RU2724613C1 - Способ гидроочистки дизельного топлива - Google Patents

Способ гидроочистки дизельного топлива Download PDF

Info

Publication number
RU2724613C1
RU2724613C1 RU2020101651A RU2020101651A RU2724613C1 RU 2724613 C1 RU2724613 C1 RU 2724613C1 RU 2020101651 A RU2020101651 A RU 2020101651A RU 2020101651 A RU2020101651 A RU 2020101651A RU 2724613 C1 RU2724613 C1 RU 2724613C1
Authority
RU
Russia
Prior art keywords
catalyst
hydrotreating
carrier
phosphorus
rest
Prior art date
Application number
RU2020101651A
Other languages
English (en)
Inventor
Сергей Викторович Будуква
Дарья Дмитриевна Уваркина
Анастасия Васильевна Сайко
Павел Петрович Дик
Олег Владимирович Климов
Александр Степанович Носков
Original Assignee
Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") filed Critical Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ")
Priority to RU2020101651A priority Critical patent/RU2724613C1/ru
Application granted granted Critical
Publication of RU2724613C1 publication Critical patent/RU2724613C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способам гидроочистки дизельных топлив, основанных на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390С, давлении 3-9 МПа, объёмном расходе сырья 1,0-2,5 ч, объёмном отношении водород/сырьё 300-600 м/мв присутствии реактивированного катализатора гидроочистки, имеющего объем пор 0,3-0,55 мл/г, удельную поверхность 120-180 м/г, средний диаметр пор 7-12 нм, включающего в свой состав молибден, никель, фосфор, серу и носитель, при этом молибден, никель и фосфор содержатся в катализаторе в форме смеси комплексных соединений Ni(CHO), H[Mo(СНO)O], H[PNiMoO]; H[Ni(OH)MoO], H[PMoO], носитель содержит γ-AlO, серу в форме сульфат-аниона SO, фосфор в форме фосфат-аниона PO. Катализатор содержит компоненты в следующих концентрациях, мас.%: Ni(CHO) – 8,8-15,6; H[Mo(СНO)O] – 3,2-8,0; H[PNiMoO] – 5,8-11,6; H[Ni(OH)MoO] – 3,7-7,1; H[PMoO] – 3,0-7,4; носитель – остальное; при этом носитель содержит мас.%: SO– 0,5-2,5; PO–2,5-5,5; γ-AlO– остальное; после сульфидирования катализатор содержит, мас.%: Мо – 10,0-16,0; Ni – 2,5-4,5; P – 1,2-2,4; S – 6,7-10,8; γ-AlO– остальное. 1 з.п. ф-лы, 2 табл., 4 пр.

