качестве промывочных растворов могут быть дополнительно использованы иные химические композиции.
6. Способ по п.1, отличающийся тем, что по завершению указанного процесса консервирующий раствор оставляют в конденсаторе для целей резервного хранения.
7. Способ по п.1, отличающийся тем, что замкнутый контур циркуляции включает в себя бак с барботажным кольцевым коллектором и перекачивающий насос.
8. Способ по п.4, отличающийся тем, что промывочный раствор барботируют паром.
RU2019132272A 2019-10-11 2019-10-11 Способ защиты от коррозии конденсаторов паровых турбин RU2725925C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019132272A RU2725925C1 (ru) 2019-10-11 2019-10-11 Способ защиты от коррозии конденсаторов паровых турбин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019132272A RU2725925C1 (ru) 2019-10-11 2019-10-11 Способ защиты от коррозии конденсаторов паровых турбин

Publications (1)

Publication Number Publication Date
RU2725925C1 true RU2725925C1 (ru) 2020-07-07

Family

ID=71510516

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019132272A RU2725925C1 (ru) 2019-10-11 2019-10-11 Способ защиты от коррозии конденсаторов паровых турбин

Country Status (1)

Country Link
RU (1) RU2725925C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813268C1 (ru) * 2022-12-27 2024-02-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Ингибитор коррозии меди и медьсодержащих сплавов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2227175C2 (ru) * 1998-10-14 2004-04-20 Тексако Дивелопмент Корпорейшн Ингибиторы коррозии и сочетания ингибиторов с синергетическим эффектом для защиты легких металлов в жидких теплоносителях и охлаждающих жидкостях двигателей
RU2403320C2 (ru) * 2008-12-30 2010-11-10 Валерий Анатольевич Михайлов Способ защиты от коррозии пароводяных трактов энергетических установок
RU2520931C2 (ru) * 2008-11-20 2014-06-27 Налко Компани Композиция и способ контроля уноса меди и эрозии медных сплавов в промышленных системах
RU2557036C1 (ru) * 2014-04-11 2015-07-20 Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" Комплексный реагент для обработки пароводяного тракта энергоблоков тэс

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2227175C2 (ru) * 1998-10-14 2004-04-20 Тексако Дивелопмент Корпорейшн Ингибиторы коррозии и сочетания ингибиторов с синергетическим эффектом для защиты легких металлов в жидких теплоносителях и охлаждающих жидкостях двигателей
RU2520931C2 (ru) * 2008-11-20 2014-06-27 Налко Компани Композиция и способ контроля уноса меди и эрозии медных сплавов в промышленных системах
RU2403320C2 (ru) * 2008-12-30 2010-11-10 Валерий Анатольевич Михайлов Способ защиты от коррозии пароводяных трактов энергетических установок
RU2557036C1 (ru) * 2014-04-11 2015-07-20 Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" Комплексный реагент для обработки пароводяного тракта энергоблоков тэс

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813268C1 (ru) * 2022-12-27 2024-02-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Ингибитор коррозии меди и медьсодержащих сплавов

Similar Documents

Publication Publication Date Title
EP3013755B1 (en) Improved corrosion control methods
US4138353A (en) Corrosion inhibiting composition and process of using same
US8585964B2 (en) Composition and method for reducing white rust corrosion in industrial water systems
US4789406A (en) Method and compositions for penetrating and removing accumulated corrosion products and deposits from metal surfaces
US7955553B2 (en) Cooling water corrosion inhibition method
AU2018364983A1 (en) Cooling water monitoring and control system
KR100300501B1 (ko) 수성시스템에서의부식방지방법
CA2765905A1 (en) Composition and method for controlling copper discharge and erosion of copper alloys in industrial systems
Chen et al. Formulation of corrosion inhibitors
RU2725925C1 (ru) Способ защиты от коррозии конденсаторов паровых турбин
US5948279A (en) Method and apparatus for controlling macrofoulers in on-demand water conduits
EP0866148B1 (en) Method for inhibiting corrosion in water systems
US3794603A (en) Zn++-benzotriazole-h2so4 corrosioninhibitor
EP2971245B1 (en) Method to control corrosion of a metal surface using alkyl sulfamic acids or salts thereof
AU764313B2 (en) Inhibition of corrosion in aqueous systems
JPH09176872A (ja) 水系の金属の腐食抑制及びシリカ系スケール抑制方法
Boffardi Corrosion inhibitors in the water treatment industry
RU2637036C2 (ru) Способ защиты и предупреждения от образования накипи и коррозии оборудования и трубопроводов пароводяных трактов теплоэнергетических установок
CA2094419A1 (en) Methods for inhibiting the corrosion and deposition of iron and iron-containing metals in aqueous systems
JP3838610B2 (ja) 水系防食剤及び防食方法
US5342548A (en) Methods for inhibiting the corrosion and deposition of iron and iron-containing metals in aqueous systems
Beecher et al. Corrosion inhibition with sodium nitrite
RU2763083C1 (ru) Способ консервации котельного оборудования
Nikolaeva et al. Safe corrosion inhibitor for treating cooling water on heat power engineering plants
Al-Ghamdi Performance Analysis of Automated Control System for Condenser Water Treatment Unit

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner