RU2724597C1 - Многоразрядный параллельный сумматор по модулю с последовательным переносом - Google Patents

Многоразрядный параллельный сумматор по модулю с последовательным переносом Download PDF

Info

Publication number
RU2724597C1
RU2724597C1 RU2019144521A RU2019144521A RU2724597C1 RU 2724597 C1 RU2724597 C1 RU 2724597C1 RU 2019144521 A RU2019144521 A RU 2019144521A RU 2019144521 A RU2019144521 A RU 2019144521A RU 2724597 C1 RU2724597 C1 RU 2724597C1
Authority
RU
Russia
Prior art keywords
input
bit parallel
modulo
output
transfer
Prior art date
Application number
RU2019144521A
Other languages
English (en)
Inventor
Вячеслав Иванович Петренко
Нерсес Эрнестович Степанян
Юрий Романович Нелидин
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет"
Priority to RU2019144521A priority Critical patent/RU2724597C1/ru
Application granted granted Critical
Publication of RU2724597C1 publication Critical patent/RU2724597C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/724Finite field arithmetic

Abstract

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение многоразрядного параллельного сумматора по модулю с последовательным переносом. Раскрытый многоразрядный параллельный сумматор по модулю с последовательным переносом реализует суммирование вводимых чисел A и B по модулю М за два шага путем выполнения операции суммирования в одноразрядных параллельных сумматорах по модулю. На первом шаге определяется значение выражения (А+В)-М. Если полученное значение больше или равно нулю, т.е. (А+В)-М≥0, то получено искомое значение. Если же полученное значение меньше нуля, т.е. (А+В)-М<0, то искомое значение получается на втором шаге повторным суммированием чисел A и B. 2 ил., 1 табл.