Description

Изобретение относится к способам гидроочистки дизельного топлива, основанным на использовании реактивированных катализаторов.
В настоящее время большая часть товарных российских дизельных топлив содержит не более 10 ppm серы в соответствии с нормами ЕВРО-5 и российского [ГОСТ Р 52368-2005. (ЕН 590-2004). Топливо дизельное ЕВРО. Технические условия]. Получение малосернистых топлив достигается глубокой гидроочисткой дизельных фракций со степенью обессеривания не менее 99%. В последние годы в сырье гидроочистки возрастает доля вторичных фракций, содержащих в высоких концентрациях трудно превращаемые соединения серы, азот органические соединения и конденсированные ароматические соединения. Для переработки такого сырья приходится увеличивать давление процесса гидроочистки и переходить на нанесенные никель-молибденовые катализаторы, NiMo/Al2O3, обладающие повышенной гидрирующей и деазотирующей способностью по сравнению с традиционными кобальт-молибденовыми системами.
В ходе эксплуатации катализаторы неизбежно дезактивируются и нуждаются в регенерации. Для регенерации обычно применяется окислительное удаление углеродистых отложений - основной причины дезактивации, однако, окислительная регенерация современных высокоактивных катализаторов гидроочистки позволяет восстановить их активность не более чем на 90%, чего недостаточно для проведения повторного процесса гидроочистки с получением дизельных топлив ЕВРО-5.
В связи с этим, необходима разработка способов гидроочистки с получением дизельного топлива содержащего не более 10 ppm серы, основанных ни использовании регенерированных катализаторов, активность которых восстановлена на 99% и более.
Известны способы гидроочистки, основанные на использовании регенерированных катализаторов [US 7087546, B0J20/34; EP 1418002 A2, B01J23/85, C10G45/08], которые получены путем пропитки прокаленных катализаторов растворами карбоновых кислот, гликолей, углеводов, содержащих от 1 до 3 карбоксильных групп и 2-10 атомов углерода. Катализатор пропитывают растворами данных соединений в различных мольных соотношениях и далее сушат при различных температурах. В качестве органической добавки могут использоваться также соединения, содержащие аминогруппу (-NH2), гидроксогруппу (-OH), карбоксильную группу (-COOH).
Так в [WO 2005070542, A1, B0J38/48] описан способ гидроочистки на регенерированных катализаторах, активности которых восстановлены путем их обработки этилендиаминтетрауксусной, нитрилотриуксусной, гидроксиэтилендиаминтриуксусной кислотами. Катализатор после окислительной регенерации пропитывают растворами приведенных добавок, с мольным соотношением 0,01-0,5 моль добавки на моль активных металлов в катализаторе, сушкой катализаторов при 120 в течение 2 ч и последующей прокалкой при 450°С.
Известен способ гидроочистки, предложенный в [RU 2351634, C10G45/08, B01J37/02,], согласно которому, углеводородное сырье контактирует с регенерированным катализатором,содержащим оксид металла группы VIII и оксид металла группы VI, дополнительно содержащим кислоту и органическую добавку, которая имеет температуру кипения в интервале 80-500°С и растворимость в воде, по меньшей мере, 5 г в литре, при этом катализатор содержит кристаллическую фракцию, выраженную как вес фракции кристаллических соединений металлов группы VIB и группы VIII относительно суммарного веса катализатора, в количестве менее 5 мас. %.
Общим недостатком для вышеперечисленных способов гидроочистки является недостаточно высокая активность используемых катализаторов, обусловленная их неоптимальным, сложным и неидентифицируемым химическим составом, который является следствием отсутствия в процессе активации целенаправленного синтеза соединений, обладающих высокой каталитической активностью.
Наиболее близким по своей технической сущности и достигаемому эффекту к заявляемому способу реактивации является способ, предложенный в [RU 2484896, B01J23/94, C10G45/08, B01J37/02. 20.06.2013], в соответствии с которым гидроочистку углеводородного сырья проводят при температуре 320-400°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч-1, объемном отношении водород/сырье 100-1000 м33 в присутствии регенерированного катализатора, содержащего молибден и кобальтв форме цитратныхкомплексных соединений Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], а серу - в форме сульфат-аниона SO4 2- в следующих концентрациях, мас. %: Ni(C6H6O7) -7,3-16,6; H4[Mo4(C6H5O7)2O11] - 17,3-30,0; SO4 2- - 0,25-2,70; носитель - остальное; и имеющего объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, регенерированного заявляемым способом.
Основным недостатком прототипа, так же, как и других известных способов гидроочистки дизельного топлива в присутствии регенерированных катализаторов, является недостаточно высокая активность катализаторов.Низкий уровень активности полученных катализаторов объясняется их неоптимальным химическим составом.
Изобретение решает задачу создания улучшенного способа гидроочистки дизельного топлива, характеризующегося низким содержанием серы и азота в получаемых дизельных топливах, достигаемым за счет использования реактивированного катализатора.
Задача решается способом гидроочистки дизельного топлива при температуре 340-390°С, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-600 нм3Н23 сырья в присутствии регенерированного катализатора, имеющего объем пор 0,3-0,55 мл/г, удельную поверхность 120-180 м2/г, средний диаметр пор 7-12 нм, представляющего собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,2-1,6 мм и длиной до 20 мм; включающего в свой состав молибден, никель, фосфор, серу и носитель, при этом молибден, никель и фосфор содержатся в катализаторе в форме смеси комплексных соединений Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7 [PNiMo11O40]; H3[Ni(OH)6Mo6O18], H6[P2Mo5O23], носитель содержит γ-Al2O3, серу в форме сульфат-аниона SO4 2-, фосфор в форме фосфат-аниона PO4 3-. Катализатор содержит компоненты в следующих концентрациях, мас. %: Ni(C6H6O7) - 8,8-15,6; H4[Mo4(C6H5O7)2O11] - 3,2-8,0; H7[PNiMo11O40] - 5,8-11,6; H3[Ni(OH)6Mo6O18] - 3,7-7,1; H6[P2Mo5O23] - 3,0-7,4; носитель - остальное; при этом носитель содержит мас. %:SO4 2- - 0,5-2,5;PO4 3- -2,5-5,5;γ-Al2O3 - остальное; после сульфидирования катализатор содержит, мас. %: Мо - 10,0-16,0; Ni - 2,5-4,5; P - 1,2-2,4; S - 6,7-10,8; γ-Al2O3 - остальное.
Основным отличительным признаком предлагаемого способа получения гидроочищенного дизельного топлива является то, что гидроочистку проводят в присутствии реактивированного катализатора, включающего в свой состав молибден, никель, фосфор, серу и носитель, при этом молибден, никель и фосфор содержатся в катализаторе в форме смеси комплексных соединений Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7 [PNiMo11O40]; H3[Ni(OH)6Mo6O18], H6[P2Mo5O23], носитель содержит γ-Al2O3, серу в форме сульфат-аниона SO4 2-, фосфор в форме фосфат-аниона PO4 3-.
Катализатор содержит компоненты в следующих концентрациях, мас. %: Ni(C6H6O7) -8,8-15,6; H4[Mo4(C6H5O7)2O11] - 3,2-8,0; H7[PNiMo11O40] - 5,8-11,6; H3[Ni(OH)6Mo6O18] - 3,7-7,1; H6[P2Mo5O23] - 3,0-7,4; носитель - остальное; при этом носитель содержит мас. %: SO4 2- - 0,5-2,5; PO4 3- -2,5-5,5; γ-Al2O3 - остальное; после сульфидирования катализатор содержит, мас. %: Мо - 10,0-16,0; Ni - 2,5-4,5; P - 1,2-2,4; S - 6,7-10,8; γ-Al2O3 - остальное.
Реактивированный катализатор имеет объем пор 0,3-0,55 мл/г, удельную поверхность 120-180 м2/г, средний диаметр пор 7-12 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,2-1,6 мм и длиной до 20 мм.
Гидроочистку проводят в присутствии реактивированного катализатора при температуре 340-390°С, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье нм3Н23 сырья.
Технический эффект предлагаемого способа получения гидроочищенного дизельного топлива складывается из следующих составляющих:
1. Заявляемый химический состав катализатора обеспечивает максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья. Наличие в составе катализаторов смеси комплексных соединений Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40]; H3[Ni(OH)6Mo6O18], H6[P2Mo5O23]; серы в форме сульфат-аниона SO4 2-, фосфора в форме фосфат-аниона PO4 3- в заявляемых концентрациях обеспечивает повышенную активность катализатора в превращении серосодержащих соединений, входящих в состав дизельного топлива.
2. Заявляемые условия проведения процесса гидроочистки дизельного топлива в присутствии регенерированного катализатора позволяют получать дизельное топливо с пониженным содержанием серы из смеси прямогонных и вторичных дизельных фракций при невысоких стартовых температурах процесса, что прогнозирует длительный срок эксплуатации катализатора.
Описание предлагаемого технического решения.
Для реактивации используют катализаторы, дезактивированные при их эксплуатации в гидроочистке дизельного топлива, а затем регенерированные путем прокалки на воздухе в ленточных или барабанных печах. Как правило, катализаторы после окислительной регенерации имеют удельную поверхность 120-180 м2/г, объем пор 0,30-0,55 см3/г, средний диаметр пор 7-12 нм и представляют собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,2-1,6 мм и длиной до 20 мм. Катализаторы содержат никель и молибден в пересчете на оксиды, мас. %: NiO - 3,15-6,7; MoO3 - 15,0-24,0; носитель - остальное; при этом носитель содержит мас. %:связанные с алюминием поверхностные сульфаты SO4 2- - 0,5-2,5; связанные с алюминием поверхностные фосфаты PO4 3- -2,5-5,5; γ-Al2O3 - остальное;
`Далее готовят раствор лимонной и ортофосфорной кислот таких концентраций, чтобы независимо от влагоемкости регенерированного катализатора мольное лимонная кислота/никель было в интервале 0,5-0,6; а мольное отношение ортофосфорная кислота/никель было равно 0,25. Для этого в заданном объеме смеси воды с 10-20 об. % бутилдигликоля при перемешивании и нагревании растворяют требуемое количество лимонной и ортофосфорной кислот. Получают раствор с концентрацией 10-20 об. % бутилдигликоля, лимонной кислоты 0,42-1,09 моль/л, ортофосфорной кислоты 0,17-0,54 моль/л.
Далее навеску прокаленного катализатора пропитывают полученным раствором. Пропитку проводят по влагоемкости, далее производят перемешивание влажного катализатора в колбе ротационного испарителя без подачи воздуха при температуре 60-90°С в течение 20-60 мин при условиях, исключающих полное испарение воды из катализатора.
Далее катализатор сушат на воздухе при температуре 100-220°С в течение 2-6 ч.
Наличие в составе катализатора комплексов Ni, Mo, P и поверхностных сульфатов, и фосфатов подтверждают совокупностью следующих методов исследования: массового элементного анализа Ni, Mo, P, С, H, S; ИК-спектроскопии; Рамановской, РФЭ-спектроскопии.
