RU2721262C1 - Высокодемпфирующая сталь с требуемым уровнем демпфирующих свойств и изделие, выполненное из неё - Google Patents
Высокодемпфирующая сталь с требуемым уровнем демпфирующих свойств и изделие, выполненное из неё Download PDFInfo
- Publication number
- RU2721262C1 RU2721262C1 RU2019133388A RU2019133388A RU2721262C1 RU 2721262 C1 RU2721262 C1 RU 2721262C1 RU 2019133388 A RU2019133388 A RU 2019133388A RU 2019133388 A RU2019133388 A RU 2019133388A RU 2721262 C1 RU2721262 C1 RU 2721262C1
- Authority
- RU
- Russia
- Prior art keywords
- steel
- damping
- cobalt
- amplitudes
- molybdenum
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Изобретение относится к металлургии, а именно к сталям, обладающим высокой демпфирующей способностью и использующимся при изготовлении холодно- и горячекатаных листов, сортового проката, при изготовлении элементов различных конструкций, а также деталей крепежа. Сталь содержит компоненты в следующем соотношении, мас.%: углерод не более 0,045, кремний 0,01-0,55, марганец 0,005-0,65, алюминий 3,0-7,7, титан 0,001-0,3, кобальт 0,052-0,095, хром 0,001-0,35, медь не более 0,2, никель не более 0,2, молибден 0,001-0,4, сера не более 0,02, фосфор не более 0,02, азот не более 0,015, железо и неизбежные примеси – остальное. Содержания титана, молибдена, кобальта и углерода удовлетворяют условию: [0,2Ti+0,1Mo+0,1Co-0,9C]>0, а содержания кобальта, марганца и никеля удовлетворяют условию: [0,9Co-0,1Mn-0,2Ni]>0. Повышается демпфирующая способность стали и изделий, выполненных из нее, в области повышенных амплитуд колебаний, составляющих от 2,85×10-4 до 3,15×10-4, при сохранении высокого уровня демпфирования в области малых амплитуд колебаний, составляющих от 0,85×10-4 до 1,15×10-4, а также при сохранении требуемого уровня ударной вязкости и относительного удлинения. 2 н. и 2 з.п. ф-лы, 2 табл.
Description
Изобретение относится к металлургии, а именно к сталям, обладающим высокой демпфирующей способностью, а также к изделиям, выполненным из них, и может быть использовано при изготовлении холодно- и горячекатаных листов, сортового проката, при изготовлении элементов различных конструкций, а также деталей крепежа.
Высокодемпфирующие стали сочетают в себе высокие механические свойства, высокую демпфирующую способность и высокий модуль упругости. Благодаря этому высокодемпфирующие стали могут быть эффективно использованы для борьбы с вибрацией и шумом в современных технических устройствах.
Практически любое промышленное изделие подвергается в ударному нагружению или воздействию вибрационной нагрузки, в результате, ударное воздействие приводит к колебаниям изделия в диапазоне повышенных амплитуд внешней упругой деформации материала. В случае если материал в ходе эксплуатации подвергается постоянному или периодическому воздействию вибрации, связанной с вращением механизмов, то амплитуды колебаний, как правило, являются низкими. При проектировании изделий конструкторы зачастую стремятся уменьшить уровень вибрации в них за счет увеличения жесткости конструкции с целью повысить долговечность изделий и снизить шум.
Важными характеристиками демпфирующих сталей является уровень их технологических свойств, включая уровень ударной вязкости и относительное удлинение материала
Важнейшей характеристикой высокодемпфирующей стали является уровень удельной демпфирующей способности в области малых амплитуд упругих колебаний, ограниченной величинами знакопеременной упругой деформации между 0,85×10-4 и 1,25×10-4.
В жестких условиях эксплуатации, при которых в материале возбуждаются колебания с повышенными амплитудами, весьма распространенной областью внешнего знакопеременного нагружения металла является диапазон амплитуд знакопеременных колебаний, ограниченной величинами упругой деформации материала между 2,85×10-4 и 3,15×10-4. Требование обеспечить повышенный уровень демпфирующей способности в указанном диапазоне амплитуд колебаний предъявляется для ряда важных вариантов промышленного применения высокодемпфирующих сталей, при этом потребители стали требуют, чтобы уровень удельной демпфирующей способности в этом диапазоне амплитуд упругой деформации составлял не менее 8,5%.
