RU2725516C1 - Способ электролитно-плазменной обработки детали - Google Patents

Способ электролитно-плазменной обработки детали Download PDF

Info

Publication number
RU2725516C1
RU2725516C1 RU2019117184A RU2019117184A RU2725516C1 RU 2725516 C1 RU2725516 C1 RU 2725516C1 RU 2019117184 A RU2019117184 A RU 2019117184A RU 2019117184 A RU2019117184 A RU 2019117184A RU 2725516 C1 RU2725516 C1 RU 2725516C1
Authority
RU
Russia
Prior art keywords
electrolyte
workpiece
magnetic field
electric potential
processing
Prior art date
Application number
RU2019117184A
Other languages
English (en)
Inventor
Аскар Джамилевич Мингажев
Николай Константинович Криони
Алиса Аскаровна Мингажева
Раис Калимуллович Давлеткулов
Андрей Игоревич Панин
Владислав Маратович Кутлуев
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority to RU2019117184A priority Critical patent/RU2725516C1/ru
Application granted granted Critical
Publication of RU2725516C1 publication Critical patent/RU2725516C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов. Способ включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала. В процессе обработки вокруг обрабатываемой детали обеспечивают постоянное магнитное поле равномерной напряженности в диапазоне 50-500 кА/м по всей обрабатываемой поверхности. В результате повышается производительность обработки за счет концентрации заряженных частиц в области обрабатываемой поверхности. 6 з.п. ф-лы, 1 пр.

Description

Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов.
Лопатки турбин обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.
Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л.: Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.86, а также Патент РБ№ 1132, кл. C25F 3/16, 1996, БИ №3].
Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ N1132, МПК C25F 3/16, 1996, БИ N3], а также способ электрохимического полирования [Патент США N 5028304, кл. В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91].
Известен также способ электролитно-плазменного полирования (ЭПП) детали из металлических сплавов, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала [Патент РФ №2373306, МПК C25F 3/16. опубл. в Бюл. №32, 2009].
Однако известные способы ЭПП не позволяют стабилизировать равномерность обработки поверхности детали.
Наиболее близким к заявляемому техническому решению является способ электролитно-плазменной обработки детали, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала (патент РФ №2357019, МПК C25F 3/16. Опубл.: Бюл. №15, 2009).
Недостатком прототипа (патент РФ №2357019) является недостаточно высокая производительность процесса обработки и невозможность стабилизации равномерности обработки поверхности детали.
Задачей, на решение которой направлено заявляемое изобретение, является повышение производительности обработки поверхности детали
Техническим результатом предлагаемого технического решения является обеспечение равномерной обработки поверхности детали при одновременном повышении его производительности.
Технический результат достигается тем, что в способе электролитно-плазменной обработки детали, включающем погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала, в отличие от прототипа, в процессе обработки вокруг обрабатываемой детали обеспечивают постоянное магнитное поле равномерной напряженности в диапазоне 50-500 кА /м по всей обрабатываемой поверхности.
Кроме того возможны следующие дополнительные приемы выполнения способа: на деталь подают положительный электрический потенциал от 280 до 350 В; на деталь подают отрицательный электрический потенциал от 280 до 350 В; осуществляют обработку детали из титанового сплава, при этом в качестве электролита используют водный раствор с содержанием от 3 до 7 вес. % гидроксиламина солянокислого с содержанием от 0,7 до 0,8 вес. % NaF или KF, а обработку детали ведут полированием до обеспечения шероховатости не ниже Ra=0,08-0,12 мкм при температуре от 74°С до 86°С; осуществляют обработку детали из никелевого или хромоникелевого сплава, при этом в качестве электролита используют 4-8% водный раствор сульфата аммония, а обработку детали ведут полированием до обеспечения шероховатости не ниже Ra=0,08-0,12 мкм при температуре от 65°С до 80°С; в качестве детали используют лопатку турбомашины, а магнитное поле создают электромагнитом. Наличие магнитного поля позволяет равномерно распределить заряженные частицы по обрабатываемой поверхности, а также повысить их концентрацию в области обрабатываемой поверхности за счет их «захвата» магнитным полем (Физика плазмы для физиков. Арцимович Л.А., Сагдеев Р.З., 1979 г.)
Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются описанием процесса обработки и нижеприведенными примерами.
Заявляемый способ электрохимического полирования металлических изделий осуществляется следующим образом. Обрабатываемое металлическое изделие погружают в ванну с водным раствором электролита, помещают в полость устройства, обеспечивающего равномерное магнитное поле по всей обрабатываемой поверхности изделия, производят, прикладывают к изделию положительное напряжение, а к электролиту - отрицательное (анодная обработка) или прикладывают к изделию отрицательное - напряжение, а к электролиту - положительное (катодная обработка), в результате чего достигают возникновения вокруг детали парогазовой оболочки и разряда между обрабатываемым изделием и электролитом. В качестве ванны используют емкость, выполненную из материала, стойкого к воздействию электролита. Обработку ведут в среде электролита при поддержании вокруг детали парогазовой оболочки и равномерного магнитного поля.
При осуществлении способа происходят следующие процессы. Под действием протекающих токов происходит нагрев поверхности детали и образование вокруг нее парогазовой оболочки. Излишняя теплота, возникающая при нагреве детали и электролита, отводится через систему охлаждения. При этом поддерживают заданную температуру процесса. Под действием электрического напряжения (электрического потенциала между деталью и электролитом) в парогазовой оболочке возникает разряд, представляющий из себя ионизированную электролитическую плазму, обеспечивающую протекание интенсивных химических и электрохимических реакций между обрабатываемой деталью и средой парогазовой оболочки. Наличие постоянного магнитного поля позволяет стабилизировать процессы обработки и повысить концентрацию ионов в парогазовой оболочке, что приводит также к повышению производительности процесса обработки.
При подаче положительного потенциала на деталь, в процессе протекания указанных реакций, происходит анодирование поверхности детали с одновременным химическим травлением образующегося окисла.
При подаче положительного потенциала на деталь, в процессе протекания указанных реакций происходит анодирование поверхности детали с одновременным химическим травлением образующегося окисла. Причем при анодной поляризации парогазовый слой состоит из паров электролита, анионов и газообразного кислорода. Поскольку травление происходит, в основном, на микронеровностях, где образуется тонкий слой окисла, а процессы анодирования продолжаются, то в результате совместного действия этих факторов происходит уменьшение шероховатости обрабатываемой поверхности и, как следствие, полирование последней.
При катодной поляризации парогазовая оболочка вокруг детали состоит из паров электролита, катионов и газообразного водорода, поэтому наряду с химическим взаимодействием катионов с материалом поверхностного слоя детали происходит возникновение в парогазовой оболочке микроискровых разрядов, что приводит к электроэрозионному и кавитационному воздействию на обрабатываемую поверхность.
Пример. Обрабатываемые образцы лопаток из хромоникелевых сплавов (ХН45МВТЮБР-ИД, ХН45МВТЮБР-ПД) погружали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение. Обеспечивали постоянное магнитное поле, напряженностью в диапазонах от 50 до 500 кА /м.Полирование поверхности пера лопатки производили прикладывая к обрабатываемой лопатке электрический потенциал величиной от 280 до 350 В, используя постоянное магнитное поле напряженностью 50-500 кА/м и проводили полирование до достижения требуемой величины шероховатости поверхности. Полирование проводили в среде электролита: 4-8% водный раствор сульфата аммония. Кроме того, в ряде случаев в состав электролита дополнительно вводили поверхностно-активные вещества в концентрации 0,6-1,2%. При обработке проводили циркуляционное охлаждение электролита (поддерживалась средняя температура процесса в интервале 65…80°С).
Неудовлетворительным результатом (Н.Р.) считался результат, при котором отсутствовал эффект полирования или уменьшения шероховатости поверхности детали, не обеспечивалась равномерность обработки поверхности и производительность процесса не превышала производительность процесса обработки по способу-прототипу в 1,4-раза.
Условия обработки по предлагаемому способу.
Электрический потенциал (напряжение):
Положительный потенциал: 270 В - Н.Р.; 280 В - удовлетворительный результат (У.Р.); 290 В - У.Р.; 300 В - У.Р.; 300 В - У.Р.; 350 В - У.Р.; 400 В - Н.Р.
отрицательный потенциал: 270 В - Н.Р.; 280 В - У.Р.; 290 В - У.Р.; 300 В - У.Р.; 300 В - У.Р.; 350 В - У.Р.; 400 В - Н.Р.
Магнитное поле напряженностью: 40 кА /м - Н.Р.; 50 кА /м - У.Р.; 100 кА /м - У.Р.; 150 кА /м - У.Р.; 200 кА /м - У.Р.; 250 кА /м - У.Р.; 300 кА /м - У.Р.; 350 кА /м - У.Р.; 400 кА /м - У.Р.; 450 кА /м - У.Р.; 500 кА /м - У.Р.; 550 кА/м - Н.Р.
Постоянное магнитное поле напряженностью: 40 кА /м - Н.Р.; 50 кА /м - У.Р.; 100 кА /м - У.Р.; 150 кА /м - У.Р.; 200 кА /м - У.Р.; 250 кА /м - У.Р.; 300 кА /м - У.Р.; 350 кА /м - У.Р.; 400 кА /м - У.Р.; 450 кА /м - У.Р.; 500 кА /м - У.Р.; 550 кА/м - Н.Р.
Электролит для деталей из титановых сплавов: водный раствор с содержанием: гидроксиламина солянокислого чистого: 2 вес. % - Н.Р.; 3 вес. % - У.Р.; 4 вес. % - У.Р.; 5 вес. % - У.Р.; 7 вес. % - У.Р.; 8 вес. % - Н.Р.; с содержанием: NaF или KF: 0,6 вес. % - Н.Р.; 0,7 вес. % - У.Р.; 0,8 вес. % - У.Р.; 0,9 вес. % - Н.Р.; температура обработки: 70°С - Н.Р.; 74;°С- У.Р.; 74°С - У.Р.; 78°С - У.Р.; 82°С - У.Р.; 86°С - У.Р.; 90°С - Н.Р.;
Электролит для деталей из никелевых сплавов: водный раствор с содержанием: сульфата аммония: 3 вес. % - Н.Р.; 4 вес. % - У.Р.; 5 вес. % - У.Р.; 7 вес. % - У.Р.; 8 вес. % - У.Р.; 9 вес. % - Н.Р.; температура обработки: 60°С - Н.Р.; 65°С - У.Р.; 70°С - У.Р.; 75°С - У.Р.; 80°С - У.Р.; 90°С - Н.Р.
По сравнению с известным способом полирования (патент РФ №2357019) производительность процесса по предлагаемому способу в среднем в 2,5-3 раза выше, а разброс значений шероховатости поверхности при обработке по предлагаемому способу составляет Ra 0,35…0,02 мкм, в то время, как по прототипу - Ra 0,65…0,03 мкм.