Во всех случаях массовое содержание элементов соответствует концентрации в готовом катализаторе, мас. %: Ni(C6H6O7) - 8,8-15,6; H4[Mo4(C6H5O7)2O11] - 3,2-8,0; H7[PNiMo11O40] - 5,8-11,6; H3[Ni(OH)6Mo6O18] - 3,7-7,1; H6[P2Mo5O23] - 3,0-7,4; носитель -остальное; при этом носитель содержит мас. %:SO4 2- - 0,5-2,5;PO4 3- -2,5-5,5; γ-Al2O3 - остальное.
В ИК-спектрах изученных катализаторов присутствуют полосы, соответствующие Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23] (таблица 1).
Таблица 1. Характеристические полосы комплексов в составе катализаторов.
Комплексное соединение Полосы поглощения, см-1
Ni(C6H6O7) 3450, 1620, 1580, 1431, 1385, 1290, 1265, 1165, 1060, 925, 890, 820
H4[Mo4(C6H5O7)2O11] 1720, 1660, 1620, 1595, 1560, 1430, 1410; 950, 920, 900, 890, 870, 850, 820, 800, 740, 730, 690, 650,620
H3[Ni(OH)6Mo6O18] 945, 930, 900, 789, 633, 573, 496, 398, 322
H7[PNiMo11O40] 1115, 1000, 950, 897, 760, 441
H6[P2Mo5O23] 1106, 1020, 988, 969, 944, 897, 861, 682
Отнесения полос в ИК-спектрах сделаны в соответствии с [С.М. Цимблер, Л.Л. Шевченко, В.В.Григорьева Журнал прикладной спектроскопии, 11 (1969) 522-528; R.I. Bickley, H.G.M. Edwards, R.Gustar, S.J.Rose, Journal of Molecular Structure, 246 (1991) 217-228; M. Matzapetakis, M. Dakanali, C.P. Raptopoulou, et al. Journal of Biological Inorganic Chemistry 5 (2000) 469-474; N.W.Alcock, M.Dudek, R.Grybos et al. J.Chem.Soc. Dalton Trans. (1990) 707-711; C.I. Cabello et al. Journal of Molecular Catalysis A: Chemical 186 (2002) 89-100; Feng-Xian Liu, Catherine Marchal-Roch, Damien Dambournet,
Figure 00000001
Acker,
Figure 00000002
Marrot, Francis
Figure 00000003
Eur. J. Inorg. Chem. (2008) 2191-2198].
На рамановских спектрах катализаторов присутствуют характеристические пики H7[PNiMo11O40] - 974, 943, 366, 232 см-1; H3[Ni(OH)6Mo6O18] 963, 946, 906, 568, 375, 353, 219 см-1; H4[Mo4(C6H5O7)2O11] -945, 899, 861 389, 373, 346, 253 см-1; H6[P2Mo5O23] - 944, 900, 830, 370, 230 см-1.
В спектрах РФЭС присутствуют пики, соответствующие Ni(C6H6O7) - Ni2p3/2 =856,7 эВ; H4[Mo4(C6H5O7)2O11] - Mo3d5/2=232,4 эВ; H3[Ni(OH)6Mo6O18] - Mo3d5/2=232,9 эВ и Ni2p3/2 =856,4 эВ; H6[P2Mo5O23] - Mo3d5/2=232,5 эВ и P2p=135,0 эВ; SO4 2- - S2p=169,3 эВ; PO4 3- -P2p=134,2 эВ.
Отнесения сделаны в соответствии с [В.И.Нефедов, Рентгено-электронная спектроскопия химических соединений. М. Химия. 1984, 256 с.,
Figure 00000004
R. Palcheva, A. Spojakina,
Figure 00000005
G. Tyuliev. Procedia Engineering 42 (2012) 873 - 884].
Интенсивность пиков на спектрах РФЭС позволят определить концентрацию каждого компонента в катализаторе.
В результате проведения реактивации по вышеописанной методике, получают катализаторы, имеющие заявляемые текстурные характеристики и содержащие комплексные соединения Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23], а также носитель γ-Al2O3, содержащий серу в форме сульфат-аниона SO4 2-, фосфор в форме фосфат-аниона PO4 3- в заявляемых интервалах концентраций.
Далее проводят гидроочистку дизельного топлива при объемной скорости подачи сырья в интервале 1-2,5 ч-1, соотношении водород/сырье -300-600 нм3 Н23 сырья, температуре 340-390°С, давлении водорода - 3-9 МПа.
В качестве сырья используют смесь 87 об. % прямогонного дизельного топлива с 13 об. % легкого газойля каталитического крекинга. Сырье имеет диапазон кипения 130-416°С; 90% объема выкипает при 368°С, содержание серы: 0,376 мас. %; содержание азота 125 ppm, плотность 0,864 г/см3.
Для тестирования в гидроочистке, катализаторы используют в виде экструдатов с сечениемв виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,2-1,6 мм и длиной до 20 мм.
Предварительное сульфидирование катализаторов проводят непосредственно в реакторе гидроочистки прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300. Сульфидирование включает несколько этапов:
- сушка катализатора в реакторе гидроочистки в токе водорода при 140°С в течении 2 ч;
- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;
- подача сульфидирующей смеси и увеличение температуры до 240°C со скоростью подъема температуры 25°C/ч;
- сульфидирование при температуре 240°C в течение 8 ч (низкотемпературная стадия);
- увеличение температуры реактора до 340°C со скоростью подъема температуры 25°C/ч;
- сульфидирование при температуре 340°C в течение 8 ч (высокотемпературная стадия).
После сульфидирования катализаторы содержат, мас. %: Мо - 10,0-16,0; Ni -2,5-4,5; P -1,2-2,4; S - 6,7-10,8; γ-Al2O3 - остальное.
Сущность изобретения иллюстрируется следующими примерами:
Пример 1. Согласно известному решению.
Гидроочистку дизельного топлива проводят в присутствии регенерированного катализатора, который регенерируют по нижеописанной процедуре.
Используют катализатор после окислительной регенерации, который содержит, мас. %: NiO - 4,15; MoO3 - 16,43; SO4 2- м 3,52; С - 0,11; носитель - остальное, и имеет удельную поверхность 221 м2/г, средний диаметр пор 99 нм и объем пор 0,54 см3/г.
30 г катализатора после окислительной регенерации вакуумируют до 50 Торр, после чего контактируют при 50°С в течение 20 мин с 50 мл раствора лимонной кислоты в смеси этиленгликоля (50 об. %) и этилового спирта (50 об. %), имеющего концентрацию лимонной кислоты 2,0 моль/л, затем избыток раствора сливают. Катализатор сушат 1 ч при 70°С и затем 4 ч при 150°С.
Полученный катализатор содержит, мас. %: Ni(C6H6O7) -11,54; H4[Mo4(C6H5O7)2O11] - 22,47; SO4 2- - 2,92; носитель - остальное; и имеет удельную поверхность 215 м2/г, средний диаметр пор 97 нм и объем пор 0,54 см3/г.
