RU2723027C1 - Способ получения сульфида кальция из фосфогипса - Google Patents

Способ получения сульфида кальция из фосфогипса Download PDF

Info

Publication number
RU2723027C1
RU2723027C1 RU2019127619A RU2019127619A RU2723027C1 RU 2723027 C1 RU2723027 C1 RU 2723027C1 RU 2019127619 A RU2019127619 A RU 2019127619A RU 2019127619 A RU2019127619 A RU 2019127619A RU 2723027 C1 RU2723027 C1 RU 2723027C1
Authority
RU
Russia
Prior art keywords
phosphogypsum
citric acid
temperature
reducing agent
sulfide
Prior art date
Application number
RU2019127619A
Other languages
English (en)
Inventor
Нина Петровна Шабельская
Роман Петрович Медведев
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова"
Priority to RU2019127619A priority Critical patent/RU2723027C1/ru
Application granted granted Critical
Publication of RU2723027C1 publication Critical patent/RU2723027C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/42Sulfides or polysulfides of magnesium, calcium, strontium, or barium
    • C01B17/44Sulfides or polysulfides of magnesium, calcium, strontium, or barium by reduction of sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • C01F11/08Oxides or hydroxides by reduction of sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • C09K11/0816Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/567Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Luminescent Compositions (AREA)

Abstract

Изобретение относится к способу получения сульфида кальция из фосфогипса и может найти применение в химической промышленности, например, в препаративном неорганическом синтезе и при производстве полупроводниковых или люминесцентных материалов. Способ изготовления образцов сульфида кальция осуществляют посредством гомогенизации исходных предварительно высушенного при 100°С фосфогипса и кристаллической лимонной кислоты в соотношении фосфогипс : кислота 3,0-4,0:1 в смесителе мощностью 0,45 кВт со скоростью 1500 об/мин, помещения в алундовые тигли в рабочее пространство муфельной печи и термообработки полученной шихты при температуре 700-900°С в течение 1 ч. Технический результат состоит в использовании безопасного восстановителя - лимонной кислоты, снижении продолжительности процесса, более простом аппаратурном оформлении при одновременном получении материалов с улучшенными характеристиками. 10 ил., 1 табл., 5 пр.