Claims (7)

1. Способ электролитно-плазменной обработки детали, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала, отличающийся тем, что в процессе обработки вокруг обрабатываемой детали обеспечивают постоянное магнитное поле равномерной напряженности в диапазоне 50-500 кА/м по всей обрабатываемой поверхности.
2. Способ по п. 1, отличающийся тем, что на деталь подают положительный электрический потенциал от 280 до 350 В.
3. Способ по п. 1, отличающийся тем, что на деталь подают отрицательный электрический потенциал от 280 до 350 В.
4. Способ по любому из пп. 1-3, отличающийся тем, что осуществляют обработку детали из титанового сплава, при этом в качестве электролита используют водный раствор с содержанием от 3 до 7 вес.% гидроксиламина солянокислого с содержанием от 0,7 до 0,8 вес.% NaF или KF, а обработку детали ведут полированием до обеспечения шероховатости не ниже Ra=0,08-0,12 мкм при температуре от 74°С до 86°С.
5. Способ по любому из пп. 1-3, отличающийся тем, что осуществляют обработку детали из никелевого или хромоникелевого сплава, при этом в качестве электролита используют 4-8% водный раствор сульфата аммония, а обработку детали ведут полированием до обеспечения шероховатости не ниже Ra=0,08-0,12 мкм при температуре от 65°С до 80°С.
6. Способ по п. 4, отличающийся тем, что в качестве детали используют лопатку турбомашины, а магнитное поле создают электромагнитом.
7. Способ по п. 5, отличающийся тем, что в качестве детали используют лопатку турбомашины, а магнитное поле создают электромагнитом.
RU2019117184A 2019-06-03 2019-06-03 Способ электролитно-плазменной обработки детали RU2725516C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019117184A RU2725516C1 (ru) 2019-06-03 2019-06-03 Способ электролитно-плазменной обработки детали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019117184A RU2725516C1 (ru) 2019-06-03 2019-06-03 Способ электролитно-плазменной обработки детали

Publications (1)

Publication Number Publication Date
RU2725516C1 true RU2725516C1 (ru) 2020-07-02

Family

ID=71509964

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117184A RU2725516C1 (ru) 2019-06-03 2019-06-03 Способ электролитно-плазменной обработки детали