Description

Изобретение относится к вычислительной технике и может быть использовано в цифровых вычислительных устройствах, а также в устройствах цифровой обработки сигналов и в криптографических приложениях.
Известен последовательный многоразрядный сумматор, который содержит n-разрядные сдвиговые регистры операндов X и Y, регистр результата S, одноразрядный сумматор SM и двухступенчатый D-триггер для запоминания переноса. (Бабич Н.П., Жуков И.А. Основы цифровой схемотехники: Учебное пособие. - М.: Издательский дом «Додэка - XXI», Киев: «МК-Пресс», 2007. - рисунок 4.45 с. 176).
Недостатком данного сумматора является ограниченные функциональные возможности, а именно невозможность суммирования по модулю.
Также известен многоразрядный параллельный сумматор с последовательным переносом, содержащий n одноразрядных параллельных сумматоров с соответствующими связями (см. Пухальский Г.И., Новосельцева Т.Я. Проектирование дискретных устройств на интегральных микросхемах: Справочник. - М.: Радио и связь, 1990. Рисунок 3.45, с. 133).
Недостатком данного сумматора является ограниченные функциональные возможности, а именно невозможность суммирования по модулю.
Наиболее близким по технической сущности к заявляемому изобретению является многоразрядный параллельный сумматор по модулю с последовательным переносом, содержащий n+1 параллельных сумматоров по модулю с соответствующими связями, осуществляющий суммирование чисел A и B по модулю M (Многоразрядный параллельный сумматор по модулю с последовательным переносом // Патент России №2439661. 10.08.2011. Бюл. №22. / Копытов В.В., Петренко В.И., Сидорчук А.В.).
Недостатком данного сумматора являются ограниченные функциональные возможности, а именно некорректное вычисление суммы по модулю во всех случаях, кроме (A+B)>M, при значении M=F, так как при (A+B)≤M сумматор перейдет в режим вычисления (A+B-M), что не соответствует требуемому результату.
Техническим результатом изобретения является расширение функциональных возможностей устройства за счет корректного суммирования во всем диапазоне вводимых чисел A и B.
Для достижения технического результата в многоразрядный параллельный сумматор по модулю с последовательным переносом, состоящий из n одноразрядных параллельных сумматоров по модулю, где n - разрядность устройства, первые входы устройства являются входами первого числа суммирования и соединены с первыми информационными входами одноразрядных параллельных сумматоров по модулю, вторые входы устройства являются входами второго числа суммирования и соединены со вторыми информационными входами одноразрядных параллельных сумматоров по модулю, третьи входы устройства являются входами модуля и соединены с третьими информационными входами одноразрядных параллельных сумматоров по модулю, вход переноса числа устройства соединен с входом переноса числа первого одноразрядного параллельного сумматора по модулю, информационные выходы одноразрядных параллельных сумматоров по модулю подключены к информационным выходам устройства, управляющие входы одноразрядных параллельных сумматоров по модулю соединены вместе и подключены к выходу переноса модуля устройства, выход переноса числа i-го одноразрядного параллельного сумматора по модулю подключен к входу переноса числа (i+1)-го одноразрядного параллельного сумматора по модулю, выход переноса модуля i-го одноразрядного параллельного сумматора по модулю подключен к входу переноса модуля (i+1)-го одноразрядного параллельного сумматора по модулю, где i=1, …n-1, причем одноразрядный параллельный сумматор по модулю содержит два одноразрядных параллельных сумматора, элемент «НЕ» и элемент «2И», причем первый вход первого одноразрядного параллельного сумматора соединен с первым информационным входом одноразрядного параллельного сумматора по модулю, второй вход соединен с вторым информационным входом одноразрядного параллельного сумматора по модулю, вход переноса соединен с соединен с входом переноса числа первого одноразрядного параллельного сумматора по модулю, выход переноса соединен с выходом переноса числа одноразрядного параллельного сумматора по модулю, выход суммы соединен со вторым входом второго одноразрядного параллельного сумматора, вход переноса которого соединен со входом переноса модуля одноразрядного параллельного сумматора по модулю, выход переноса соединен с выходом переноса модуля одноразрядного параллельного сумматора по модулю, вход элемента «НЕ» соединен с третьим информационным входом одноразрядного параллельного сумматора по модулю, а первый вход элемента «2И» соединен с управляющим входом одноразрядного параллельного сумматора по модулю, введены элемент задержки, RS-триггер, элемент «НЕ», элемент «2ИЛИ» и элемент «2И», причем выход