Известна демпфирующая сталь и изделие, выполненное из нее. Сталь содержит, мас. %: углерод 0,001-0,08, кремний 0,01-0,5, марганец 0,01-0,6, алюминий 3,5-7,0, хром 0,001-0,3, никель 0,001-0,3, медь 0,001-0,3, ванадий 0,0001-0,3, ниобий 0,0001-0,3, молибден 0,001-0,5, сера не более 0,02, фосфор не более 0,02, азот не более 0,015, титан 0,001-0,3, кобальт 0,0001-0,010, железо и неизбежные примеси - остальное. Сталь дополнительно содержит, мас. %: цирконий (0,0001-0,005), вольфрам, бор, кальций, магний (0,0001-0,010, каждого), РЗМ (0,0001- 0,005). В качестве неизбежных примесей она содержит мышьяк, олово, свинец, цинк, сурьму не более 0,015 мас. % каждого. Сталь и выполненные из нее изделия имеют среднюю величину удельной демпфирующей способности, измеренную в диапазоне амплитуд упругой деформации от 0,85×10-4 до 1,15×10-4, от 20 до 50%, и среднюю величину удельной демпфирующей способности, измеренную в диапазоне амплитуд упругой деформации от 1,8×10-4 до 2,2×10-4, от 15 до 35%.
(Патент РФ RU 2623947 МПК С22С 38/52, опубликован 29.06.2017).
К недостаткам этой стали следует отнести то обстоятельство, что величина удельной демпфирующей способности в области повышенных амплитуд колебаний, а именно в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4, не достигает высоких значений.
Наиболее близким аналогом заявляемого изобретения является высокодемпфирующая сталь, содержащая мас. %: углерод 0,001-0,05, кремний 0,01-0,5, марганец 0,01-0,6, алюминий 3,0-7,5, титан 0,001-0,3, кобальт 0,013-0,05, хром 0,001-0,5, никель 0,001-0,3, медь 0,001-0,3, молибден 0,001-0,5, сера не более 0,02, фосфор не более 0,02, азот не более 0,015, железо и неизбежные примеси остальное. Суммарное содержание титана, молибдена, кобальта и углерода определено зависимостью: [0,2×Ti+0,1×Mo+0,3×Co-1,0×C]>0, а содержание марганца, никеля и кобальта в стали связано зависимостью: [1,0×Co-0,02×Mn-0,01×Ni]>0, где С, Mn, Ti, Ni, Mo, Со - соответствующее содержание углерода, марганца, титана, никеля, молибдена и кобальта в стали, в мас. %, а 0,2; 0,1; 0,3; 0,01; 0,02; 1,0 - безразмерные эмпирические коэффициенты. Сталь дополнительно содержит 0,002-0,3 мас. % ванадия и/или 0,002-0,3 мас. % ниобия. Сталь имеет среднюю величину удельной демпфирующей способности, измеренной в диапазоне амплитуд упругой деформации от 0,85×10-4 до 1,15×10-4, составляющую от 20 до 50%, и среднюю величину удельной демпфирующей способности, измеренной в диапазоне амплитуд упругой деформации от 2,35×10-4 до 2,65×10-4, составляющую от 11 до 30%. Из указанной демпфирующей стали выполнены изделия. Достигается повышение демпфирующей способности стали. ([Патент RU 2685452, МПК С22С 38/52, опубликован 18.04.2019].
Недостатком этой стали является сравнительно невысокой уровень демпфирующей способности материала в области повышенных амплитуд внешнего знакопеременного нагружения (т.е. в области амплитуд упругой деформации ~3×10-4).
Техническим результатом изобретения является повышение демпфирующей способности стали и изделий, выполненных из нее, в области повышенных амплитуд колебаний (т.е. в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4) при сохранении высокого уровня демпфирования в области малых амплитуд колебаний (т.е. в диапазоне амплитуд упругой деформации от 0,85×10-4 до 1,25×10-4), а также при сохранении уровня ударной вязкости и относительного удлинения.