Для сравнения каталитических свойств проводят тестирование в гидроочистке реактивированного катализатора и свежего катализатора, отобранного из той же партии, перед проведением процесса гидроочистки и регенерации.
Свежий катализатор, использованный для сопоставления каталитических свойств, содержит никель и молибден в пересчете на оксиды, мас. %: NiO - 4,2; MoO3 - 16,5;носитель - остальное; и имеетудельную поверхность 220 м2/г, средний диаметр пор 100 нм и объем пор 0,55 см3/г.
Процесс гидроочистки дизельного топлива проводят при объемной скорости подачи сырья - 2,5 ч-1, соотношение водород/сырье - 600, температуре 370°С, давлении водорода - 3,8 МПа. В качестве сырья используют смесь 87 об. % прямогонного дизельного топлива с 13 об. % легкого газойля каталитического крекинга. Сырье имеет диапазон кипения 130-416°С; 90% объема выкипает при 368°С, содержание серы: 0,376 мас. %;содержание азота 125 ppm, плотность 0,864 г/см3. Предварительное сульфидирование катализаторов проводят непосредственно в реакторе гидроочистки прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300.
Результаты гидроочистки дизельного топлива на регенерированном и свежем катализаторах приведены в таблице 2.
Примеры 2-4 иллюстрируют предлагаемое техническое решение.
Пример 2.
Используют катализатор после окислительной регенерации, который содержит, мас. %: NiO - 3,15; MoO3 - 15,0; SO4 2- - 2,5; PO4 3- -2,5; носитель γ-Al2O3 - остальное; и имеетудельную поверхность 180 м2/г,средний диаметр пор 7 нм, объем пор 0,55 см3/г, влагоемкость 0,6 см3/г.
Далее готовят раствор лимонной и ортофосфорной кислот таких концентраций, чтобы независимо от влагоемкости регенерированного катализатора мольное отношение лимонная кислота/никель было в интервале 0,5-0,6; а мольное отношение ортофосфорная кислота/никель было равно 0,25. Для этого в заданном объеме смеси воды с 10-20 об. % бутилдигликоля при перемешивании и нагревании растворяют требуемое количество лимонной и ортофосфорной кислот.
Готовят раствор 6 мл бутилдигликоля в 40 мл воды. Далее в полученном растворе растворяют навеску лимонной кислоты 4,84 г (0,025 моль) и 1,22 г 85%- водного раствора ортофосфорной кислоты (0,01 моль). Объем раствора дистиллированной водой доводят до 60 мл. Раствор имеет концентрацию бутилдигликоля 10,0 об. %, лимонной кислоты 0,42 моль/л, ортофосфорной кислоты 0,17 моль/л. Навеску 100 г катализатора после окислительной регенерации в колбе, исключающей испарение воды пропитывают 60 мл раствора лимонной и фосфорной кислот в смеси воды и бутилдигликоля, колбу закрепляют на роторном устройстве и помещают в баню, нагретую до 60°С, при постоянном вращении, обеспечивающем перемешивание катализатора, выдерживают 20 мин.Далее катализатор переносят в чашку Петри, которую помещают в сушильный шкаф, нагретый до 100°С, и сушат при этой температуре 2 ч. Перед определением текстурных характеристик катализатор прогревают на воздухе 2 ч при 500°С.
Полученный катализатор содержит, мас. %: Ni(C6H6O7) - 8,8; H4[Mo4(C6H5O7)2O11] - 7,1; H7[PNiMo11O40] - 5,8; H3[Ni(OH)6Mo6O18] - 3,7; H6[P2Mo5O23] - 3,0; носитель -остальное; при этом носитель содержит мас. %:SO4 2- м 2,5;PO4 3- -2,5;γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,55 см3/г, средний диаметр пор 7 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,2 мм и длиной до 20 мм.
В ИК-спектрах катализатора содержатся все характеристические полосы, типичные для Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23] приведенные в таблице 1. Рамановские спектры также содержат набор пиков от Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23]. Значения энергий связи и интенсивности пиков, определенные из спектров РФЭС, соответствуют наличию в катализаторе Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23, также носителя γ-Al2O3, содержащего серу в форме сульфат-аниона SO4 2-, фосфор в форме фосфат-аниона PO4 3- в заявляемых интервалах концентраций.
Гидроочистку дизельного топлива и предварительное сульфидирование проводят аналогично примеру 1.После сульфидирования катализатор содержит, мас. %: Мо - 10,0; Ni - 2,5; P - 1,2; S - 6,7; γ-Al2O3 - остальное.
Для сравнения каталитических свойств проводят тестирование в гидроочистке реактивированного катализатора и свежего катализатора, отобранного из той же партии, перед проведением процесса гидроочистки и регенерации.
Результаты гидроочистки дизельного топлива на регенерированном катализаторе приведены в таблице 2.
Пример 3.
Используют катализатор после окислительной регенерации, который содержит, мас. %: NiO - 6,7; MoO3 - 24,0; SO4 2- - 0,5; PO4 3- м5,5; носитель γ-Al2O3 - остальное; и имеетудельную поверхность 120 м2/г,средний диаметр пор 12 нм и объем пор 0,30 см3/г., влагоемкость 0,35 см3/г.
Готовят раствор 5,5 мл бутилдигликоля в 15 мл воды. Далее в полученном растворе растворяют навеску лимонной кислоты 7,32 г (0,038 моль) и 2,2 г 85%- водного раствора ортофосфорной кислоты (0,019 моль). Объем раствора дистиллированной водой доводят до 35 мл. Раствор имеет концентрацию бутилдигликоля 15,7 об. %, лимонной кислоты 1,09 моль/л, ортофосфорной кислоты 0,54 моль/л.