переноса модуля n-го одноразрядного параллельного сумматора по модулю соединен со вторым входом логического элемента «2ИЛИ», а выход переноса числа соединен с первым входом элемента «2ИЛИ», выход которого соединен с входом элемента «НЕ», выход которого подключен к первому входу элемента «2И», выход которого подключен к R-входу RS-триггера, S-вход RS-триггера является входом установки устройства в начальное состояние, выход RS-триггера соединен с управляющими входами всех n одноразрядных параллельных сумматоров по модулю, с входом переноса модуля первого одноразрядного параллельного сумматора по модулю и со входом элемента задержки, выход которого подключен ко второму входу элемента «2И», причем в одноразрядном параллельном сумматоре по модулю выход элемента «НЕ» соединен со вторым входом элемента «2И», выход которого соединен с первым входом второго одноразрядного параллельного сумматора, выход суммы соединен с информационным выходом одноразрядного параллельного сумматора по модулю.
Сущность изобретения заключается в реализации следующего способа суммирования чисел A и B по модулю M.
Пусть
Figure 00000001
и
Figure 00000002
где n-разрядность устройства, соответственно первый и второй операнды суммирования, пусть
Figure 00000003
модуль, по которому проводится суммирование,
Figure 00000004
- сумма операндов A и B по модулю M.
В результате выполнения операции необходимо получить сумму
Figure 00000005
При сложении двух чисел, представленных в виде двоичных кодов A(a0, …, an-1) и B(b0, …, bn-1) образуется сумма С(с0, …, cn), равная
Figure 00000006
Способ суммирования двух чисел A и B по модулю M заключается в том, что вначале находят решение разности С(с0, …, cn) - M(m0, …, mn-1). Если полученное значение больше или равно нулю, то оно и является искомой суммой S(s0, …, sn-1). Если же полученное значение меньше нуля, то осуществляется повторное суммирование чисел A и B и искомой суммой S является сумма этих чисел S(s0, …, sn-1)=A(a0, …, an-1)+B(b0, …, bn-1). В качестве индикатора превышения нуля используется старший разряд переноса сумматора.
На фиг. 1 представлена схема многоразрядного параллельного сумматора по модулю с последовательным переносом.
Многоразрядный параллельный сумматор по модулю с последовательным переносом содержит n одноразрядных параллельных сумматоров 1 по модулю, где n-разрядность устройства, элемент задержки 2, элемент «2И» 3, элемент «НЕ» 4, RS-триггер 5, элемент «2ИЛИ» 6, входы 7 и 8 второго и первого чисел суммирования соответственно, вход 9 модуля устройства, информационные выходы 10 устройства, вход 11 переноса числа устройства, вход 12 установки в начальное состояние. На вход 8 устройства подается код операнда А, на вход 7 устройства подается код операнда B. На вход 9 устройства подается код модуля M. На вход 11 устройства подается логический ноль, вход переноса модуля PMi первого одноразрядного параллельного сумматора по модулю соединен с управляющими входами W устройства и входом элемента задержки 2, на вход 12 установки в начальное состояние подается исходный сигнал. Выход Po переноса числа j-го одноразрядного параллельного сумматора 1 по модулю соединен с входом Pi переноса числа (j+1)-го одноразрядного параллельного сумматора 1 по модулю, выход PMo переноса модуля j-го одноразрядного параллельного сумматора 1 по модулю соединен с входом PMi переноса модуля (j+1)-го одноразрядного параллельного сумматора 1 по модулю, где j=1, …, n-1. Выход PMo переноса модуля n-го одноразрядного параллельного сумматора 1 по модулю соединен со вторым входом элемента «2ИЛИ» 6, выход Po переноса числа n-го одноразрядного параллельного сумматора 1 по модулю соединен с первым входом элемента «2ИЛИ» 6. Выход элемента «2ИЛИ» 6 соединен с входом элемента «НЕ» 4, выход которого подключен к первому входу элемента «2И» 3, выход которого подключен к R-входу RS-триггера 5, S-вход RS-триггера 5 является входом установки устройства в начальное состояние 12, выход RS-триггера 5 соединен с управляющими входами W всех n одноразрядных параллельных сумматоров 1 по модулю, со входом PMi переноса модуля первого одноразрядного параллельного сумматора по модулю и входом элемента задержки 2, выход которого подключен ко второму входу элемента «2И» 3. Выходы S одноразрядных параллельных сумматоров 1 по модулю соединены с информационными выходами 10 устройства.
На фиг. 2. представлена схема одноразрядного параллельного сумматора 1 по модулю.