Указанный технический результат достигается тем, что высокодемпфирующая сталь, содержащая углерод, кремний, марганец, алюминий, титан, кобальт, хром, медь, никель, молибден, серу, фосфор, азот, железо и неизбежные примеси, согласно изобретению, содержит компоненты в следующем соотношении, мас. %:
углерод | не более 0,045 |
кремний | 0,01-0,55 |
марганец | 0,005-0,65 |
алюминий | 3,0-7,7 |
титан | 0,001-0,3 |
кобальт | 0,052-0,095 |
хром | 0,001-0,35 |
медь | не более 0,2 |
никель | не более 0,2 |
молибден | 0,001-0,4 |
сера | не более 0,02 |
фосфор | не более 0,02 |
азот | не более 0,015 |
железо и неизбежные примеси остальное,
при этом суммарное содержание титана, молибдена, кобальта и углерода определено зависимостью:
а содержание марганца, никеля и кобальта в стали связано зависимостью:
где: Ti, Mo, Со, С, Mn. Ni - соответствующее содержание титана, молибдена, кобальта, углерода, марганца, никеля в стали (мас. %), а 0,2, 0,1, 0,9 - безразмерные эмпирические коэффициенты. Сталь дополнительно содержит 0,001-0,35% ванадия. При этом средняя величина удельной демпфирующей способности этой стали, измеренная в диапазоне амплитуд упругой деформации от 0,85×10-4 до 1,25×10-4 составляет от 20 до 50%, а средняя величина удельной демпфирующей способности, измеренная в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4 составляет от 8,5 до 18%. Технический результат достигается также тем, что изделие изготавливают из указанной высокодемпфирующей стали.
Сущность изобретения заключается в следующем.
Введение в сталь кобальта в количестве от 0,052 до 0,095 масс. % улучшает магнитострикционные характеристики материала, что приводит к повышению чувствительности стали к наложению внешней нагрузки и следовательно, к росту ее удельной демпфирующей способности в области повышенных амплитуд колебаний (т.е. в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4) до уровня 8,5-18%.
Увеличение концентрации кобальта в количестве более 0,095% приводит к снижению пластических характеристик стали. Уменьшение содержания кобальта в стали ниже 0,052% не позволяет добиться улучшения магнитострикционных характеристик и демпфирующих свойств стали в области повышенных амплитуд колебаний, т.е. в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4)
Увеличение концентрации алюминия выше 7,7% приводит к резкому снижению технологической пластичности стали, к росту хрупкости и снижению величины ударной вязкости, что налагает ограничения на возможности применения стали на практике. Снижение содержания алюминия ниже 3,0% приводит к снижению механических свойств стали и к уменьшению ее демпфирующих свойств, особенно в области повышенных амплитуд колебаний, т.е. в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4.
Повышение концентрации углерода выше 0,045% приводит к снижению демпфирующих свойств в области повышенных амплитуд колебаний и к повышению хрупкости стали (особенно при пониженных температурах) за счет образования сложных карбидных фаз.
Увеличение концентрации марганца выше 0,65% приводит к снижению пластичности материала. Снижение содержания марганца в стали ниже 0,005%) ухудшает демпфирующие свойства стали в области повышенных амплитуд колебаний, а также ухудшает технологические свойства стали в литом состоянии.
Введение титана приводит к улучшению демпфирующих свойств стали как в области малых, так и в области повышенных амплитуд колебаний. Увеличение содержания титана в стали в количестве более 0,3% негативно влияет на демпфирующие и на пластические характеристики стали. Уменьшение содержания титана в стали ниже 0,001%) не позволяет достигнуть требуемый уровень свойств.
Рост концентрации кремния выше 0,55% приводит к повышению ее хрупкости. Снижение содержания кремния в стали ниже 0,01% негативно отражается на демпфирующих свойствах стали в области повышенных амплитуд колебаний.
Увеличение концентрации хрома выше 0,35% приводит к снижению пластичности. Уменьшение содержания хрома в стали ниже 0,001% негативно отражается не демпфирующей способности стали.
Увеличение содержания никеля в количестве более 0,2% приводит к снижению демпфирующих свойств стали, что особенно сильно проявляется в области повышенных амплитуд колебаний.