Description

Изобретение относится к способу получения неорганических материалов - сульфидов щелочных элементов и может найти применение в химической промышленности, например, в препаративном неорганическом синтезе и при производстве полупроводниковых или люминесцентных материалов.
Известен «Способ получения сульфида металла» [Перов Э.И., Ирхина Е.П., Ильина Е.Г., Гончарова И.В., Федоров И.С., Головачев А.Н. Способ получения сульфида металла. Пат. РФ 2112743, МПК C01G 1/12, Алтайский государственный университет; заявл. 10.12.1996, опубл. 10.06.1998], по которому сульфиды осаждают в неводной среде жидких углеводородов предельного ряда CnH2n+2, путем взаимодействия соединений металлов (гидроксидов, ацетатов, солей жирных кислот) с выделяющимся в ходе реакции сероводородом. В ходе реакции серу растворяют в углеводороде, вводят соединение металла (соль или гидроксид), проводят синтез при температуре 174°С в течение 6 часов, отфильтровывают продукт в горячем состоянии, промывают горячим деканом и высушивают при температуре 150°С.
Недостатком этого способа получения сульфида кальция являются необходимость использования горячей легковоспламеняющейся жидкости (предельных углеводородов, температура вспышки 47°С, температура самовоспламенения 66°С), что вызывает необходимость увеличения затрат на организацию безопасной работы, а также длительность процесса.
Наиболее близким к заявляемому, взятом за прототип, является способ получения сульфида кальция из гипса [Чудаков М.И. Способ получения сульфида кальция. Пат. SU №157672, МПК С01В 17/44, Заявл. 12.03.1962, Опубл. 14.10.1963], по которому гидролизный лигнин с влажностью 65% (в расчете на абсолютно сухой) перемешивают в течение 0,5-1 часа в лопастном смесителе с гипсовым шламом (содержащем 0,9-1 вес. ч. сульфата кальция безводного). Затем массу подают на гранулятор шнекового типа. Получаемые гранулы диаметром 2-40 мм после сушки обжигают при температуре 500-900°С без доступа воздуха. В результате получают 0,5 вес. ч. сульфида кальция и 0,1 вес. ч. угля.
Недостатком этого способа является сложное аппаратное оформление процесса, необходимость применения газовой среды без доступа воздуха, длительность гомогенизации, использование высокой температуры термообработки, что влечет за собой большие расходы электроэнергии, а также получение продукции, содержащей восстановитель (уголь), что требует дополнительной операции очистки.
Перед авторами стояла задача разработки экологичного и экономичного способа получения сульфида кальция, не загрязненного углем, без применения опасных для здоровья веществ (нагретые до температуры 174°С углеводороды) и сложной аппаратуры, что позволяет существенно снизить энергоемкость и, тем самым, удешевить его производство.
Технический результат обеспечивается за счет использования отхода производства - фосфогипса - вместо реактивного сульфата кальция, простого аппаратного оформления процесса, получения сульфида кальция, не загрязненного углем, использования безопасного восстановителя (лимонная кислота является продуктом питания), способного образовывать жидкую фазу при температуре 153°С, что позволяет улучшить гомогенизацию исходных веществ и перевести процесс формирования структуры образцов в процессе термообработки из диффузионной области в кинетическую.
Технический результат достигается путем получения образцов сульфида кальция посредством смешивания исходных сульфата кальция и восстановителя, при этом в качестве восстановителя используют кристаллическую лимонную кислоту, а в качестве сульфата кальция используют фосфо-гипс, предварительно высушенный до постоянного веса при температуре 100°С, исходные вещества в соотношении фосфогипс : лимонная кислота 3,0-4,0:1 гомогенизируют в течение 30 с в смесителе мощностью 0,45 кВт со скоростью 1500 об/мин., термообрабатывают при температуре 700-900°С в течение 60 минут.
На фиг. 1 приведена рентгенограмма образцов фосфогипса, термообработанного при температуре 800°С в присутствии лимонной кислоты.
На фиг. 2 приведена микрофотография образца, восстановленного в присутствии лимонной кислоты.
На фиг. 3 приведена фотография образца восстановленного фосфогипса при освещении обычным светом. Восстановитель: лимонная кислота.
На фиг. 4 приведена фотография образца восстановленного фосфогипса при освещении ультрафиолетовым светом. Восстановитель: лимонная кислота.
На фиг. 5 приведена фотография образца восстановленного фосфогипса при освещении ультрафиолетовым светом со светофильтром. Восстановитель: лимонная кислота.
На фиг. 6 приведена фотография образца восстановленного фосфогипса при освещении обычным светом. Восстановитель: активированный уголь.
На фиг. 7 приведена фотография образца восстановленного фосфогипса при освещении ультрафиолетовым светом. Восстановитель: активированный уголь.
На фиг. 8 приведена фотография образца восстановленного фосфогипса при освещении ультрафиолетовым светом со светофильтром. Восстановитель: активированный уголь.
На фиг. 9 приведена рентгенограмма образцов фосфогипса, термообработанного без восстановителя.
На фиг. 10 приведена рентгенограмма образцов фосфогипса, термообработанного при температуре 700°С в присутствии восстановителя - лимонной кислоты.
В табл. 1 приведены данные по условиям проведения процесса и характеристика образующегося продукта.
В Приложении 1 представлены цветные фотографии образцов восстановленного фосфогипса при освещении ультрафиолетовым светом, ультрафиолетовым светом со светофильтром. Восстановитель: лимонная кислота и активированный уголь.
Пример 1. Для получения сульфида кальция был использован фосфогипс для сельского хозяйства (ТУ 113-08-418-94 (с изменениями 1-12)) с содержанием двуводного сульфата кальция (CaSO4⋅2 Н2О) 99% (масс). В качестве восстановителя использовали лимонную кислоту (C6H8O7). Фосфогипс был предварительно высушен до постоянного веса при температуре 100°С (проведение процесса сушки при температуре 100°С обусловлено физическими свойствами воды - температура перехода жидкой воды в состояние пара при атмосферном давлении составляет 100°С) в электрическом сушильном шкафу. Отмеряли с погрешностью 0,1 мг количества исходных фосфогипса 14,0 г и лимонную кислоту 4,0 г, гомогенизировали в течение 30 сек. в смесителе мощностью 0,45 кВт со скоростью 1500 об/мин (параметры смешивания, наиболее широко применяемые в технологических процессах), помещали в алундовых тиглях в рабочее пространство муфельной печи и термообрабатывали согласно температурно-временному режиму, включающему нагрев до 800°С в течение 60 минут, выдержку в течение 60 минут, медленное охлаждение с печью до комнатной температуры.
Окончание процесса формирования образца определяли с помощью рентгенофазового анализа: синтез прошел на 100% (на рентгенограммах образцов содержатся только линии, характеризующие минеральные вещества - сульфат кальция и сульфид кальция, не прореагировавшее органическое вещество отсутствует, фиг. 1). Образец представлен пластинчатыми кристаллами, на поверхности которых располагаются более мелкие частицы неправильной формы (фиг. 2). При этом материал обладает люминесцентной способностью, присущей сульфиду кальция, с равномерным распределением свечения по поверхности образца (фиг. 3, фиг. 4, фиг. 5).
Увеличение скорости формирования структуры сульфида кальция и снижение температуры, при которой происходит формирование его структуры, связано с протеканием реакции:
CaSO4+C6H8O7=CaS+CO2+5 СО+4 H2O.
Образовавшийся в ходе реакции разложения лимонной кислоты оксид углерода (II) взаимодействует с исходным сульфатом кальция с формированием сульфида кальция:
CaSO4+4 СО=CaS+4 CO2.
Степень конверсии сульфата кальция в сульфид составляет 60% (табл. 1).
Пример 2. Готовили сульфид кальция аналогично описанному в примере 1, только в качестве восстановителя использовали активированный уголь. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры завершен полностью, однако восстановление сульфата кальция в сульфид прошло значительно хуже: есть области, не обладающие люминесценцией, (фиг. 6, фиг. 7, фиг. 8). Это может быть связано с неравномерностью распределения восстановителя по объему реакционной системы.
Пример 3. Готовили сульфид кальция аналогично описанному в примере 1, только не использовали восстановитель. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры сульфида кальция не прошел (в образце основная фаза - сульфат кальция (фиг. 9)).
Пример 4. Готовили сульфид кальция аналогично описанному в примере 1, только термообработку проводили при температуре 700°С. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры сульфида кальция прошел частично (в образце основная фаза - сульфат кальция, степень конверсии сульфата кальция в сульфид кальция не превышает 40%).
Пример 5. Готовили сульфид кальция аналогично описанному в примере 1, только термообработку проводили при температуре 900°С. По окончании термообработки рентгенофазовый анализ показал, что в образце основная фаза - сульфат кальция. Данный результат может быть связан с окислением сульфида кальция в сульфат под действием кислорода воздуха по реакции
CaS+2 O2=CaSO4.
Как видно из приведенных примеров, процесс изготовления сульфида кальция из смеси фосфогипса и лимонной кислоты при температуре не выше 800°С проходит полнее по сравнению с процессом с применением в качестве восстановителя активированного угля. Без введения восстановителя или при проведении процесса при температуре 900°С целевой продукт не образуется (это может быть объяснено в первом случае - отсутствием возможности протекания реакции восстановления, во втором - процессами окисления целевого продукта под действием кислорода воздуха при повышенной температуре). Проведение процесса синтеза при температуре 700°С сопровождается пониженной степенью конверсии сульфата кальция в сульфид (это может быть объяснено недостаточно высокой температурой термообработки). Синтез сульфида кальция с использованием лимонной кислоты в качестве восстановителя требует значительно меньшей продолжительности и более простого аппаратного оформления, чем в прототипе. Это позволяет проводить процесс синтеза сульфида кальция с меньшими энергозатратами, приводит к удешевлению производства, одновременно получаются материалы с улучшенными характеристиками (образцы не содержат примеси углерода, которую необходимо удалять с применением дополнительных операций).
Figure 00000001