Навеску 100 г катализатора после окислительной регенерации в колбе, исключающей испарение воды пропитывают 35 мл раствора лимонной и фосфорной кислот в смеси воды и бутилдигликоля, колбу закрепляют на роторном устройстве и помещают в баню, нагретую до 90°С, при постоянном вращении, обеспечивающем перемешивание катализатора, выдерживают 60 мин.Далее катализатор переносят в чашку Петри, которую помещают в сушильный шкаф, нагретый до 220°С, и сушат при этой температуре 6 ч. Перед определением текстурных характеристик катализатор прогревают на воздухе 2 ч при 500°С.
Полученный катализатор содержит, мас. %: Ni(C6H6O7) - 15,6; H4[Mo4(C6H5O7)2O11] -3,2; H7[PNiMo11O40] - 11,6; H3[Ni(OH)6Mo6O18] -7,1; H6[P2Mo5O23] - 7,4; носитель -остальное; при этом носитель содержит мас. %:SO4 2- - 0,5;PO4 3- -5,5;γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 120 м2/г, объем пор 0,3 см3/г, средний диаметр пор 12 нм и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.
В ИК-спектрах катализатора содержатся все характеристические полосы, типичные для Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23] приведенные в таблице 1. Рамановские спектры также содержат набор пиков от Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23]. Значения энергий связи и интенсивности пиков, определенные из спектров РФЭС, соответствуют наличию в катализаторе Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23, также носителя γ-Al2O3, содержащего серу в форме сульфат-аниона SO4 2-, фосфор в форме фосфат-аниона PO4 3- в заявляемых интервалах концентраций.
Гидроочистку дизельного топлива и предварительное сульфидирование проводят аналогично примеру 1.После сульфидирования катализатор содержит, мас. %: Мо - 16,0; Ni - 4,5; P - 2,4; S - 10,8; γ-Al2O3 - остальное.
Для сравнения каталитических свойств проводят тестирование в гидроочистке реактивированного катализатора и свежего катализатора, отобранного из той же партии, перед проведением процесса гидроочистки и регенерации.
Результаты гидроочистки дизельного топлива на регенерированном катализаторе приведены в таблице 2.
Пример 4.
Используют катализатор после окислительной регенерации, который содержит, мас. %: NiO - 4,5; MoO3 - 19,5; SO4 2- - 1,8; PO4 3- -4,5; носитель γ-Al2O3 - остальное; и имеетудельную поверхность 150 м2/г,средний диаметр пор 9 нм,объем пор 0,45 см3/г, влагоемкость 0,5 см3/г.
Готовят раствор 10 мл бутилдигликоля в 25 мл воды. Далее в полученном растворе растворяют навеску лимонной кислоты 6,83 г (0,036 моль) и 1,73 г 85%- водного раствора ортофосфорной кислоты (0,015 моль). Объем раствора дистиллированной водой доводят до 50 мл. Раствор имеет концентрацию бутилдигликоля 20 об. %, лимонной кислоты 0,72 моль/л, ортофосфорной кислоты 0,3 моль/л. Навеску 100 г катализатора после окислительной регенерации в колбе, исключающей испарение воды пропитывают 50 мл раствора лимонной и фосфорной кислот в смеси воды и бутилдигликоля, колбу закрепляют на роторном устройстве и помещают в баню, нагретую до 75°С, при постоянном вращении, обеспечивающем перемешивание катализатора, выдерживают 40 мин.Далее катализатор переносят в чашку Петри, которую помещают в сушильный шкаф, нагретый до 120°С, и сушат при этой температуре 4 ч. Перед определением текстурных характеристик катализатор прогревают на воздухе 2 ч при 500°С.
Полученный катализатор содержит, мас. %: Ni(C6H6O7) - 12,5; H4[Mo4(C6H5O7)2O11] -8,0; H7[PNiMo11O40] - 7,3; H3[Ni(OH)6Mo6O18] - 5,0; H6[P2Mo5O23] - 5,0; носитель -остальное; при этом носитель содержит мас. %:SO4 2- - 1,8;PO4 3- -4,5;γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,45 см3/г, средний диаметр пор 9 нм и представляет собой частицы с сечением в виде круга диаметром 1,4 мм и длиной до 20 мм.
В ИК-спектрах катализатора содержатся все характеристические полосы, типичные для Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23] приведенные в таблице 1. Рамановские спектры также содержат набор пиков от Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23]. Значения энергий связи и интенсивности пиков, определенные из спектров РФЭС, соответствуют наличию в катализаторе Ni(C6H6O7), H4[Mo4(C6H5O7)2O11], H7[PNiMo11O40], H3[Ni(OH)6Mo6O18] и H6[P2Mo5O23, также носителя γ-Al2O3, содержащего серу в форме сульфат-аниона SO4 2-, фосфор в форме фосфат-аниона PO4 3- в заявляемых интервалах концентраций.
Гидроочистку дизельного топлива и предварительное сульфидирование проводят аналогично примеру 1.После сульфидирования катализатор содержит, мас. %: Мо -13,0; Ni - 3,5; P - 2,1; S - 9,9; γ-Al2O3 - остальное.
Для сравнения каталитических свойств проводят тестирование в гидроочистке реактивированного катализатора и свежего катализатора, отобранного из той же партии, перед проведением процесса гидроочистки и регенерации.
Результаты гидроочистки дизельного топлива на регенерированном катализаторе приведены в таблице 2.
Таблица 2. Результаты гидроочистки дизельного топлива на регенерированных и свежих катализаторах.
Катализатор Остаточное содержание серы в дизельном топливе, ppm Степень обессеривания, % Восстановление активности, %
Пример 1, регенерированный 36,0 99,04 99,80
Пример 1 свежий 30,0 99,20 ---
Пример 2, регенерированный 20,3 99,46 99,98
Пример 2, свежий 19,6 99,48 ---
Пример 3, регенерированный 14,8 99,61 100,0
Пример 3, свежий 14,5 99,61 ---
Пример 4, регенерированный 9,5 99,75 100,02
Пример 4, свежий 10,0 99,73 ---
Из результатов гидроочистки дизельного топлива, приведенных в таблице 2, следует, что при гидроочистке по заявляемому способу в продуктах достигается гораздо меньшее остаточное содержание серы, чем при использовании прототипа.