Увеличение содержания меди выше 0,2% приводит к снижению демпфирующих свойств материала как в области малых, так и в области повышенных амплитуд колебаний, а также к росту хрупкости стали.
Молибден приводит к улучшению демпфирующих свойств стали как в области малых, так и в области повышенных амплитуд колебаний. Увеличение содержания молибдена выше 0,4% приводит к ухудшению ее пластических характеристик. Уменьшение концентрации молибдена ниже 0,001% не позволяет достигнуть требуемый уровень демпфирующих свойств.
Увеличение содержания фосфора или серы выше 0,02% приводит к ухудшению демпфирующих свойств как в области малых, так и в области повышенных амплитуд колебаний и отрицательно сказывается на пластических характеристиках стали.
Увеличение содержания азота в стали в количестве более 0,015% приводит к ухудшению демпфирующих характеристик и в области малых, и в области повышенных амплитуд колебаний, а также приводит к повышению хрупкости стали.
Титан, молибден, кобальт и углерод влияют на демпфирующие характеристики стали принципиально различным способом. Дисперсные карбиды на основе Fe, дополнительно содержащие Al, препятствуют движению стенок магнитных доменов и негативно влияют на демпфирующую способность стали. Введение мощных карбидообразующих элементов (титана, молибдена и вместе с ними кобальта) изменяет условия карбидообразования в высокодемпфирующей стали и приводит к формированию карбидов в другом температурном интервале. Выполнение условий зависимости приводит к повышению удельной демпфирующей способности стали (особенно в области амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4), а в случае, если значение указанной зависимости становится отрицательным или равным нулю, демпфирующие свойства стали ухудшаются.
Марганец, никель и кобальт влияют на магнитострикционные характеристики высокодемпфирующей стали различным образом. Марганец и никель являются гамма-стабилизирующими элементами в твердых растворах на основе Fe, а введение кобальта корректирует магнитострикционные характеристики материала и повышает тем самым чувствительность доменной структуры материала к наложению внешних упругих напряжений благодаря действию обратного магнитострикционного эффекта. Выполнение условий зависимости приводит к повышению магнитострикционных характеристик материала, что вызывает рост удельной демпфирующей способности стали (особенно в области повышенных амплитуд колебаний), а в случае, если значение указанной зависимости становится отрицательным или равным нулю, магнитострикционные и демпфирующие свойства стали ухудшаются.
Примеры реализации изобретения.
Стали выплавлялись в вакуумных индукционных печах и чистых компонентов. После выплавки стали подвергались горячей пластической деформации при температуре от Т=1150°С до Т=1250°С. Образцы для исследования различных свойств материала отбирались механическим способом от горячекатаного проката, после чего они подвергались термической обработке в вакуумной печи. Все исследования образцов были проведены в термически обработанном состоянии.
Демпфирующая способность образцов исследовалась на установке, собранной по схеме обратного изгибного маятника. Измерения проводились в диапазоне амплитуд упругой деформации от 0,4×10-4 до 5,0×10)-4 при комнатной температуре. Механические свойства сталей исследовались с помощью испытательных машин Instron и ZD 10/90, испытания проводились при комнатной температуре. Ударная вязкость образцов исследовалась в соответствии с ГОСТ 9454-78.
Химические составы сталей с различным содержанием легирующих элементов и примесей приведены в Таблице 1. Свойства сталей приведены в Таблице 2. Примеры №1-7 отражают свойства высокодемпфирующих сталей, соответствующих формуле изобретения. В Примерах №8-16 предложенные признаки изобретения не соблюдаются.
В Таблице 2 величина SDC0,85-1,25 представляет собой среднее значение удельной демпфирующей способности материала, измеренное в диапазоне амплитуд упругой деформации от 0,85×10-4 до 1,25×10-4, а величина SDC2,85-3,15 представляет собой среднее значение удельной демпфирующей способности материала, измеренное в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4. Как следует из Таблицы 1 и Таблицы 2 в случае, если заявленные параметры соблюдаются, то стали обладают повышенной величиной демпфирующей способности в диапазонах амплитуд упругой деформации от 0,85×10-4 до 1,25×10-4 и от 2,85×10-4 до 3,15×10-4.
Из стали №5 были изготовлены изделия - держатель резца для металлорежущего станка и виброизолятор, установленный под прецизионный прибор.
Реализация изобретения позволяет получить высокодемпфирующую сталь, в которой средняя величина удельной демпфирующей способности, измеренная в диапазоне амплитуд упругой деформации от 0,85×10-4 до 1,25×10-4 составляет от 20 до 50%, а средняя величина удельной демпфирующей способности, измеренная в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4 составляет от 8,5 до 18%. Применение заявляемой стали в промышленности позволит снизить уровень шума и вибрации изделий, выполненных из этой стали.
Claims (10)
1. Высокодемпфирующая сталь, содержащая углерод, кремний, марганец, алюминий, титан, кобальт, хром, медь, никель, молибден, серу, фосфор, азот, железо и неизбежные примеси, отличающаяся тем, что она содержит компоненты в следующем соотношении, мас.%:
при этом суммарное содержание титана, молибдена, кобальта и углерода определено зависимостью:
а содержание кобальта, марганца и никеля в стали связано зависимостью:
где Ti, Mo, Со, С, Mn, Ni - соответствующее содержание титана, молибдена, кобальта, углерода, марганца и никеля в стали, мас.%, а 0,2, 0,1, 0,9 - безразмерные эмпирические коэффициенты.
2. Сталь по п. 1, отличающаяся тем, что она дополнительно содержит 0,001-0,35 мас.% ванадия.
3. Сталь по п. 1 или 2, отличающаяся тем, что она имеет среднюю величину удельной демпфирующей способности, измеренной в диапазоне амплитуд упругой деформации от 0,85×10-4 до 1,25×10-4, составляющую от 20 до 50%, и среднюю величину удельной демпфирующей способности, измеренной в диапазоне амплитуд упругой деформации от 2,85×10-4 до 3,15×10-4, составляющую от 8,5 до 18%.
4. Изделие, выполненное из высокодемпфирующей стали, отличающееся тем, что оно выполнено из стали по любому из пп. 1-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019133388A RU2721262C1 (ru) | 2019-10-22 | 2019-10-22 | Высокодемпфирующая сталь с требуемым уровнем демпфирующих свойств и изделие, выполненное из неё |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019133388A RU2721262C1 (ru) | 2019-10-22 | 2019-10-22 | Высокодемпфирующая сталь с требуемым уровнем демпфирующих свойств и изделие, выполненное из неё |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2721262C1 true RU2721262C1 (ru) | 2020-05-18 |
Family
ID=70735343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019133388A RU2721262C1 (ru) | 2019-10-22 | 2019-10-22 | Высокодемпфирующая сталь с требуемым уровнем демпфирующих свойств и изделие, выполненное из неё |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2721262C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52107224A (en) * | 1976-03-08 | 1977-09-08 | Daido Steel Co Ltd | High damping capacity alloy |
JPH03140439A (ja) * | 1989-10-27 | 1991-06-14 | Res Inst Electric Magnetic Alloys | 低い比重、高い硬度および高い減衰能を有する吸振合金 |
SU1723187A1 (ru) * | 1990-06-22 | 1992-03-30 | Кировский Политехнический Институт | Сталь |
RU2623947C1 (ru) * | 2016-05-04 | 2017-06-29 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Демпфирующая сталь и изделие, выполненное из нее |
EP3339460A1 (en) * | 2015-08-17 | 2018-06-27 | Nisshin Steel Co., Ltd. | VIBRATION-DAMPING FERRITIC STAINLESS STEEL MATERIAL HAVING HIGH Al CONTENT, AND PRODUCTION METHOD |
RU2685452C1 (ru) * | 2018-08-09 | 2019-04-18 | Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") | Высокодемпфирующая сталь с регламентированным уровнем демпфирующих свойств и изделие, выполненное из неё |
-
2019
- 2019-10-22 RU RU2019133388A patent/RU2721262C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52107224A (en) * | 1976-03-08 | 1977-09-08 | Daido Steel Co Ltd | High damping capacity alloy |
JPH03140439A (ja) * | 1989-10-27 | 1991-06-14 | Res Inst Electric Magnetic Alloys | 低い比重、高い硬度および高い減衰能を有する吸振合金 |
SU1723187A1 (ru) * | 1990-06-22 | 1992-03-30 | Кировский Политехнический Институт | Сталь |
EP3339460A1 (en) * | 2015-08-17 | 2018-06-27 | Nisshin Steel Co., Ltd. | VIBRATION-DAMPING FERRITIC STAINLESS STEEL MATERIAL HAVING HIGH Al CONTENT, AND PRODUCTION METHOD |
RU2623947C1 (ru) * | 2016-05-04 | 2017-06-29 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Демпфирующая сталь и изделие, выполненное из нее |
RU2685452C1 (ru) * | 2018-08-09 | 2019-04-18 | Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") | Высокодемпфирующая сталь с регламентированным уровнем демпфирующих свойств и изделие, выполненное из неё |
Non-Patent Citations (3)
Title |
---|
МИШНЕВ П.А. и др. Комплекс потребительских свойств высокодемпфирующей стали 01Ю5Т и перспективы ее использования для повышения срока службы вибронагруженного оборудования. БЮЛЛЕТЕНЬ "ЧЕРНАЯ МЕТАЛЛУРГИЯ", 2016 г., N1, с.56-58. ЧУДАКОВ И.Б. Новые промышленные высокодемпфирующие стали. Современные проблемы металловедения. Сборник трудов IV Всероссийской молодежной школы-конференции. М.: "МИСиС", 2016 г. * |
МИШНЕВП.А. и др. Комплекс потребительских свойств высокодемпфирующей стали 01Ю5Т и перспективыее использования для повышения срока службы вибронагруженного оборудования. БЮЛЛЕТЕНЬ "ЧЕРНАЯ МЕТАЛЛУРГИЯ", 2016 г., N1, с.56-58. * |
ЧУДАКОВ И.Б. Новые промышленные высокодемпфирующиестали. Современные проблемы металловедения. Сборник трудов IV Всероссийской молодежнойшколы-конференции. М.: "МИСиС", 2016 г. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2547064C2 (ru) | Малолегированная аустенитная нержавеющая сталь | |
WO2012098938A1 (ja) | 耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼および高強度ボルト | |
JPH0686645B2 (ja) | 熱間加工性に優れたニッケル節減型オーステナイト系ステンレス鋼 | |
JPH0545660B2 (ru) | ||
KR20140033235A (ko) | 스프링 강 및 스프링 | |
JP5347600B2 (ja) | オーステナイト系ステンレス鋼およびオーステナイト系ステンレス鋼板の製造方法 | |
JPH08506623A (ja) | 高強度高靭性ばね鋼およびその製造方法 | |
RU2721262C1 (ru) | Высокодемпфирующая сталь с требуемым уровнем демпфирующих свойств и изделие, выполненное из неё | |
US6270596B1 (en) | Process for producing high strength shaft | |
US5073338A (en) | High strength steel bolts | |
RU2685452C1 (ru) | Высокодемпфирующая сталь с регламентированным уровнем демпфирующих свойств и изделие, выполненное из неё | |
JP2017066460A (ja) | 時効硬化性鋼 | |
JPH0598391A (ja) | 析出硬化型高強度非磁性ステンレス鋼 | |
JP4132545B2 (ja) | 低サイクル疲労特性の優れた高強度・高靭性免震ダンパー用鋼棒 | |
RU2623947C1 (ru) | Демпфирующая сталь и изделие, выполненное из нее | |
US2978319A (en) | High strength, low alloy steels | |
JP3384887B2 (ja) | 強度及び捩り特性に優れたバネ用析出硬化型ステンレス鋼 | |
RU76647U1 (ru) | Вал (варианты) | |
US5173254A (en) | Steel having excellent vibration-dampening properties and weldability | |
JPH05271873A (ja) | 振動減衰特性に優れた鋼 | |
JPH0468374B2 (ru) | ||
JP7544489B2 (ja) | 硬度と靭性のバランスに優れた機械構造用合金鋼 | |
JPH01176056A (ja) | 疲労強度が優れた強靭鋼 | |
JPH04297550A (ja) | 耐遅れ破壊性浸炭肌焼鋼とその製造法 | |
KR970001327B1 (ko) | 프레스 성형성이 우수한 극연질 오스테나이트계 스테인레스강 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MZ4A | Patent is void |
Effective date: 20201221 |