RU2725492C1 - Электролит для анодного плазменно-электролитного модифицирования - Google Patents

Электролит для анодного плазменно-электролитного модифицирования Download PDF

Info

Publication number
RU2725492C1
RU2725492C1 RU2019129341A RU2019129341A RU2725492C1 RU 2725492 C1 RU2725492 C1 RU 2725492C1 RU 2019129341 A RU2019129341 A RU 2019129341A RU 2019129341 A RU2019129341 A RU 2019129341A RU 2725492 C1 RU2725492 C1 RU 2725492C1
Authority
RU
Russia
Prior art keywords
electrolyte
plasma
modification
wear resistance
boric acid
Prior art date
Application number
RU2019129341A
Other languages
English (en)
Inventor
Василий Сергеевич Белкин
Павел Николаевич Белкин
Анатолий Михайлович Борисов
Борис Львович Крит
Валерий Борисович Людин
Наталья Владиславовна Морозова
Игорь Вячеславович Суминов
Андрей Валериевич Эпельфельд
Пинарготе Нестор Вашингтон Солис
Павел Юрьевич Перетягин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН")
Priority to RU2019129341A priority Critical patent/RU2725492C1/ru
Application granted granted Critical
Publication of RU2725492C1 publication Critical patent/RU2725492C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Изобретение относится к области металлургии, а именно к составу электролита для плазменного химико-термического модифицирования металлов и сплавов, и может использоваться для повышения износостойкости поверхности обрабатываемых изделий. Электролит для анодного плазменно-электролитного модифицирования содержит, мас. %: хлорид аммония 8-12; нитрат аммония 4-7; борная кислота 2-5 и вода остальное. При использовании электролита обеспечивается снижение затрачиваемой электрической мощности, требуемой на проведение процесса, а также увеличение износостойкости модифицированного слоя и снижение шероховатости поверхности деталей за счет использования боросодержащего компонента и анодной поляризации обрабатываемых изделий. 3 табл., 1 пр.

Description

Изобретение относится к области металлургии, а именно к плазменно-электролитной обработке, в частности - к составу электролита для плазменного химико-термического модифицирования металлов и сплавов, и может использоваться для повышения износостойкости поверхности, улучшения эффективности плазменно-электролитной обработке и расширения сферы использования плазменно-электролитной обработки материалов в различных отраслях машиностроения, приборостроения и производства изделий потребительского назначения.
Метод электролитно-плазменной обработки основан на плазменных и электрохимических процессах, возникающих в парогазовой оболочке вблизи поверхности погруженного в раствор металлического электрода под действием электрического напряжения.
Процесс электролитно-плазменной обработки возникает, когда обрабатываемое изделие является анодом (или катодом), а под воздействием напряжения происходит вскипание электролита вблизи поверхности обрабатываемого изделия с образованием парогазовой оболочки, состоящей из паров воды, и ионов, входящих в состав электролита.
Электрический ток, проходя через парогазовую оболочку, приводит к плазмообразованию по механизму газового разряда, а под воздействием активных ионов происходит управляемая модификация поверхности обрабатываемого изделия. Результатом данной модификации является насыщение поверхности и приповерхностных слоев неметаллическими элементами, обычно N, С, В [Суминов И.В., Белкин П.Н., Эпельфельд А.В., Людин В.Б., Крит Б.Л., Борисов A.M. Плазменно-электролитическое модифицирование поверхности металлов и сплавов. М.: Техносфера, 2011.].
Из уровня техники известно, что наиболее эффективным процессом для повышения трибологических свойств обработанных с помощью плазменно-электролитного модифицирования сталей является бороазотирование [P. Taheri, Ch. Dehghanian, М. Aliofkhazraei, A.S. Rouhaghdam, Nanocrystalline Structure Produced by Complex Surface Treatments: Plasma Electrolytic Nitrocarburizing, Boronitriding, Borocarburizing, and Borocarbonitriding, Plasma Process. Polym. 2007, 4, S721-S727]. При этом, повышение трибологических свойств объясняется наличием в структуре поверхностных слоев обрабатываемого изделия боридных и нитридных нанокристаллических фаз, которые образуются при катодном бороазотировании стали с применением электролитов, содержащих различные концентрации буры и нитрита натрия.
Недостатками данного решения являются сравнительно малая глубина диффузионного слоя обрабатываемого изделия и большая поверхностная шероховатость, а также недостаточная эффективность насыщения бором из-за невысокой растворимости тетрабората натрия (32 г/л при 25°С), что ограничивает величину потенциала бора в электролите. Кроме того, обработка в указанном электролите сопровождается нежелательной эрозией обрабатываемой поверхности при повышении напряжения, что связанно с отрицательной полярностью обрабатываемой детали.
Наиболее близким по технической сущности к предлагаемому изобретению является выбранный в качестве прототипа состав для анодной плазменно-электролитной обработки, содержащий хлорид аммония (NH4Cl) в качестве электропроводящего компонента, насыщающий компонент и воду, отличающийся тем, что в качестве насыщающего компонента используется ацетонитрил (CH3CN) при следующем соотношении компонентов, мас. %: ацетонитрил 10-15, хлорид аммония 12,5-15,0, вода - остальное. (Патент RU 2569623, опубл. 27.11.2015).
Обработка в данном электролите позволяет снизить затрачиваемую электрическую мощность, повысить толщину модифицированного поверхностного слоя, поверхностную микротвердость, уменьшить скорость анодного растворения при одновременном снижении шероховатости поверхности. Условия плазменно-электролитной обработки в предложенном электролите следующие: температура обработки от 650 до 950°С, продолжительность - от 2 до 10 мин, плотность тока до 4,5 А/см2 при рабочем напряжении от 125 до 165 В и температурой электролита до 30°С.
Недостатком известного состава, в том числе технической проблемой, является отсутствие возможности формирования наиболее оптимальных, с эксплуатационной точки зрения, боронитридных фаз, повышающих износостойкость. Кроме того, входящий в состав электролита ацетонитрил токсичен и входит в Перечень наркотических средств, психотропных веществ и их прекурсоров, подлежащих контролю в Российской Федерации (Постановление Правительства РФ №681 от 30 июня 1998).
В основу заявленного изобретения был положен технический результат - снижение затрачиваемой электрической мощности, требуемой на проведение процесса, увеличение износостойкости модифицированного слоя и снижение шероховатости поверхности деталей за счет использования боросодержащего компонента и анодной поляризации обрабатываемых изделий.
Технический результат достигается тем, что в электролите для анодного плазменно-электролитного модифицирования, содержащем хлорид аммония в качестве электропроводящего компонента, насыщающие компоненты и воду, в качестве насыщающих компонентов используют нитрат аммония и борную кислоту при следующем соотношении компонентов, масс. %: хлорид аммония 8-12; нитрат аммония 4-7; борная кислота 2-5 и вода - остальное.
Изобретение охарактеризовано следующим образом.
Электролит для анодного плазменно-электролитного модифицирования, содержит хлорид аммония в качестве электропроводящего компонента, насыщающие компоненты и воду, в качестве насыщающих компонентов используют нитрат аммония и борную кислоту при следующем соотношении компонентов, мас. %: хлорид аммония 8-12; нитрат аммония 4-7; борная кислота 2-5 и вода - остальное.
Технический результат достигается посредством анодной плазменно-электролитной обработки, осуществляемой с применением оборудования и методологии, описанных в работе [Суминов И.В., Белкин П.Н., Эпельфельд А.В., Людин В.Б., Крит Б.Л., Борисов A.M. Плазменно-электролитическое модифицирование поверхности металлов и сплавов. М.: Техносфера, 2011]. Суммарная концентрация хлорида и нитрата аммония (NH4NO3) в электролите менее 12 мас. % не позволяет достичь величины азотного потенциала парогазовой оболочки, необходимой для насыщения азотом. Суммарная концентрация хлорида и нитрата аммония свыше 19 мас. % приводит к увеличению толщины парогазовой оболочки, росту электросопротивления и увеличению скорости анодного растворения. Концентрация борной кислоты (Н3ВО3) в электролите менее 2 мас.% существенно снижает потенциал бора в насыщающей среде. Превышение добавки борной кислоты свыше 5 мас.% вследствие ограниченной растворимости затрудняет приготовление электролита и вызывает образование ингибирующего диффузию осадка в процессе обработки. Нитрат аммония повышает азотный потенциал, а борная кислота по сравнению с тетраборатом натрия обладает большей растворимостью (57,4 г/л при 25°С) и способствует образованию боросодержащих радикалов с меньшими энергозатратами.
Благодаря этому, достижение эффективности модифицирования на уровне прототипа обеспечивается в течение 1-5 мин при напряжении 160 В (что соответствует температуре плазменно-электролитной обработке при 900°С). Сокращение времени обработки повышает экономичность процесса и существенно снижает эрозию поверхности. Помимо этого, в предложенном электролите не используются токсичные и экологически вредные компоненты.
Пример достижения технического результата.
Во всех примерах электролитно-плазменную обработку проводили в осесимметричной рабочей камере с проточным электролитом со скоростью 3 л/мин при температурах обработки 800-850°С при анодной полярности. Продолжительность обработки: 5 минут для прототипа и 2 минуты для изобретения. Обрабатываемые материалы: ст 20 (прототип и изобретение), ВТ 1-0 (изобретение). Трибологические свойства образцов изучали на трибометре по схеме «шарик-по-диску» в условиях сухого трения при нагрузке 5 Н, скорости скольжения 0,2 м/с при комнатной температуре. Контртелом служил шарик диаметром 6,35 мм из корунда.
Результаты приводятся в таблицах: 1 - Примеры по прототипу, 2 - Примеры по изобретению (для ст 20), 3 - Примеры по изобретению (для ВТ 1-0).
Как видно из приведенных примеров, предложенный электролит позволяет обеспечить снижение потребляемой электрической мощности, уменьшение толщины модифицированного слоя, повышение твердости и износостойкости.
Таким образом, заявленная совокупность существенных признаков, отраженная в независимом пункте формулы изобретения, обеспечивает получение заявленного технического результата - снижение затрачиваемой электрической мощности, требуемой на проведение процесса, увеличение износостойкости модифицированного слоя и снижение шероховатости поверхности деталей за счет использования боросодержащего компонента и анодной поляризации обрабатываемых изделий.
Figure 00000001
Figure 00000002
Figure 00000003
Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности необходимых признаков, неизвестной на дату приоритета из уровня техники и достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.
Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:
• объект, воплощающий заявленное техническое решение, при его осуществлении предназначен для плазменного химико-термического модифицирования металлов и сплавов, и может использоваться для повышения износостойкости поверхности, улучшения эффективности плазменно-электролитной обработке и расширения сферы использования плазменно-электролитной обработки материалов в различных отраслях машиностроения, приборостроения и производства изделий потребительского назначения;
• для заявленного объекта в том виде, как он охарактеризован в формуле, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;
• объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.
Следовательно, заявленный объект соответствует критериям патентоспособности «новизна», «изобретательный уровень» и «промышленная применимость» по действующему законодательству.

Claims (2)

  1. Электролит для анодного плазменно-электролитного модифицирования, содержащий в качестве электропроводящего компонента хлорид аммония, насыщающие компоненты и воду, отличающийся тем, что в качестве насыщающих компонентов он содержит нитрат аммония и борную кислоту при следующем соотношении компонентов, мас. %:
  2. хлорид аммония 8-12 нитрат аммония 4-7 борная кислота 2-5 вода остальное
RU2019129341A 2019-09-18 2019-09-18 Электролит для анодного плазменно-электролитного модифицирования RU2725492C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019129341A RU2725492C1 (ru) 2019-09-18 2019-09-18 Электролит для анодного плазменно-электролитного модифицирования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019129341A RU2725492C1 (ru) 2019-09-18 2019-09-18 Электролит для анодного плазменно-электролитного модифицирования

Publications (1)

Publication Number Publication Date
RU2725492C1 true RU2725492C1 (ru) 2020-07-02

Family

ID=71510301

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019129341A RU2725492C1 (ru) 2019-09-18 2019-09-18 Электролит для анодного плазменно-электролитного модифицирования

Country Status (1)

Country Link
RU (1) RU2725492C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115573014A (zh) * 2022-09-29 2023-01-06 哈尔滨工程大学 一种中碳钢表面硼氮共渗改性层及其制备方法
WO2024178456A1 (en) * 2023-02-28 2024-09-06 Conflux Technology Pty Ltd Plasma electrolytic deposition surface coatings for oxide-forming alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591798B (zh) * 2008-06-01 2011-04-20 比亚迪股份有限公司 一种金属件及其表面处理方法
RU2537346C1 (ru) * 2013-06-28 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ электролитно-плазменной обработки поверхности металлов
JP5696447B2 (ja) * 2010-11-25 2015-04-08 Jfeスチール株式会社 表面処理金属材料の製造方法
RU2550436C1 (ru) * 2014-05-27 2015-05-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ обработки поверхности металлов
RU2569623C2 (ru) * 2013-04-22 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Костромской государственный университет имени Н.А. Некрасова Состав для электролитно-плазменной нитроцементации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591798B (zh) * 2008-06-01 2011-04-20 比亚迪股份有限公司 一种金属件及其表面处理方法
JP5696447B2 (ja) * 2010-11-25 2015-04-08 Jfeスチール株式会社 表面処理金属材料の製造方法
RU2569623C2 (ru) * 2013-04-22 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Костромской государственный университет имени Н.А. Некрасова Состав для электролитно-плазменной нитроцементации
RU2537346C1 (ru) * 2013-06-28 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ электролитно-плазменной обработки поверхности металлов
RU2550436C1 (ru) * 2014-05-27 2015-05-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ обработки поверхности металлов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115573014A (zh) * 2022-09-29 2023-01-06 哈尔滨工程大学 一种中碳钢表面硼氮共渗改性层及其制备方法
WO2024178456A1 (en) * 2023-02-28 2024-09-06 Conflux Technology Pty Ltd Plasma electrolytic deposition surface coatings for oxide-forming alloys

Similar Documents

Publication Publication Date Title
Yerokhin et al. Plasma electrolysis for surface engineering
Wu et al. Effects of additives on corrosion and wear resistance of micro-arc oxidation coatings on TiAl alloy
RU2725492C1 (ru) Электролит для анодного плазменно-электролитного модифицирования
Abd El-Lateef et al. Role of Ni content in improvement of corrosion resistance of Zn–Ni alloy in 3.5% NaCl solution. Part I: Polarization and impedance studies
Kusmanov et al. Plasma electrolytic nitriding of alpha-and beta-titanium alloy in ammonia-based electrolyte
Kusmanov et al. Surface modification of low-carbon steels by plasma electrolytic nitrocarburising
NASI et al. Plasma electrolytic saturation of 316 L stainless steel in an aqueous electrolyte containing urea and ammonium nitrate
Abdallah et al. Corrosion behavior of nickel electrode in NaOH solution and its inhibition by some natural oils
Belkin et al. Plasma electrolytic boriding of steels and titanium alloys
Avdeev et al. Protection of nickel-chromium steel in sulfuric acid solution by a substituted triazole
Belkin Anode electrochemical thermal modification of metals and alloys
US4363708A (en) Process for exposing silicon crystals on the surface of a component of an aluminum alloy of high silicon content
CN104630693A (zh) 一种奥氏体不锈钢表面的复合处理方法
Kusmanov et al. Improving the wear resistance of VT22 titanium alloy by anodic plasma electrolytic boriding
Cheng et al. Formation of ceramic coatings on non-valve metal low carbon steel using micro-arc oxidation technology
Roy et al. Feasibility study of aqueous electrolyte plasma nitriding
Wang et al. Microarc oxidation coating fabricated on AZ91D Mg alloy in an optimized dual electrolyte
CN106011852A (zh) 一种奥氏体不锈钢表面高熵合金涂层的制备方法
RU2461667C1 (ru) Способ электролитно-плазменного полирования деталей из титана и титановых сплавов
Tambovskiy et al. Anodic plasma electrolytic nitrocarburising of VT22 titanium alloy in carbamide and ammonium chloride electrolyte
Noori et al. Characterization of nitrocarburized coating by plasma electrolytic saturation
Santos et al. Influence of urea content blended with deionized water in the process of nitriding using electrical discharge machining on AISI 4140 steel
Jiménez et al. Electrochemical treatment of aluminium alloy 7075 in aqueous solutions of imidazolium phosphonate and phosphate ionic liquids and scratch resistance of the resultant materials
Belkin et al. Increase in corrosion resistance of commercial pure titanium by anode plasma electrolytic nitriding
Belkin et al. Plasma electrolytic hardening and nitrohardening of medium carbon steels

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210917

Effective date: 20210917