Country Status (1)

Country Link
RU (1) RU2725516C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787664C2 (ru) * 2021-03-26 2023-01-11 Фивзат Миннебаевич Гайсин Способ полировки и придания блеска медицинским иглам

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168565C1 (ru) * 1999-12-30 2001-06-10 Мирзоев Рустам Аминович Способ электрохимического полирования металлических изделий
DE10207632B4 (de) * 2002-02-22 2006-04-06 Lingath, Klaus, Dipl.-Ing. Verfahren zum Plasmapolieren von Gegenständen aus Metall und Metalllegierungen
RU2357019C2 (ru) * 2007-04-04 2009-05-27 ООО "НПП Уралавиаспецтехнология" Способ электролитно-плазменной обработки деталей
RU132083U1 (ru) * 2012-07-27 2013-09-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Установка для электролитно-плазменной обработки металлических изделий

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168565C1 (ru) * 1999-12-30 2001-06-10 Мирзоев Рустам Аминович Способ электрохимического полирования металлических изделий
DE10207632B4 (de) * 2002-02-22 2006-04-06 Lingath, Klaus, Dipl.-Ing. Verfahren zum Plasmapolieren von Gegenständen aus Metall und Metalllegierungen
RU2357019C2 (ru) * 2007-04-04 2009-05-27 ООО "НПП Уралавиаспецтехнология" Способ электролитно-плазменной обработки деталей
RU132083U1 (ru) * 2012-07-27 2013-09-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Установка для электролитно-плазменной обработки металлических изделий

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787664C2 (ru) * 2021-03-26 2023-01-11 Фивзат Миннебаевич Гайсин Способ полировки и придания блеска медицинским иглам
RU2812925C1 (ru) * 2023-09-12 2024-02-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" Способ электролитно-плазменного полирования лопатки турбомашины из титанового сплава
RU2820693C1 (ru) * 2023-12-19 2024-06-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" Способ электролитно-плазменного полирования детали в переменном магнитном поле при пониженном давлении

Similar Documents

Publication Publication Date Title
RU2373306C2 (ru) Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов
CZ298798A3 (cs) Elektrolytický způsob čištění a potahování elektricky vodivých povrchů
RU2552203C2 (ru) Способ полирования деталей из титановых сплавов
RU2355829C2 (ru) Способ электролитно-плазменного полирования металлических изделий
US5981084A (en) Electrolytic process for cleaning electrically conducting surfaces and product thereof
US6238540B1 (en) Method for microplasma electrolytic processing of surfaces of electroconductive materials
Wu et al. Effect of Na2SiO3 concentration on microstructure and corrosion resistance of MAO coatings prepared on Al-Mg-Sc alloys
RU2725516C1 (ru) Способ электролитно-плазменной обработки детали
RU2556251C1 (ru) Способ электролитно-плазменного удаления полимерных покрытий с поверхности пластинчатого торсина несущего винта вертолета
RU2621744C2 (ru) Способ электролитно-плазменной обработки изделий, изготовленных с применением аддитивных технологий
RU2706263C1 (ru) Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов
RU2461667C1 (ru) Способ электролитно-плазменного полирования деталей из титана и титановых сплавов
RU2734802C1 (ru) Способ электролитно-плазменного полирования детали
RU2551344C1 (ru) Способ повышения эксплуатационных характеристик лопаток турбомашин из легированных сталей
Xia et al. Investigation of the scanning microarc oxidation process
Zou et al. Optimization and mechanism of precise finishing of TC4 alloy by plasma electrolytic polishing
RU2812925C1 (ru) Способ электролитно-плазменного полирования лопатки турбомашины из титанового сплава
RU2357019C2 (ru) Способ электролитно-плазменной обработки деталей
RU2467098C1 (ru) Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами
RU2495966C1 (ru) Способ полирования деталей из титановых сплавов
JP2007224369A (ja) アルマイト処理方法及び処理装置ならびにアルマイト処理システム
RU2566139C2 (ru) Способ электролитно-плазменного удаления полимерных покрытий с поверхности детали из легированных сталей
KR20200008453A (ko) 초음파를 이용한 금속관 전해연마방법
RU2693235C1 (ru) Устройство для электролитно-плазменного полирования лопаток блиска
RU2736943C1 (ru) Способ нанесения покрытия на изделия из вентильного металла или его сплава