Одноразрядный параллельный сумматор 1 по модулю содержит управляющий вход W, вход модуля M устройства, входы A и B первого и второго чисел суммирования соответственно, входы Pi и PMi, которые являются входами переноса числа и модуля устройства соответственно, выходы Po и PMo, являющиеся выходами переноса числа и модуля устройства соответственно, выход S, являющийся информационным выходом устройства, два одноразрядных параллельных сумматора 13, элемент «НЕ» 14 и элемент «2И» 15, причем первый вход первого одноразрядного параллельного сумматора 13 соединен с первым информационным входом одноразрядного параллельного сумматора 1 по модулю, второй вход соединен со вторым информационным входом одноразрядного параллельного сумматора 1 по модулю, вход переноса соединен с соединен с входом переноса числа первого одноразрядного параллельного сумматора 1 по модулю, выход переноса соединен с выходом переноса числа одноразрядного параллельного сумматора 1 по модулю, выход суммы соединен со вторым входом второго одноразрядного параллельного сумматора 13, вход переноса которого соединен со входом переноса модуля одноразрядного параллельного сумматора 1 по модулю, выход переноса соединен с выходом переноса модуля одноразрядного параллельного сумматора 1 по модулю, выход суммы соединен с информационным выходом одноразрядного параллельного сумматора 1 по модулю, вход элемента «НЕ» 14 соединен с третьим информационным входом одноразрядного параллельного сумматора 1 по модулю, а первый вход элемента «2И» 15 соединен с управляющим входом одноразрядного параллельного сумматора 1 по модулю, причем выход элемента «НЕ» 14 соединен со вторым входом элемента «2И» 15, выход которого соединен с первым входом второго одноразрядного параллельного сумматора 13, выход которого подключен к информационному выходу 10 одноразрядного параллельного сумматора 1 по модулю.
Многоразрядный параллельный сумматор 1 по модулю с последовательным переносом работает следующим образом. Перед началом работы устройство устанавливается в начальное состояние подачей на вход 12 управляющего сигнала. Дальше на информационные входы 8, 7 и 9 устройства подаются в двоичном виде коды операндов суммирования A(a0, …, an-1) и B (b0, …, bn-1) и код модуля M (m0, …, mn-1) соответственно. Последовательно для каждого разряда каждым одноразрядным параллельным сумматором по модулю 1 в соответствии с табл.1 формируется сигнал суммы S и сигналы переноса числа Po и переноса модуля PMo. Если на выходе элемента «2ИЛИ» 6 образуется единица, то из суммы (А+В) вычитается значение модуля M. В том случае, когда сигнал на выходе элемента «2ИЛИ» 6 равен нулю оба операнда A(a0, …, an-1) и B (b0, …, bn-1) суммируются обычным способом. При этом последовательно поразрядно на информационных выходах устройства 10 формируется результат суммирования двух чисел A(a0, …, an-1) и B (b0, …, bn-1) по модулю M (m0, …, mn-1).
Рассмотрим работу устройства на примере, когда
Figure 00000007
(см. фиг. 1).
В исходном состоянии RS-триггер 5 находится в нулевом состоянии, на все входы устройства воздействуют логические нули.
Пусть A=610=01102, B=410=01002, M=910=10012. Устройство для данного примера будет содержать четыре одноразрядных параллельных сумматора по модулю.
На входы A, B и M четырех сумматоров подаются коды чисел A=01102, B=01002, M=10012. На вход Pi переноса числа устройства подается сигнал логического 0, на вход 12 установки в начальное состояние, который соединен с S-входом RS-триггера 5, подается единица, которая переводит RS-триггер 5 в единичное состояние. Сигнал с выхода RS-триггера 5 поступает на управляющие входы W устройства. На выходе первого одноразрядного параллельного сумматора 1 по модулю получаем следующие значения Po=0, PMo=0. На выходе второго одноразрядного параллельного сумматора 1 по модулю получаем значения Po=0, PMo=1. На выходе третьего одноразрядного параллельного сумматора 1 по модулю получаем значения Po=1, PMo=1. На выходе четвертого одноразрядного параллельного сумматора 1 по модулю получаем значения Po=0, PMo=1, которые поступают на логический элемент «2ИЛИ» 6 и далее на вход элемента «НЕ» 4, где полученное значение инвертируется. После этого сигнал поступает на первый вход элемента «2И» 3, запрещая прохождение сигнала через его первый вход. Состояние RS-триггера 5 при этом не изменяется. Суммирование чисел A и B по модулю M считается законченным. В результате на информационном выходе первого одноразрядного параллельного сумматора в соответствии с таблицей 1 получаем S=1 (57 строка), на информационном выходе второго одноразрядного параллельного сумматора в соответствии с таблицей 1 получаем S=0 (35 строка), на информационном выходе третьего одноразрядного параллельного сумматора в соответствии с таблицей 1 получаем S=0 (52 строка), на информационном выходе четвертого одноразрядного параллельного сумматора в соответствии с таблицей 1 получаем S=0 (61 строка). На выходе устройства появляется число 00012=110.
Проверим: 6+4=10, 10≡1 mod 9.
Рассмотрим работу устройства на примере, когда
Figure 00000008
(см. фиг. 1).
В исходном состоянии RS-триггер 5 находится в нулевом состоянии, на все входы устройства воздействуют логические нули.
Пусть A=310=00112, B=410=01002, M=910=10012. Воспользуемся таблицей истинности полного одноразрядного сумматора 1 по модулю (табл.1). Устройство для данного примера будет содержать четыре одноразрядных параллельных сумматора по модулю.
На входы четырех сумматоров подаются коды чисел A=00112, B=01002, M=10012. На вход Pi переноса числа устройства подается сигнал логического 0, на вход 12 установки в начальное состояние, который соединен с S-входом RS-триггера 5, подается единица, которая переводит RS-триггер 5 в единичное состояние. Сигнал с выхода RS-триггера 5 поступает на управляющие входы W устройства. На выходе первого одноразрядного параллельного сумматора 1 по модулю получаем следующие значения Po=0, PMo=1. На выходе второго одноразрядного параллельного сумматора 1 по модулю получаем значения Po=0, PMo=1. На выходе третьего одноразрядного параллельного сумматора 1 по модулю получаем значения Po=0, PMo=1. На выходе четвертого одноразрядного параллельного сумматора 1 по модулю получаем значения Po=0, PMo=0, которые поступают на логический элемент «2ИЛИ» 6 на выходе которого остается логический ноль, а на выходе логического элемента «НЕ» 4 остается логическая единица, которая воздействует на первый вход элемента «2И» 3, на его второй вход которого через элемент задержки 2 поступает задержанный на время суммирования устройством сигнал с выхода RS-триггера 5. Сигнал логической единицы с выхода элемента «2И» 3 поступает на R-вход RS-триггера 5, переводя его в нулевое состояние. После чего сигнал с выхода RS-триггера 5 перестает подаваться на управляющие входы W устройства и начинается второй круг суммирования. В результате на информационном выходе первого одноразрядного параллельного сумматора получаем S=1, на информационном выходе второго одноразрядного параллельного сумматора получаем S=1, на информационном выходе третьего одноразрядного параллельного сумматора получаем S=1, на информационном выходе четвертого одноразрядного параллельного сумматора получаем S=0. На выходе устройства появляется число 01112=710.
Проверим: 3+4=7, 7≡7 mod 9.
Одноразрядный параллельный сумматор 1 по модулю работает следующим образом (см. фиг.2). На вход A подается разряд первого операнда суммирования A, на вход B - второго операнда суммирования B. Вход Pi служит входом переноса числа Pi, вход PMi - входом переноса модуля PMi. На вход M подается разряд модуля M. Вход W является управляющим входом W. Выход Po является выходом переноса числа Po, выход PMo - выходом переноса модуля PMo. Выход S является информационным выходом S устройства. Устройство работает в соответствии с таблицей истинности (Табл. 1), исходя из которой следует, что в случае, когда на вход W поступает логический ноль, то сумма будет равна S=A+B, если поступит логическая единица, то получим сумму S=(A+B)-M.
Техническим результатом работы является расширение функциональных возможностей сумматора по модулю за счет корректного суммирования во всем диапазоне суммируемых чисел A и B. Предлагаемый многоразрядный параллельный сумматор по модулю с последовательным переносом позволяет достичь данный результат за два цикла путем выполнения операции суммирования в одноразрядных параллельных сумматорах по модулю.
Таблица 1. Таблица истинности полного одноразрядного сумматора по модулю.
A B Pi PO M PMi W PMO S
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1
1 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 1
0 1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1 1
0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1
1 1 0 1 1 0 0 0 0
0 0 1 0 1 0 0 0 1
0 1 1 1 1 0 0 0 0
1 0 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1 1
1 0 0 0 0 1 0 1 1
1 1 0 1 0 1 0 1 0
0 0 1 0 0 1 0 1 1
0 1 1 1 0 1 0 1 0
1 0 1 1 0 1 0 1 0
1 1 1 1 0 1 0 1 1
0 0 0 0 1 1 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 0 1 1 0 1 1
1 1 0 1 1 1 0 0 0
0 0 1 0 1 1 0 1 1
0 1 1 1 1 1 0 0 0
1 0 1 1 1 1 0 0 0
1 1 1 1 1 1 0 1 1
0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1 0
1 1 0 1 0 0 1 0 1
0 0 1 0 0 0 1 1 0
0 1 1 1 0 0 1 0 1
1 0 1 1 0 0 1 0 1
1 1 1 1 0 0 1 1 0
0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1
1 0 0 0 1 0 1 0 1
1 1 0 1 1 0 1 0 0
0 0 1 0 1 0 1 0 1
0 1 1 1 1 0 1 0 0
1 0 1 1 1 0 1 0 0
1 1 1 1 1 0 1 0 1
0 0 0 0 0 1 1 1 0
0 1 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1 1
1 1 0 1 0 1 1 1 0
0 0 1 0 0 1 1 1 1
0 1 1 1 0 1 1 1 0
1 0 1 1 0 1 1 1 0
1 1 1 1 0 1 1 1 1
0 0 0 0 1 1 1 0 1
0 1 0 0 1 1 1 1 0
1 0 0 0 1 1 1 1 0
1 1 0 1 1 1 1 0 1
0 0 1 0 1 1 1 1 0
0 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 0

Claims (1)

  1. Многоразрядный параллельный сумматор по модулю с последовательным переносом, состоящий из n одноразрядных параллельных сумматоров по модулю, где n – разрядность устройства, первые входы устройства являются входами первого числа суммирования и соединены с первыми информационными входами одноразрядных параллельных сумматоров по модулю, вторые входы устройства являются входами второго числа суммирования и соединены со вторыми информационными входами одноразрядных параллельных сумматоров по модулю, третьи входы устройства являются входами модуля и соединены с третьими информационными входами одноразрядных параллельных сумматоров по модулю, вход переноса числа устройства соединен с входом переноса числа первого одноразрядного параллельного сумматора по модулю, информационные выходы одноразрядных параллельных сумматоров по модулю подключены к информационным выходам устройства, управляющие входы одноразрядных параллельных сумматоров по модулю соединены вместе и подключены к выходу переноса модуля устройства, выход переноса числа i-го одноразрядного параллельного сумматора по модулю подключен к входу переноса числа (i+1)-го одноразрядного параллельного сумматора по модулю, выход переноса модуля i-го одноразрядного параллельного сумматора по модулю подключен к входу переноса модуля (i+1)-го одноразрядного параллельного сумматора по модулю, где i=1,…n-1, причем одноразрядный параллельный сумматор по модулю содержит два одноразрядных параллельных сумматора, элемент «НЕ» и элемент «2И», причем первый вход первого одноразрядного параллельного сумматора соединен с первым информационным входом одноразрядного параллельного сумматора по модулю, второй вход соединен со вторым информационным входом одноразрядного параллельного сумматора по модулю, вход переноса соединен с входом переноса числа первого одноразрядного параллельного сумматора по модулю, выход переноса соединен с выходом переноса числа одноразрядного параллельного сумматора по модулю, выход суммы соединен со вторым входом второго одноразрядного параллельного сумматора, вход переноса которого соединен со входом переноса модуля одноразрядного параллельного сумматора по модулю, выход переноса соединен с выходом переноса модуля одноразрядного параллельного сумматора по модулю, выход суммы соединен с информационным выходом одноразрядного параллельного сумматора по модулю, вход элемента «НЕ» соединен с третьим информационным входом одноразрядного параллельного сумматора по модулю, а первый вход элемента «2И» соединен с управляющим входом одноразрядного параллельного сумматора по модулю, отличающийся тем, что в него введены элемент задержки, RS-триггер, элемент «НЕ», элемент «2ИЛИ» и элемент «2И», причем выход переноса модуля n-го одноразрядного параллельного сумматора по модулю соединен со вторым входом логического элемента «2ИЛИ», а выход переноса числа соединен с первым входом элемента «2ИЛИ», выход которого соединен с входом элемента «НЕ», выход которого подключен к первому входу элемента «2И», выход которого подключен к R-входу триггера, S-вход RS-триггера является входом установки устройства в начальное состояние, выход RS-триггера соединен с управляющими входами всех n одноразрядных параллельных сумматоров по модулю, с входом переноса модуля первого одноразрядного параллельного сумматора по модулю и с входом элемента задержки, выход которого подключен ко второму входу элемента «2И», причем в одноразрядном параллельном сумматоре по модулю выход элемента «НЕ» соединен со вторым входом элемента «2И», выход которого соединен с первым входом второго одноразрядного параллельного сумматора, выход суммы соединен с информационным выходом одноразрядного параллельного сумматора по модулю.
RU2019144521A 2019-12-27 2019-12-27 Многоразрядный параллельный сумматор по модулю с последовательным переносом RU2724597C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019144521A RU2724597C1 (ru) 2019-12-27 2019-12-27 Многоразрядный параллельный сумматор по модулю с последовательным переносом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019144521A RU2724597C1 (ru) 2019-12-27 2019-12-27 Многоразрядный параллельный сумматор по модулю с последовательным переносом

Publications (1)

Publication Number Publication Date
RU2724597C1 true RU2724597C1 (ru) 2020-06-25

Family

ID=71135804

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019144521A RU2724597C1 (ru) 2019-12-27 2019-12-27 Многоразрядный параллельный сумматор по модулю с последовательным переносом

Country Status (1)

Country Link
RU (1) RU2724597C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2790638C1 (ru) * 2022-11-02 2023-02-28 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Многоразрядный сумматор по модулю

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598266A (en) * 1984-09-24 1986-07-01 Gte Communications Systems Corporation Modulo adder
US5345410A (en) * 1991-05-30 1994-09-06 Hitachi, Ltd. Arithmetic-logic unit with modulo addition/substraction function and microprocessor using the same
RU2439661C2 (ru) * 2010-01-29 2012-01-10 Государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный университет" Многоразрядный параллельный сумматор по модулю с последовательным переносом
RU2639645C1 (ru) * 2017-02-21 2017-12-21 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Арифметико-логическое устройство для сложения и вычитания чисел по модулю

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598266A (en) * 1984-09-24 1986-07-01 Gte Communications Systems Corporation Modulo adder
US5345410A (en) * 1991-05-30 1994-09-06 Hitachi, Ltd. Arithmetic-logic unit with modulo addition/substraction function and microprocessor using the same
RU2439661C2 (ru) * 2010-01-29 2012-01-10 Государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный университет" Многоразрядный параллельный сумматор по модулю с последовательным переносом
RU2639645C1 (ru) * 2017-02-21 2017-12-21 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Арифметико-логическое устройство для сложения и вычитания чисел по модулю

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2790638C1 (ru) * 2022-11-02 2023-02-28 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Многоразрядный сумматор по модулю
RU2804379C1 (ru) * 2023-05-24 2023-09-28 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Многоразрядный сумматор по модулю

Similar Documents

Publication Publication Date Title
KR102434401B1 (ko) 뉴럴 네트워크 가속기
US3699326A (en) Rounding numbers expressed in 2{40 s complement notation
RU2724597C1 (ru) Многоразрядный параллельный сумматор по модулю с последовательным переносом
RU2439661C2 (ru) Многоразрядный параллельный сумматор по модулю с последовательным переносом
KR100712864B1 (ko) 디지털 필터 계수의 동적 범위를 변화시키는 시스템
RU2804379C1 (ru) Многоразрядный сумматор по модулю
RU2790638C1 (ru) Многоразрядный сумматор по модулю
US3845290A (en) Decimal-to-binary converter
RU2754122C1 (ru) Быстродействующий накапливающий сумматор по модулю произвольного натурального числа
US4276608A (en) Fibonacci p-code parallel adder
RU2799035C1 (ru) Конвейерный сумматор по модулю
RU2763988C1 (ru) Накапливающий сумматор-вычитатель по модулю произвольного натурального числа
US8933731B2 (en) Binary adder and multiplier circuit
KR100392370B1 (ko) 유한체내에서 다단 구조의 역수 계산 장치
RU2764876C1 (ru) Накапливающий сумматор-вычитатель по модулю произвольного натурального числа
Lesnikov et al. Modification of the architecture of a distributed arithmetic
RU2626654C1 (ru) Умножитель по модулю
US5978826A (en) Adder with even/odd 1-bit adder cells
RU2785032C1 (ru) Накапливающий сумматор для синтезаторов частот
RU2642366C1 (ru) Накапливающий сумматор
RU2753594C1 (ru) Накапливающий сумматор для синтезаторов частот
RU2805939C1 (ru) Устройство для конвейерного суммирования чисел по произвольному модулю
RU2630386C1 (ru) Умножитель по модулю
Zhabin et al. Asynchronous On-Line Float-Point Computations in Systems with Direct Connections between Computation Units
RU2410746C1 (ru) Способ и устройство вычитания двоичных кодов