Claims (1)

  1. Способ получения сульфида кальция из фосфогипса путем смешивания исходных сульфата кальция и восстановителя, отличающийся тем, что в качестве восстановителя используют кристаллическую лимонную кислоту, а в качестве сульфата кальция используют фосфогипс, предварительно высушенный до постоянного веса при температуре 100°С, исходные вещества в соотношении фосфогипс : лимонная кислота 3,0-4,0:1 гомогенизируют в течение 30 с в смесителе мощностью 0,45 кВт со скоростью 1500 об/мин, термообрабатывают при температуре 700-900°С в течение 60 мин.
RU2019127619A 2019-08-30 2019-08-30 Способ получения сульфида кальция из фосфогипса RU2723027C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019127619A RU2723027C1 (ru) 2019-08-30 2019-08-30 Способ получения сульфида кальция из фосфогипса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019127619A RU2723027C1 (ru) 2019-08-30 2019-08-30 Способ получения сульфида кальция из фосфогипса

Publications (1)

Publication Number Publication Date
RU2723027C1 true RU2723027C1 (ru) 2020-06-08

Family

ID=71067702

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019127619A RU2723027C1 (ru) 2019-08-30 2019-08-30 Способ получения сульфида кальция из фосфогипса

Country Status (1)

Country Link
RU (1) RU2723027C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767529C1 (ru) * 2021-02-04 2022-03-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения сульфида кальция из фосфогипса
CN115744834A (zh) * 2022-12-23 2023-03-07 东北大学 一种磷石膏氢基流体还原焙烧制备硫化钙的方法
RU2814843C1 (ru) * 2023-07-11 2024-03-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения сульфида кальция из фосфогипса

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU157672A1 (ru) *
SU994399A1 (ru) * 1981-05-28 1983-02-07 Воскресенский филиал Научно-исследовательского института по удобрениям и инсектофунгицидам им.проф.Я.В.Самойлова Способ получени сульфида кальци
SU1130522A1 (ru) * 1982-11-29 1984-12-23 Предприятие П/Я В-8830 Способ переработки фосфогипса на серосодержащие продукты и известь
SU1528724A1 (ru) * 1987-06-16 1989-12-15 Таллиннский политехнический институт Способ получени сульфида кальци
RU2402488C1 (ru) * 2009-02-09 2010-10-27 Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" Способ переработки фосфогипса

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU157672A1 (ru) *
SU994399A1 (ru) * 1981-05-28 1983-02-07 Воскресенский филиал Научно-исследовательского института по удобрениям и инсектофунгицидам им.проф.Я.В.Самойлова Способ получени сульфида кальци
SU1130522A1 (ru) * 1982-11-29 1984-12-23 Предприятие П/Я В-8830 Способ переработки фосфогипса на серосодержащие продукты и известь
SU1528724A1 (ru) * 1987-06-16 1989-12-15 Таллиннский политехнический институт Способ получени сульфида кальци
RU2402488C1 (ru) * 2009-02-09 2010-10-27 Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" Способ переработки фосфогипса

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIPING, ZHU et al., Experimental study of preparing CaS from phosphogypsum with lignite, "IOP Conference Series: Earth and Environmental Science", 08.03.2019, vol.267, 032077 (6 pp.). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767529C1 (ru) * 2021-02-04 2022-03-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения сульфида кальция из фосфогипса
CN115744834A (zh) * 2022-12-23 2023-03-07 东北大学 一种磷石膏氢基流体还原焙烧制备硫化钙的方法
RU2814843C1 (ru) * 2023-07-11 2024-03-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения сульфида кальция из фосфогипса

Similar Documents

Publication Publication Date Title
RU2723027C1 (ru) Способ получения сульфида кальция из фосфогипса
Tipcompor et al. Characterization of SrCO3 and BaCO3 nanoparticles synthesized by cyclic microwave radiation
Polat et al. Preparation, characterization and kinetic evaluation of struvite in various carboxylic acids
Naemchanthara et al. Temperature effect on chicken egg shell investigated by XRD, TGA and FTIR
RU2814843C1 (ru) Способ получения сульфида кальция из фосфогипса
RU2767529C1 (ru) Способ получения сульфида кальция из фосфогипса
US5169444A (en) Process for preparing calcium sulfate anhydrite
BR112016021806B1 (pt) Métodos para a conversão de cloreto de magnésio em óxido de magnésio e hcl
Issagulov et al. Production of technical silicon and silicon carbide from rice-husk
US2261872A (en) Continuous process for making reacted plaster
RU2384522C1 (ru) Способ получения наночастиц оксида металла
Guo et al. Study of oxidation of calcium sulfite in flue gas desulfurization by pore-type surface dielectric barrier discharge
Kurama et al. Magnesium hydroxide recovery from magnesia waste by calcinations and hydration processes
Astuti et al. The influence of precipitating agents on the morphological and photocatalytic properties of bismuth oxide
Zulfugarova et al. Effect of preparation method of iron-, copper-containing oxide catalysts on their activity in the reaction of oxidation of carbon monoxide to carbon dioxide
CN109179432B (zh) 低钙煅烧黑滑石生产设备、低钙煅烧黑滑石及其制备方法
Atchudan et al. Preparation of CaCO3 and CaO nanoparticles via solid-state conversion of calcium oleate precursor
Botvina et al. Synthesis of Calcium Aluminate-Based Luminophores by the Citrate Nitrate Sol–Gel Process
FI64790B (fi) Foerfarande foer rostning av selenhaltigt material
Kostic-Pulek et al. Production of calcium sulphate alpha-hemihydrate from citrogypsum in unheated sulphuric acid solution
Kasselouri et al. Effect of acetic and tartaric acid upon the thermal decomposition of CaCO3
Kostic-Pulek et al. TREATMENT OF GYPSUM AS A PRODUCT OF THE FLUE GAS DESULPHURISATION PROCESS
JP2007084371A (ja) 酸成分含有水溶液の処理・乾燥方法
Xu et al. Thermal decomposition mechanism and characterization of phosphogypsum in suspension under multifactor coupling effect
JPS58167426A (ja) 希土類元素のオキシサルフエ−トの製造法