Claims (2)

1.Способ гидроочистки дизельного топлива при температуре 340-390оС, давлении 3-9 МПа, объёмном расходе сырья 1,0-2,5 ч-1, объёмном отношении водород/сырьё 300-600 м33 в присутствии реактивированного катализатора, включающего в свой состав молибден, никель, фосфор, серу и носитель, при этом молибден, никель и фосфор содержатся в катализаторе в форме смеси комплексных соединений Ni(C6H6O7), H4[Mo46Н5O7)2O11], H7 [PNiMo11O40]; H3[Ni(OH)6Mo6O18], H6[P2Mo5O23], носитель содержит γ-Al2O3, серу в форме сульфат-аниона SO4 2-, фосфор в форме фосфат-аниона PO4 3-, катализатор содержит компоненты в следующих концентрациях, мас.%: Ni(C6H6O7) 8,8-15,6; H4[Mo46Н5O7)2O11] 3,2-8,0; H7[PNiMo11O40] - 5,8-11,6; H3[Ni(OH)6Mo6O18] 3,7-7,1; H6[P2Mo5O23] – 3,0-7,4; носитель - остальное; при этом носитель содержит мас.%: SO4 2- - 0,5-2,5; PO4 3- - 2,5-5,5; γ-Al2O3 – остальное; после сульфидирования катализатор содержит, мас.%: Мо - 10,0-16,0; Ni - 2,5-4,5; P - 1,2-2,4; S - 6,7-10,8; γ-Al2O3 – остальное.
2.Способ по п. 1, отличающийся тем, что катализатор имеет объем пор 0,3-0,55 мл/г, удельную поверхность 120-180 м2/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,2-1,6 мм и длиной до 20 мм.
RU2020101651A 2020-01-17 2020-01-17 Способ гидроочистки дизельного топлива RU2724613C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020101651A RU2724613C1 (ru) 2020-01-17 2020-01-17 Способ гидроочистки дизельного топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020101651A RU2724613C1 (ru) 2020-01-17 2020-01-17 Способ гидроочистки дизельного топлива

