RU2723827C1 - Система и способ динамического определения и коррекции параметров управления - Google Patents

Система и способ динамического определения и коррекции параметров управления Download PDF

Info

Publication number
RU2723827C1
RU2723827C1 RU2019119004A RU2019119004A RU2723827C1 RU 2723827 C1 RU2723827 C1 RU 2723827C1 RU 2019119004 A RU2019119004 A RU 2019119004A RU 2019119004 A RU2019119004 A RU 2019119004A RU 2723827 C1 RU2723827 C1 RU 2723827C1
Authority
RU
Russia
Prior art keywords
permanent magnet
short
drive system
module
control parameters
Prior art date
Application number
RU2019119004A
Other languages
English (en)
Inventor
Вэй Ли
Ляньчао ШЭН
Юцяо ВАН
Сюэфэн ЯН
Мэнбао ФАНЬ
Шаои СЮЙ
Цзиньян ЦЗЮЙ
Энь ЛУ
Чэнтао ВАН
Дундун ВЭНЬ
Тин СЯ
Сун ЦЗЯН
Цзяцзюнь ЧЭНЬ
Минь Ли
Юэ Ван
Original Assignee
Чайна Юниверсити Оф Майнинг Энд Текнолоджи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чайна Юниверсити Оф Майнинг Энд Текнолоджи filed Critical Чайна Юниверсити Оф Майнинг Энд Текнолоджи
Application granted granted Critical
Publication of RU2723827C1 publication Critical patent/RU2723827C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Feedback Control In General (AREA)

Abstract

В настоящем изобретении раскрыта система и способ динамического определения и повторной коррекции параметров управления. Система содержит модуль сбора данных, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, модуль повторной коррекции параметров управления и главную систему управления. Причем при работе приводной системы с постоянным магнитом малой дальности действия врубовой машины после получения рабочих данных приводной системы в реальном времени модулем сбора данных и определения полученных рабочих данных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия результат определения вводят в модуль повторной коррекции параметров управления. Причем модуль повторной коррекции параметров управления выполняет корректировку параметров управления в реальном времени, так что параметр управления в реальном времени сопоставляют с параметром, требуемым для фактической работы. Затем главная система управления регулирует и управляет приводной системой с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления с достижением таким образом ожидаемого эффекта управления, улучшением эффективности резки, сохранением энергии, снижением частоты отказов и обеспечением безопасной и надежной работы режущего блока врубовой машины. 2 н. и 3 з.п. ф-лы, 2 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к системе и способу динамического определения и повторной коррекции параметров управления, в частности, к системе и способу динамического определения и повторной коррекции параметров управления, подходящим для врубовой машины.
УРОВЕНЬ ТЕХНИКИ
В связи с тем, что горные машины разрабатываются для обеспечения энергосберегающих, интеллектуальных операций и работы в автоматическом режиме, в области горного оборудования широко применяются энергосберегающая технология управления с преобразованием частоты и способ диагностики неисправностей. Врубовые машины относятся к полностью механизированному оборудованию для автоматизации добычи полезных ископаемых, и частота отказов приводной системы с постоянным магнитом малой дальности действия напрямую влияет на эффективность добычи угля и безопасность эксплуатации оборудования. Однако в настоящее время при применении энергосберегающей технологии управления с преобразованием частоты, определение параметров для приводной системы с постоянным магнитом малой дальности действия в основном является первоначальным определением параметров управления с преобразованием частоты в соответствии с конфигурацией параметров системы, и процессы способов диагностики неисправностей в основном выполняются автономно. В процессе резания угольной породы врубовой машиной двигатель приводной системы с постоянным магнитом малой дальности действия со временем нагревается, и в связи с этим параметры системы двигателя изменяются с изменением температуры; кроме того, при резании конечный крутящий момент зависит от твердости разрезаемого угольного пласта и, следовательно, параметры двигателя, подлежащие регулированию, также являются отличающимися. Однако в настоящее время при определения параметров системы двигателя всегда используют первоначальную определение параметров управления с преобразованием частоты в соответствии с конфигурацией параметров системы и параметры двигателя невозможно регулировать в реальном времени в соответствии с фактической обстановкой. Следовательно, в таком способе присутствует потенциальный риск, поскольку очень сложно гарантировать, что данные, используемые в модели, применяемой в системе управления, будут полностью соответствовать данным машины в рабочих условиях в реальном времени. В результате, разработанные параметры управления не соответствуют фактическим условиям, способ не может обеспечить ожидаемого эффекта управления, не может улучшить эффективность резания, не может экономить энергию, не может снизить частоту отказов и напрямую влияет на безопасную и надежную работу режущего блока врубовой машины.
РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Учитывая вышеупомянутые проблемы в предшествующем уровне техники, настоящее изобретение предусматривает систему и способ динамического определения и повторной коррекции параметров управления, обеспечивающих возможность корректировки параметров управления в реальном времени в соответствии с полученными рабочими данными в реальном времени в процессе работы приводной системы с постоянным магнитом малой дальности действия, и тем самым обеспечивающих возможность повышения эффективности резки, экономии энергии, снижения частоты отказов и обеспечения безопасной и надежной работы режущего блока врубовой машины.
Для решения задачи, описанной выше, настоящее изобретение применяет следующую техническую схему: система динамического определения и повторной коррекции параметров управления содержит модуль сбора данных, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, модуль повторной коррекции параметров управления и главную систему управления, причем модуль сбора данных получает и передает рабочие данные приводной системы с постоянным магнитом малой дальности действия в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, а модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия определяет данные, полученные модулем сбора данных и вводит результат определения в модуль повторной коррекции параметров управления, при этом модуль повторной коррекции параметров управления корректирует и упорядочивает параметры управления приводной системы с постоянным магнитом малой дальности действия в соответствии с результатом определения, относящимся к приводной системе с постоянным магнитом малой дальности действия, и выводит скорректированные параметры управления в главную систему управления, и главная система управления управляет работой приводной системы с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления.
Кроме того, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия содержит блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке, и блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия; причем блок определения в реальном времени параметров системы двигателя выполняет определение параметра системы двигателя в реальном времени на основе рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и вводит результат определения параметров системы двигателя в реальном времени в модуль повторной коррекции параметров управления; а блок определения крутящего момента на оконечной нагрузке определяет заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке из рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления; причем блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия выполняет определение форма колебаний конструкции для системы зубчатой передачи на основе данных, полученных модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления.
Способ динамического определения и повторной коррекции параметров управления включает следующие этапы:
А. получение данных:
во время работы приводной системы с постоянным магнитом малой дальности действия модуль сбора данных получает рабочие данные приводной системы с постоянным магнитом малой дальности действия в реальном времени и передает рабочие данные в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, причем рабочие данные содержат параметр системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы;
В. определение данных:
модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия считывает данные, полученные модулем сбора данных; блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке и блок определения форма колебаний конструкции приводной системы с постоянным магнитом малой дальности действия считывают и определяют параметры системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы, соответственно, и вводят определенные данные в модуль повторной коррекции параметров управления, соответственно;
C. повторную коррекцию параметров управления:
модуль повторной коррекции параметров управления выполняет сравнение и анализ данных, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия с первоначально заданными параметрами управления, корректирует первоначально заданные параметры управления в соответствии с определенными данными, и затем вводит скорректированные параметры управления в главную систему управления;
D. регулировку работы приводной системы с постоянным магнитом малой дальности действия:
главная система управления контролирует и упорядочивает рабочие данные приводной системы с постоянным магнитом малой дальности действия, в соответствии со скорректированными параметрами управления.
Кроме того, конкретные процессы определения, выполняемые блоком определения в реальном времени параметров системы двигателя, блоком определения крутящего момента на оконечной нагрузке и блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия являются следующими:
процесс определения, выполняемый блоком определения в реальном времени параметров системы двигателя, выполняют следующим образом: полученные рабочие данные приводной системы с постоянным магнитом малой дальности действия вычисляют и обрабатывают в соответствии с первоначальными определенными параметрами системы двигателя с последующей установкой интервала времени определения, равным 10 минут, для обеспечения блоку определения в реальном времени параметров системы двигателя возможности выполнения автоматического определения каждые 10 минут, причем конкретное определение заключается в том, что параметр системы двигателя, полученный в предыдущий момент, обновляется в реальном времени при помощи улучшенного рекурсивного алгоритма наименьших квадратов, и полученный в каждый момент результат определения вводят в модуль повторной коррекции параметров управления;
процесс определения, выполняемый блоком определения крутящего момента на оконечной нагрузке, выполняют следующим образом: заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке определяют из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия, причем конкретное определение заключается в том, что для эквивалентного моделирования используют систему первого порядка и модель линии задержки путем считывания заданного сигнала крутящего момента на выходе двигателя и сигнала обратной связи крутящего момента на оконечной нагрузке, время задержки и постоянную времени системы первого порядка сравнивают, и затем определенные данные вводят в модуль повторной коррекции параметров управления;
процесс определения, выполняемый блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия, выполняют следующим образом: сигналы во временной области, в том числе скорость двигателя, частота зацепления зубчатой передачи и ускорение приводной системы, определяют и считывают из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия, сигналы во временной области преобразуют в сигналы частотного спектра для получения распределения плотности спектра мощности, и затем анализируют формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия и вводят в модуль повторной коррекции параметров управления.
Кроме того, конкретный процесс повторной коррекции параметров управления выполняют следующим образом: модуль повторной коррекции параметров управления выполняет сопоставление каждого из рабочих параметров в реальном времени, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, с первоначально заданными параметрами управления; если какой-либо из рабочих параметров в реальном времени не соответствует соответствующему первоначально заданному параметру управления, повторно устанавливают модель повторной коррекции для параметров управления на основе рабочих параметров в реальном времени, и получают параметр управления в модели повторной коррекции, и наконец скорректированные параметры управления вводят в главную систему управления.
По сравнению с предшествующим уровнем техники настоящее изобретение использует комбинацию модуля сбора данных, модуля определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия и модуля повторной коррекции параметров управления. При работе приводной системы с постоянным магнитом малой дальности действия врубовой машины, после получения рабочих данных приводной системы в реальном времени и определения полученных рабочих данных, результат определения вводится в модуль повторной коррекции параметров управления; затем модуль повторной коррекции параметров управления выполняет корректировку параметров управления в реальном времени, так что параметр управления в реальном времени сопоставляется с параметром, требуемым для фактической работы, с достижением таким образом ожидаемого эффекта управления, улучшением эффективности резки, сохранением энергии, снижением частоты отказов и обеспечением безопасной и надежной работы режущего блока врубовой машины.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 представлена блок-схема всей конструкции системы согласно настоящему изобретению; и
На фиг. 2 представлена блок-схема принципа работы модуля определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия согласно настоящему изобретению.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Далее в данном документе настоящее изобретение будет более подробно описано со ссылкой на варианты осуществления и чертежи.
Как показано на фиг. 1, в настоящем изобретении предложена система динамического определения и повторной коррекции параметров управления, содержащая модуль сбора данных, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, модуль повторной коррекции параметров управления и главную систему управления, причем модуль сбора данных получает и передает рабочие данные приводной системы с постоянным магнитом малой дальности действия в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, а модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия определяет данные, полученные модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления, при этом модуль повторной коррекции параметров управления корректирует и упорядочивает параметры управления приводной системы с постоянным магнитом малой дальности действия в соответствии с результатом определения, относящимся к приводной системе с постоянным магнитом малой дальности действия и выводит скорректированные параметры управления в главную систему управления, и главная система управления управляет работой приводной системы с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления.
Как показано на фиг. 2, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия дополнительно содержит блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке и блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия; причем блок определения в реальном времени параметра системы двигателя выполняет определение параметра системы двигателя в реальном времени на основе рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и вводит результат определения параметров системы двигателя в реальном времени в модуль повторной коррекции параметров управления; а блок определения крутящего момента на оконечной нагрузке определяет заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке из рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления; причем блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия выполняет определение форма колебаний конструкции для системы зубчатой передачи на основе данных, полученных модулем сбора данных, и вводит результат определения в модуль повторной коррекции параметров управления.
В настоящем изобретении дополнительно предложен способ динамического определения и повторной коррекции параметров управления для врубовых машин, включающий следующие этапы:
А. получение данных:
во время работы приводной системы с постоянным магнитом малой дальности действия модуль сбора данных получает рабочие данные приводной системы с постоянным магнитом малой дальности действия в реальном времени и передает рабочие данные в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, причем рабочие данные содержат параметр системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы;
B. определение данных:
модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия считывает данные, полученные модулем сбора данных; блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке и блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия считывают и определяют параметры системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы соответственно, и вводят определенные данные в модуль повторной коррекции параметров управления соответственно;
C. повторную коррекцию параметров управления:
модуль повторной коррекции параметров управления выполняет сравнение и анализ данных, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, с первоначально заданными параметрами управления, корректирует первоначально заданные параметры управления в соответствии с определенными данными, и затем вводит скорректированные параметры управления в главную систему управления;
D. регулировку работы приводной системы с постоянным магнитом малой дальности действия:
главная система управления контролирует и упорядочивает рабочие данные приводной системы с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления.
Кроме того, конкретные процессы определения, выполняемые блоком определения в реальном времени параметров системы двигателя, блоком определения крутящего момента на оконечной нагрузке и блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия, являются следующими:
процесс определения, выполняемый блоком определения в реальном времени параметров системы двигателя, выполняют следующим образом: полученные рабочие данные приводной системы с постоянным магнитом малой дальности действия вычисляют и обрабатывают в соответствии с первоначальными определенными параметрами системы двигателя с последующей установкой интервала времени определения, равным 10 минут, для обеспечения блоку определения в реальном времени параметров системы двигателя возможности выполнения автоматического определения каждые 10 минут; причем конкретное определение заключается в использовании улучшенного рекурсивного алгоритма наименьших квадратов, введении формулы рекурсии P(k)=F-1(k) в улучшенный рекурсивный алгоритм наименьших квадратов, упрощении алгоритма квадратов по принципу матричной инверсии
Figure 00000001
и, наконец, введении фактора исключения в диапазоне значений 0,95-0,99, таким образом, что параметры системы двигателя, полученные в предыдущий момент, обновляются в реальном времени, и затем полученный в каждый момент результат определения вводят в модуль повторной коррекции параметров управления;
процесс определения, выполняемый блоком определения крутящего момента на оконечной нагрузке, выполняют следующим образом: заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке определяют из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия, причем конкретное определение заключается в том, что для эквивалентного моделирования используют система первого порядка и модель линии задержки путем считывания заданного сигнала крутящего момента на выходе двигателя и сигнала обратной связи крутящего момента на оконечной нагрузке, время задержки и постоянную времени системы первого порядка получают путем сравнения, и затем определенные данные вводят в модуль повторной коррекции параметров управления;
процесс определения, выполняемый блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия, выполняют следующим образом: сигналы во временной области, в том числе скорость двигателя, частота зацепления зубчатой передачи и ускорение приводной системы, определяют и считывают из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия, сигналы во временной области преобразуют в сигналы частотного спектра для получения распределения плотности спектра мощности, и затем анализируют формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия и вводят в модуль повторной коррекции параметров управления.
Кроме того, конкретный процесс повторной коррекции параметров управления выполняют следующим образом: модуль повторной коррекции параметров управления выполняет сопоставление каждого из рабочих параметров в реальном времени, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, с первоначально заданными параметрами управления; если какой-либо из рабочих параметров в реальном времени не соответствует соответствующему первоначально заданному параметру управления, повторно устанавливают модель повторной коррекции для параметров управления на основе рабочих параметров в реальном времени, и получают параметр управления в модели повторной коррекции, и наконец скорректированные параметры управления вводят в главную систему управления.

Claims (35)

1. Система динамического определения и повторной коррекции параметров управления, отличающаяся тем, что содержит модуль сбора данных, модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, модуль повторной коррекции параметров управления и главную систему управления,
причем
модуль сбора данных выполнен с возможностью получения и передачи рабочих данных приводной системы с постоянным магнитом малой дальности действия в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия,
модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия выполнен с возможностью определения данных, полученных модулем сбора данных, и введения результата определения в модуль повторной коррекции параметров управления,
модуль повторной коррекции параметров управления выполнен с возможностью корректирования и регулировки параметров управления приводной системы с постоянным магнитом малой дальности действия в соответствии с результатом определения приводной системы с постоянным магнитом малой дальности действия и выведения скорректированных параметров управления в главную систему управления, а
главная система управления выполнена с возможностью управления работой приводной системы с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления.
2. Система динамического определения и повторной коррекции параметров управления по п. 1, отличающаяся тем, что модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия содержит блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке и блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия;
причем
блок определения в реальном времени параметров системы двигателя выполнен с возможностью определения параметров системы двигателя в реальном времени на основе рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и с возможностью введения результата определения параметров системы двигателя в реальном времени в модуль повторной коррекции параметров управления;
блок определения крутящего момента на оконечной нагрузке выполнен с возможностью определения заданного сигнала крутящего момента на выходе двигателя и сигнала обратной связи фактического крутящего момента на оконечной нагрузке из рабочих данных приводной системы с постоянным магнитом малой дальности действия, полученных модулем сбора данных, и с возможностью введения результата определения в модуль повторной коррекции параметров управления; а
блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия выполнен с возможностью определения формы колебаний конструкции для системы зубчатой передачи на основе данных, полученных модулем сбора данных, и с возможностью введения результата определения в модуль повторной коррекции параметров управления.
3. Способ коррекции с использованием системы динамического определения и повторной коррекции параметров управления по п. 1, отличающийся тем, что включает следующие этапы:
A. получение данных:
во время работы приводной системы с постоянным магнитом малой дальности действия модуль сбора данных получает рабочие данные приводной системы с постоянным магнитом малой дальности действия в реальном времени и передает рабочие данные в модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия,
причем рабочие данные содержат параметр системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы;
B. определение данных:
модуль определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия считывает данные, полученные модулем сбора данных;
блок определения в реальном времени параметров системы двигателя, блок определения крутящего момента на оконечной нагрузке и блок определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия считывают и определяют параметры системы двигателя в реальном времени, заданный сигнал крутящего момента на выходе двигателя, сигнал обратной связи фактического крутящего момента на оконечной нагрузке, скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы, соответственно, и вводят определенные данные в модуль повторной коррекции параметров управления, соответственно;
C. повторную коррекцию параметров управления:
модуль повторной коррекции параметров управления выполняет сравнение и анализ данных, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия с первоначально заданными параметрами управления, корректирует первоначально заданные параметры управления в соответствии с определенными данными и затем вводит скорректированные параметры управления в главную систему управления;
D. регулировку работы приводной системы с постоянным магнитом малой дальности действия:
главная система управления контролирует и упорядочивает рабочие данные приводной системы с постоянным магнитом малой дальности действия в соответствии со скорректированными параметрами управления.
4. Способ по п. 3, отличающийся тем, что конкретные процессы определения, выполняемые блоком определения в реальном времени параметров системы двигателя, блоком определения крутящего момента на оконечной нагрузке и блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия, являются следующими:
процесс определения, выполняемый блоком определения в реальном времени параметров системы двигателя, выполняют следующим образом:
полученные рабочие данные приводной системы с постоянным магнитом малой дальности действия вычисляют и обрабатывают в соответствии с первоначальными определенными параметрами системы двигателя, с последующей установкой интервала времени определения, равного 10 минут, для обеспечения блоку определения в реальном времени параметров системы двигателя возможности выполнения автоматического определения каждые 10 минут,
причем конкретное определение заключается в том, что параметр системы двигателя, полученный в предыдущий момент, обновляется в реальном времени при помощи улучшенного рекурсивного алгоритма наименьших квадратов, и полученный в каждый момент результат определения вводят в модуль повторной коррекции параметров управления;
процесс определения, выполняемый блоком определения крутящего момента на оконечной нагрузке, выполняют следующим образом:
заданный сигнал крутящего момента на выходе двигателя и сигнал обратной связи фактического крутящего момента на оконечной нагрузке определяют из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия,
причем конкретное определение заключается в том, что для эквивалентного моделирования используют систему первого порядка и модель линии задержки путем считывания заданного сигнала крутящего момента на выходе двигателя и сигнала обратной связи крутящего момента на оконечной нагрузке, время задержки и постоянную времени системы первого порядка получают после сравнения и затем определенные данные вводят в модуль повторной коррекции параметров управления;
процесс определения, выполняемый блоком определения формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия, выполняют следующим образом:
сигналы во временной области, в том числе скорость двигателя, частоту зацепления зубчатой передачи и ускорение приводной системы, определяют и считывают из полученных рабочих данных приводной системы с постоянным магнитом малой дальности действия,
сигналы во временной области преобразуют в сигналы частотного спектра для получения распределения плотности спектра мощности и затем анализируют формы колебаний конструкции приводной системы с постоянным магнитом малой дальности действия и вводят в модуль повторной коррекции параметров управления.
5. Способ по п. 4, отличающийся тем, что конкретный процесс повторной коррекции параметров управления выполняют следующим образом:
модуль повторной коррекции параметров управления выполняет сопоставление каждого из рабочих параметров в реальном времени, определенных модулем определения динамической модели в режиме онлайн для приводной системы с постоянным магнитом малой дальности действия, с первоначально заданными параметрами управления;
если какой-либо из рабочих параметров в реальном времени не соответствует соответствующему первоначально заданному параметру управления, повторно устанавливают модель повторной коррекции для параметров управления на основе рабочих параметров в реальном времени и получают параметр управления в модели повторной коррекции, и наконец скорректированные параметры управления вводятся в главную систему управления.
RU2019119004A 2018-03-12 2018-08-27 Система и способ динамического определения и коррекции параметров управления RU2723827C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810199827.8 2018-03-12
CN201810199827.8A CN108374659A (zh) 2018-03-12 2018-03-12 一种用于采煤机的动态辨识及控制参量再修正系统及方法
PCT/CN2018/102419 WO2019174189A1 (zh) 2018-03-12 2018-08-27 一种动态辨识及控制参量再修正系统及方法

Publications (1)

Publication Number Publication Date
RU2723827C1 true RU2723827C1 (ru) 2020-06-17

Family

ID=63018512

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019119004A RU2723827C1 (ru) 2018-03-12 2018-08-27 Система и способ динамического определения и коррекции параметров управления

Country Status (5)

Country Link
CN (1) CN108374659A (ru)
AU (1) AU2018353939B2 (ru)
CA (1) CA3040551C (ru)
RU (1) RU2723827C1 (ru)
WO (1) WO2019174189A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108374659A (zh) * 2018-03-12 2018-08-07 中国矿业大学 一种用于采煤机的动态辨识及控制参量再修正系统及方法
CN110685685B (zh) * 2019-10-10 2020-07-21 中国矿业大学 基于煤壁垮落程度的采煤机牵引速度自动控制方法
CN112160750B (zh) * 2020-09-21 2022-08-16 三一重型装备有限公司 采煤机状态控制、预测的系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94037882A (ru) * 1994-10-11 1996-05-27 Акционерное общество закрытого типа "КБ РУССИНА" Способ управления электроприводом
RU2400919C2 (ru) * 2005-07-27 2010-09-27 Рэ Вендорс С.П.А. Устройство и способ управления и регулировки работы устройств с приводом от электродвигателя
CN102201659A (zh) * 2011-06-03 2011-09-28 珠海万力达电气股份有限公司 一种电动机保护控制方法
RU2641723C2 (ru) * 2012-08-06 2018-01-22 Рено С.А.С. Система управления электромагнитным моментом электрической машины, в частности, для автотранспортного средства
CN107643709A (zh) * 2017-09-18 2018-01-30 南京理工大学 一种基于多传感器信息融合的超高速永磁同步电机监控系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2127646B (en) * 1982-08-18 1987-03-25 Matsushita Electric Ind Co Ltd Image processor
DE4416643C2 (de) * 1994-05-11 1996-07-18 Bochumer Eisen Heintzmann Verwendung einer Volumenstrom-Meßturbine in einem System zum weggesteuerten, definierten Vorrücken einer Gewinnungsanlage für das Hereingewinnen von Kohle
US5819524A (en) * 1996-10-16 1998-10-13 Capstone Turbine Corporation Gaseous fuel compression and control system and method
CN102507230B (zh) * 2011-10-08 2013-12-25 中北大学 一种自动供输弹装置故障诊断方法
CN103353732B (zh) * 2013-07-26 2016-01-20 北京翔博科技有限责任公司 模态宽频振动消除应力设备控制电路及控制方法
CN103742359B (zh) * 2013-12-26 2016-06-01 南车株洲电力机车研究所有限公司 基于模型辨识的风电机组控制参数再调校装置、系统及其方法
US9803477B2 (en) * 2014-10-06 2017-10-31 Caterpillar Inc. Fiber optic shape sensing adapted to cutter module of highwall miner
CN104329091A (zh) * 2014-10-21 2015-02-04 中国矿业大学(北京) 一种基于采煤机截割电机多参数的煤岩性状识别系统及方法
CN105971603A (zh) * 2016-05-05 2016-09-28 李虎虎 一种基于ip架构的采煤机可视化无线远程自动控制系统
CN108374659A (zh) * 2018-03-12 2018-08-07 中国矿业大学 一种用于采煤机的动态辨识及控制参量再修正系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94037882A (ru) * 1994-10-11 1996-05-27 Акционерное общество закрытого типа "КБ РУССИНА" Способ управления электроприводом
RU2400919C2 (ru) * 2005-07-27 2010-09-27 Рэ Вендорс С.П.А. Устройство и способ управления и регулировки работы устройств с приводом от электродвигателя
CN102201659A (zh) * 2011-06-03 2011-09-28 珠海万力达电气股份有限公司 一种电动机保护控制方法
RU2641723C2 (ru) * 2012-08-06 2018-01-22 Рено С.А.С. Система управления электромагнитным моментом электрической машины, в частности, для автотранспортного средства
CN107643709A (zh) * 2017-09-18 2018-01-30 南京理工大学 一种基于多传感器信息融合的超高速永磁同步电机监控系统

Also Published As

Publication number Publication date
CA3040551A1 (en) 2019-09-12
CN108374659A (zh) 2018-08-07
AU2018353939B2 (en) 2020-03-05
WO2019174189A1 (zh) 2019-09-19
AU2018353939A1 (en) 2019-09-26
CA3040551C (en) 2021-08-10

Similar Documents

Publication Publication Date Title
RU2723827C1 (ru) Система и способ динамического определения и коррекции параметров управления
CN101817163B (zh) 一种基于神经网络的磨削加工工况检测方法
RU2008143111A (ru) Рабочая машина с бесступенчатой коробкой передач, мощность которой автоматически регулируется в зависимости от нагрузки двигателя
CN103761420A (zh) 一种火电设备性能逐步回归评测方法
CN105116720A (zh) 火电机组压控阀控方式一次调频主汽压力自适应优化方法
CN116468338A (zh) 基于数字孪生的智慧水务监测方法、系统及电子设备
CN110687791B (zh) 一种基于改进自适应调频模态分解的非线性振荡检测方法
CN103362792B (zh) 凝结水泵变频控制方法及装置
CN110703679A (zh) 一种风力发电机组工业控制器
CN106777518B (zh) 一种针对姿轨控发动机推力的激励源辨识方法
CN103293990B (zh) 一种永磁同步电机直驱式抽油机控制器及控制方法
CN106567893B (zh) 离合器的控制方法及装置
CN115396461B (zh) 一种适用低速变工况的触发式振动数据采集系统
CN103414432B (zh) 一种混合动力车带式驱动启动发电机控制器的构造方法
CN105402087A (zh) 风电机组变桨距切换控制方法
CN102616531B (zh) 一种带式输送机变频传动的功率平衡调节方法及系统
CN103809516A (zh) 基于主从平台通信的伺服系统振动抑制装置及其抑制方法
CN105938374A (zh) 一种水库控制电路系统
CN108075808B (zh) 电力载波频率控制方法及装置
CN205787927U (zh) 一种水库控制电路系统
CN105353645A (zh) 一种电磁阀试验装置及试验方法
CN114295224B (zh) 一种红外tdi探测器行频调整系统及方法
CN107835037B (zh) 电力载波频率控制方法及装置
CN109993034A (zh) 一种激光穿孔检测判断方法
CN116208297B (zh) 一种数控机床传输数据自适应编码方法、装置及相关设备