Publications (1)

Publication Number Publication Date
RU2724613C1 true RU2724613C1 (ru) 2020-06-25

Family

ID=71135992

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020101651A RU2724613C1 (ru) 2020-01-17 2020-01-17 Способ гидроочистки дизельного топлива

Country Status (1)

Country Link
RU (1) RU2724613C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744504C1 (ru) * 2020-07-27 2021-03-10 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (ИК СО РАН) Способ приготовления катализатора гидроочистки сырья каталитического крекинга
RU2744503C1 (ru) * 2020-07-27 2021-03-10 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (ИК СО РАН) Катализатор гидроочистки сырья каталитического крекинга

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070542A1 (en) * 2004-01-20 2005-08-04 Shell Internationale Research Maatschappij B.V. A method of restoring catalytic activity of a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing
US7087546B2 (en) * 1999-07-05 2006-08-08 Albemarle Corporation Process for regenerating and rejuvenating additive-based catalysts
RU2351634C2 (ru) * 2003-10-03 2009-04-10 Альбемарл Недерландс Б.В. Способ активации катализатора гидроочистки
RU2484896C1 (ru) * 2012-04-09 2013-06-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087546B2 (en) * 1999-07-05 2006-08-08 Albemarle Corporation Process for regenerating and rejuvenating additive-based catalysts
RU2351634C2 (ru) * 2003-10-03 2009-04-10 Альбемарл Недерландс Б.В. Способ активации катализатора гидроочистки
WO2005070542A1 (en) * 2004-01-20 2005-08-04 Shell Internationale Research Maatschappij B.V. A method of restoring catalytic activity of a spent hydrotreating catalyst, the resulting restored catalyst, and a method of hydroprocessing
RU2484896C1 (ru) * 2012-04-09 2013-06-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744504C1 (ru) * 2020-07-27 2021-03-10 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (ИК СО РАН) Способ приготовления катализатора гидроочистки сырья каталитического крекинга
RU2744503C1 (ru) * 2020-07-27 2021-03-10 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (ИК СО РАН) Катализатор гидроочистки сырья каталитического крекинга

Similar Documents

Publication Publication Date Title
US20220362751A1 (en) Hydrogenation catalyst, preparation process thereof and use thereof
JP4156859B2 (ja) 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
RU2484896C1 (ru) Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья
RU2674157C1 (ru) Способ регенерации дезактивированного катализатора гидроочистки
CN104540585B (zh) 包含二氧化钛的改进残油加氢处理催化剂
RU2724613C1 (ru) Способ гидроочистки дизельного топлива
RU2622040C1 (ru) Способ гидроочистки дизельного топлива
WO2018202467A1 (fr) Procede d'addition d'un compose organique a un solide poreux en phase gazeuse
RU2639159C2 (ru) Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья
CN105579135A (zh) 重质烃油的加氢处理催化剂、重质烃油的加氢处理催化剂的制造方法以及重质烃油的加氢处理方法
RU2534997C1 (ru) Способ приготовления катализатора гидроочистки углеводородного сырья
KR20150067190A (ko) 개선된 활성을 갖는 담지된 수소처리 촉매
US4743574A (en) Catalyst for hydrotreatment of distillates of petroleum and method for the preparation of same
JPH0555187B2 (ru)
RU2725629C1 (ru) Способ реактивации катализатора гидроочистки
CN111135857B (zh) 还原型催化剂的制备方法及其用途
JP4047044B2 (ja) 重質油の水素化脱硫触媒、その製造方法及び重質油の水素化脱硫方法
RU2627498C1 (ru) Способ регенерации дезактивированного катализатора гидроочистки
CN101940930B (zh) 加氢处理催化剂的制备方法
CN101940929B (zh) 一种加氢处理催化剂的制备方法
RU2649384C1 (ru) Способ гидроочистки сырья гидрокрекинга
RU2674156C1 (ru) Регенерированный катализатор гидроочистки
RU2731459C1 (ru) Реактивированный катализатор гидроочистки
RU2673480C1 (ru) Способ получения гидроочищенного дизельного топлива
RU2693379C1 (ru) Способ приготовления катализатора защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья