RU2721166C1 - Способ изготовления нитридного светоизлучающего диода - Google Patents

Способ изготовления нитридного светоизлучающего диода Download PDF

Info

Publication number
RU2721166C1
RU2721166C1 RU2019132738A RU2019132738A RU2721166C1 RU 2721166 C1 RU2721166 C1 RU 2721166C1 RU 2019132738 A RU2019132738 A RU 2019132738A RU 2019132738 A RU2019132738 A RU 2019132738A RU 2721166 C1 RU2721166 C1 RU 2721166C1
Authority
RU
Russia
Prior art keywords
layer
ito
nitride semiconductor
transparent conductive
type conductivity
Prior art date
Application number
RU2019132738A
Other languages
English (en)
Inventor
Лев Константинович Марков
Алексей Сергеевич Павлюченко
Ирина Павловна Смирнова
Original Assignee
Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Priority to RU2019132738A priority Critical patent/RU2721166C1/ru
Application granted granted Critical
Publication of RU2721166C1 publication Critical patent/RU2721166C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости. На полученной гетероструктуре формируют прозрачный электропроводящий слой ITO толщиной 100-350 нм электронно-лучевым испарением при температуре подложки (400-500)°С с последующим отжигом в атмосфере газа при давлении, близком к атмосферному. Формируют металлические контакты соответственно на прозрачный электропроводящий слой ITO и на слой нитридного полупроводника n-типа проводимости. После формирования металлических контактов на прозрачный электропроводящий слой ITO наносят слой SiOс удельной поверхностной массой 5-15 мкг/сммагнетронным распылением без нагрева подложки. Изобретение обеспечивает возможность формирования светоизлучающих диодов с увеличенным квантовым выходом за счет получения контактных слоев к поверхности GaN р-типа проводимости, обладающих более высоким коэффициентом пропускания излучения. 2 ил.

Description

Изобретение относится к электронике, а более конкретно к способам изготовления светоизлучающих диодов синего, зеленого и ближнего ультрафиолетового диапазонов.
Тонкие пленки оксида индия и олова (ITO) благодаря оптимальному соотношению прозрачности и электрической проводимости позволяют организовать контакты, обеспечивающие эффективное растекание тока при минимальных оптических потерях в области видимого излучения, и в настоящее время большинство светодиодов на основе AlInGaN используют их в составе прозрачных контактов. Среди основных мер, направленных на увеличение квантового выхода светодиодов с контактами на основе ITO, выступает увеличение коэффициента пропускания света контакта, достигаемое за счет снижения френелевского отражения на границах прозрачного покрытия.
Известен способ изготовления нитридного светоизлучающего диода (см. заявка US 20090315065, МПК H01L 33/00, опубликована 24.12.2009), включающий последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости, первого прозрачного электропроводящего слоя ITO толщиной не более 40 нм, получаемого электронно-лучевым испарением и нагреванием первого прозрачного электропроводящего слоя ITO в атмосфере газа при температуре по меньшей мере 200°С, и второго прозрачного электропроводящего слоя оксида олова, получаемого электронно-лучевым испарением при температуре по меньшей мере 300°С толщиной, большей толщины первого прозрачного электропроводящего слоя ITO.
Известный способ позволяет уменьшить деградацию контакта за счет улучшения электрических характеристик контакта, однако при этом коэффициент пропускания света контакта оказывается недостаточным в силу отражения света на его внешней границе.
Известен способ изготовления светоизлучающего диода (см. заявка US 2013075779, МПК H01L 33/36, H01L 33/42, опубликована 28.03.2013), включающий последовательное формирование на подложке полупроводникового слоя n-типа проводимости, активного слоя, слоя полупроводника р-типа проводимости, первого слоя ITO и второго слоя ITO, толщина которого больше толщины первого слоя ITO. Затем на поверхностях полупроводникового слоя n-типа и второго слоя ITO формируют электроды. Первый слой ITO формируют при концентрации кислорода в камере меньшей, чем при формировании второго слоя ITO (скорость натекания кислорода в камеру составляет менее 7 стандартных кубических сантиметров в минуту при формировании первого слоя и более 7 стандартных кубических сантиметров в минуту при формировании второго слоя). Толщина первого слоя ITO может составлять менее 500
Figure 00000001
, а толщина второго слоя ITO может быть (1000-5000)
Figure 00000001
.
Недостатком известного способа изготовления светоизлучающего диода является значительное отражение света от внешней поверхности прозрачного проводящего контакта, что приводит к уменьшению вывода света и падению квантового выхода светодиода.
Известен способ изготовления нитридного светоизлучающего диода (см. заявка CN 107706278, МПК С30В 25/02, H01l 33/42, опубликована 16.02.2018), включающий химическую очистку светоизлучающей гетероструктуры при температуре не менее 500°С с последующим эпитаксиальным выращиванием прозрачной проводящей пленки ITO химическим осаждением из паровой фазы методом разложения металлоорганических соединений (MOCVD), проводимым в 2 этапа при различных режимах нанесения материала. На первом этапе формируют более тонкий переходный слой с различным содержанием In и Sn в отсутствии потока кислорода, а на втором формируют основной, более толстый слой ITO с потоком кислорода в реакторе. Оба процесса проводят при температуре 400-600°С и давлении в реакторе (6-80) Торр. Способ используют для создания прозрачных проводящих контактов светодиодов ультрафиолетового диапазона.
Недостатками известного способа являются: использование метода MOCVD для создания пленки ITO, поскольку данный метод является дорогостоящим и требующим особых мер безопасности при обращении с реагентами, используемыми в процессе нанесения слоев, а также отсутствие специально созданного рельефа на внешней границе пленки ITO, что также препятствует эффективному выводу света из светодиода.
Известен способ изготовления светоизлучающего диода (см. заявка CN 106229392, МПК С23С 14/08, С23С 14/30, H01L 21/324, H01L 33/00, H01L 33/42, опубликована 14.12.2016), включающий последовательное нанесение на поверхности эпитаксиальной светодиодной структуры методом электронно-лучевого испарения первого слоя ITO толщиной менее 400
Figure 00000001
в отсутствии кислорода в камере и второго слоя ITO толщиной (200-800)
Figure 00000001
при потоке кислорода в камере 5-22 стандартных кубических сантиметров в минуту. Такой способ нанесения способствует созданию лучшей защиты светодиодов от электростатических разрядов.
В изготовленном известным способом светоизлучающем диоде часть света отражается от внешней поверхности прозрачного проводящего контакта, что приводит к уменьшению вывода света и падению квантового выхода светодиода.
Известен способ изготовления нитридного светоизлучающего диода (см. патент CN 105140368, МПК H01L 33/38, H01L 33/4220, опубликован 17.11.2017), включающий последовательное нанесение на поверхности эпитаксиальной структуры первого слоя ITO толщиной (5-30) нм при температуре 280-320°С, с последующим отжигом при температуре (520-560)°С в течение 3-10 минут, и второго слоя ITO толщиной 30-300 нм при температуре (280-320)°С.
Способ позволяет снизить рабочие напряжения светодиода и уменьшить толщину слоя ITO, однако при этом имеет место большая величина отраженного света от внешней поверхности прозрачного проводящего контакта, что приводит к уменьшению вывода света и падению квантового выхода светодиода.
Известен способ изготовления нитридного светоизлучающего диода (см. патент CN 102738345, МПК H01L 33/42, опубликован 07.01.2015) включающий последовательное нанесение на поверхность эпитаксиальной структуры нескольких слоев ITO. Первый слой толщиной (1-100)
Figure 00000001
наносят методом электронно-лучевого испарения, слой представляет собой, пористую пленку, не полностью закрывающую поверхность гетероструктуры. Поверх нее методом ионного распыления наносят вторую пленку ITO. Для уменьшения влияния частиц с высокой энергией на р-поверхность гетероструктуры вторая пленка ITO состоит из двух слоев, наносимых при разных энергиях ионов в пучке. Первый слой толщиной 10-200
Figure 00000001
наносят при меньших значениях энергии ионов, а второй, толщиной 60-1200
Figure 00000001
, при более высоких значениях энергии. Способ позволяет регулировать растекание тока по поверхности активной области светодиода.
Недостатком известного способа является использование ионного распыления. Поскольку первый слой ITO лишь частично закрывает поверхность гетероструктуры, полное контактное сопротивление на поверхности гетероструктура - слой ITO будет возрастать. Другим недостатком известного способа является значительное отражение света от внешней поверхности прозрачного проводящего контакта, что приводит к уменьшению вывода света и падению квантового выхода светодиода.
Известен способ изготовления нитридного светоизлучающего диода (см. патент RU 2690036, МПК H01L 33/32, опубликован 30.05.2019), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Способ-прототип включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости, первого прозрачного электропроводящего слоя оксида индия олова (ITO), полученного электроннолучевым испарением с промежуточным отжигом в атмосфере газа при давлении, близком к атмосферному, состоящего из слоя ITO толщиной (70-300) нм, формируемого при температуре подложки (15-75)°С на котором формируют дополнительный прозрачный электропроводящий слой ITO электронно-лучевым испарением толщиной (100-300) нм при температуре подложки (400-500)°С, и второго прозрачного электропроводящего слоя ITO толщиной (30-200) нм, полученного магнетронным распылением мишени с последующим отжигом всей структуры при давлении газа, близком к атмосферному, и формирование металлических контактов соответственно на слое нитридного полупроводника n-типа проводимости на и на втором прозрачном электропроводящем слое ITO.
Известный способ-прототип позволяет повысить квантовую эффективность светодиодов за счет увеличения коэффициента пропускания света контактов, что достигается формированием профиля эффективного показателя преломления света, способствующего лучшему выводу света из контакта. Для достижения наилучшего вывода света эффективный показатель преломления должен монотонно меняться от одного до другого значения показателей преломления ограничивающих контакт сред. Однако, высокое значение показателя преломления материала ITO (2,06 на длине волны излучения 400 нм) затрудняет создание известным способом среды с малым значением показателя преломления даже при высокой пористости материала.
Задачей настоящего технического решения является разработка способа изготовления нитридного светоизлучающего диода, имеющего увеличенный квантовый выход за счет увеличения коэффициента пропускания света контакта.
Поставленная задача решается тем, что способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости, прозрачного электропроводящего слоя оксида индия олова (ITO) толщиной (100-350) нм электронно-лучевым испарением при температуре подложки (400-500)°С с последующим отжигом при давлении газа, близком к атмосферному, формирование металлических контактов соответственно на слое нитридного полупроводника n-типа проводимости и на прозрачном электропроводящем слое ITO, и нанесение на прозрачный электропроводящий слой ITO слоя диоксида кремния (SiO2) с удельной поверхностной массой 5-15 мкг/см2 магнетронным распылением мишени.
Новым в способе является то, что прозрачный электропроводящий слой ITO формируют толщиной (100-350) нм при температуре подложки (400-500)°С, наносят слой диоксида кремния (SiO2) с удельной поверхностной массой 5-15 мкг/см2 магнетронным распылением мишени после формирования металлического контакта на прозрачном электропроводящем слое ITO.
При нанесении прозрачного проводящего слоя ITO электронно-лучевым испарением при нагреве подложки выше температуры кристаллизации ITO (400-500)°С структура нанесенного слоя материала характеризуется наличием вытянутых (нитевидных) кристаллов и содержит большое количество пустот. Соответственно, их плотность существенно ниже плотности неструктурированных плотноупакованных пленок. Эффективный показатель преломления такого слоя монотонно убывает в направлении, перпендикулярном плоскости подложки, что создает просветляющий эффект в широком диапазоне длин волн (400-1400 нм). Следует наносить слой прозрачного проводящего ITO толщиной (100-350) нм. Более тонкие слои не будут обладать достаточным просветляющим эффектом и могут иметь слишком высокое поверхностное сопротивление. Нитевидные кристаллы более толстых слоев будет невозможно равномерно покрыть слоем диоксида кремния на следующем этапе создания покрытия. Для обеспечения требуемых свойств полученного покрытия в отношении прозрачности осуществляют последующий отжиг прозрачного проводящего слоя ITO.
При нанесении на полученный ранее слой прозрачного проводящего материала ITO диоксида кремния (SiO2) магнетронным распылением мишени без нагрева подложки (при комнатной температуре) происходит формирование тонкого слоя материала SiO2 на поверхности нитевидных кристаллов ITO, что приводит к дополнительному увеличению коэффициента пропускания света покрытия во всем рассматриваемом диапазоне длин волн (400-1400 нм). Требуемые значения массы материала диоксида кремния, наносимого при осуществлении второй стадии процесса напыления, предварительно определяют экспериментально из условия достижения наиболее равномерного покрытия нитевидных кристаллов ITO слоем диоксида кремния. Следует наносить пленку диоксида кремния с удельной поверхностной массой 5-15 мкг/см2. Меньшие значения не создадут требуемого слоя вокруг нитевидных кристаллов. Большие значения приведут к нанесению избыточного количества материала на вершинах нитевидных кристаллов с последующим их сращиванием и образованием поверхностного слоя диоксида кремния, что приведет к потере монотонности эффективного показателя преломления покрытия и ухудшению эффекта просветления. Варьируя массу напыляемого оксида индия и олова и диоксида кремния, при осуществлении каждой из описанных выше операций, можно добиться оптимальной величины коэффициента пропускания света покрытия во всем рассматриваемом диапазоне длин волн.
Настоящий способ изготовления нитридного светоизлучающего диода поясняется чертежом, где:
на фиг. 1 приведена зависимость коэффициента пропускания образца с прозрачным проводящим контактом ITO/SiO2, полученным настоящим способом, от длины волны излучения;
на фиг. 2 показано изображение поперечного скола прозрачного проводящего контакта ITO/SiO2, изготовленного настоящим способом, полученное с помощью растрового электронного микроскопа.
Настоящий способ изготовления нитридного светоизлучающего диода осуществляют следующим образом. На диэлектрической подложке, например сапфировой (Al2O3), последовательно выращивают, например, методом газофазной эпитаксии из паров металлорганических соединений слой нитридного полупроводника n-типа проводимости, например, из GaN, легированного Si, толщиной (3500-6000) нм, активный слой нитридного полупроводника, например, толщиной (5-50) нм с одной или несколькими ямами из InxGa1-xN, разделенных барьерами из GaN и слой нитридного полупроводника р-типа проводимости, например, из GaN, легированного Mg, толщиной (100-200) нм. Реактивным ионным травлением (RIE) или травлением в индуктивно-связанной плазме (ICP) вытравливают участки активного слоя и слоя слой нитридного полупроводника р-типа проводимости для получения доступа к слою нитридного полупроводника n-типа проводимости. Электронно-лучевым испарением при температуре подложки (400-500)°С наносят прозрачный электропроводящий слой ITO (In2O3 90 мас. %+SnO2 10 мас. %) толщиной (100-350) нм. Полученный прозрачный электропроводящий слой ITO подвергают отжигу в атмосфере газа (например, азот, аргон, их смеси с кислородом и др.) при давлении, близком к атмосферному, при температуре подложки, например, 500°С для получения максимальной прозрачности слоя. Затем наносят металлические контакты (например, из Ni/Au или из Ti/Au или из Ti/Ag, или из Ti/Al минимальной площади для улучшения растекания тока и присоединения токовых электродов) в виде контактных площадок толщиной (1500-3000) нм соответственно на прозрачный электропроводящий слой ITO и на слой нитридного полупроводника n-типа проводимости. После этого наносят магнетронным распылением на прозрачный электропроводящий слой ITO прозрачный слой SiO2 с удельной поверхностной массой 5-15 мкг/см2, в результате чего формируют прозрачный проводящий контакт ITO/SiO2 с требуемым профилем эффективного показателя преломления.
Пример 1. На сапфировой (Al2O3) подложке, последовательно методом MOCVD были выращены: слой нитридного полупроводника n-типа проводимости из GaN, легированного Si, толщиной 5000 нм, активный слой нитридного полупроводника толщиной 20 нм с 5 квантовыми ямами из InxGa1-xN, разделенных барьерами из GaN, и слой нитридного полупроводника р-типа проводимости из GaN, легированного Mg, толщиной 100 нм. Реактивным ионным травлением были вытравлены участки активного слоя и слоя нитридного полупроводника р-типа проводимости для получения доступа к слою нитридного полупроводника n-типа проводимости. Электронно-лучевым испарением на полученную гетероструктуру при температуре подложки 500°С был нанесен прозрачный электропроводящий слой ITO (In2O3 90 мас. %+SnO2 10 мас. %) толщиной 150 нм. Прозрачный электропроводящий слой ITO отжигали в атмосфере азота при давлении, близком к атмосферному, при температуре подложки 500°С. Затем были нанесены металлические контакты из Ti/Au для улучшения растекания тока и присоединения токовых электродов в виде контактных площадок толщиной 3000 нм соответственно на прозрачный электропроводящий слой ITO и на слой нитридного полупроводника n-типа проводимости. Затем был нанесен магнетронным распылением при комнатной температуре на прозрачный электропроводящий слой ITO прозрачный слой SiO2 с удельной поверхностной массой 7,8 мкг/см2. Для изучения оптических характеристик контактов их в том же процессе наносили на покровное стекло толщиной 0,17 мм, поскольку, из-за поглощения излучения в активном слое гетероструктуры, измерение на гетероструктуре невозможно. Зависимость коэффициента пропускания образца с прозрачным проводящим контактом ITO/SiO2 от длины волны излучения при нормальном падении света на плоскость контакта приведена на чертеже (фиг. 1). Как показали исследования, осуществленные с помощью сканирующей электронной микроскопии, слой SiO2 равномерно покрывает нитевидные кристаллы ITO (фиг. 2). Коэффициент пропускания образца на длине волны излучения 460 нм (типичная длина волны светодиодов состава AlInGaN) составил 90,4%.
Пример 2. Изготавливали нитридный светоизлучающий диод, как описано в примере 1. При этом осуществляли операцию изготовления прозрачного проводящего контакта ITO/SiO2 следующим образом: электронно-лучевым испарением на полученную гетероструктуру при температуре подложки 450°С был нанесен прозрачный электропроводящий слой ITO (In2O3 90 мас. %+SnO2 10 мас. %) толщиной 100 нм. Прозрачный электропроводящий слой ITO отжигали в атмосфере азота при давлении, близком к атмосферному, при температуре подложки 450°С. Затем были нанесены металлические контакты из Ti/Au для улучшения растекания тока и присоединения токовых электродов в виде контактных площадок толщиной 2500 нм соответственно на прозрачный электропроводящий слой ITO и на слой нитридного полупроводника n-типа проводимости. Затем был нанесен магнетронным распылением при комнатной температуре на прозрачный электропроводящий слой ITO прозрачный слой SiO2 с удельной поверхностной массой 5 мкг/см2. Изучение оптических характеристик контакта так же, как и в примере 1, проводили на покровном стекле толщиной 0,17 мм. Коэффициент пропускания образца на длине волны излучения 460 нм составил 90,3%.
Пример 3. Изготавливали нитридный светоизлучающий диод, как описано в примере 1. При этом осуществляли операцию изготовления прозрачного проводящего контакта ITO/SiO2 следующим образом: электронно-лучевым испарением на полученную гетероструктуру при температуре подложки 400°С был нанесен прозрачный электропроводящий слой ITO (In2O3 90 мас. %+SnO2 10 мас. %) толщиной 350 нм. Прозрачный электропроводящий слой ITO отжигали в атмосфере азота при давлении, близком к атмосферному, при температуре подложки 400°С. Затем были нанесены металлические контакты из Ti/Au для улучшения растекания тока и присоединения токовых электродов в виде контактных площадок толщиной 2500 нм соответственно на прозрачный электропроводящий слой ITO и на слой нитридного полупроводника n-типа проводимости. Затем был нанесен магнетронным распылением при комнатной температуре на прозрачный электропроводящий слой ITO прозрачный слой SiO2 с удельной поверхностной массой 15 мкг/см2. Изучение оптических характеристик контакта также, как и в примере 1, проводили на покровном стекле толщиной 0,17 мм. Коэффициент пропускания образца на длине волны излучения 460 нм составил 90,0%.

Claims (1)

  1. Способ изготовления нитридного светоизлучающего диода, включающий последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости, прозрачного электропроводящего слоя оксида индия и олова (ITO) электронно-лучевым испарением с промежуточным отжигом в атмосфере газа при давлении, близком к атмосферному, и формирование металлических контактов соответственно на слое нитридного полупроводника n-типа проводимости и на прозрачном электропроводящем слое ITO, отличающийся тем, что прозрачный электропроводящий слой ITO формируют толщиной (100-350) нм при температуре подложки (400-500)°С, а после формирования металлических контактов на прозрачный электропроводящий слой ITO наносят слой диоксида кремния (SiO2) с удельной поверхностной массой 5-15 мкг/см2 магнетронным распылением мишени.
RU2019132738A 2019-10-14 2019-10-14 Способ изготовления нитридного светоизлучающего диода RU2721166C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019132738A RU2721166C1 (ru) 2019-10-14 2019-10-14 Способ изготовления нитридного светоизлучающего диода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019132738A RU2721166C1 (ru) 2019-10-14 2019-10-14 Способ изготовления нитридного светоизлучающего диода

Publications (1)

Publication Number Publication Date
RU2721166C1 true RU2721166C1 (ru) 2020-05-18

Family

ID=70735119

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019132738A RU2721166C1 (ru) 2019-10-14 2019-10-14 Способ изготовления нитридного светоизлучающего диода

Country Status (1)

Country Link
RU (1) RU2721166C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747132C1 (ru) * 2020-08-21 2021-04-28 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления нитридного светоизлучающего диода
RU2755769C1 (ru) * 2021-02-25 2021-09-21 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления светоизлучающего диода

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129919A (ja) * 1995-10-27 1997-05-16 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2005197560A (ja) * 2003-12-29 2005-07-21 ▲さん▼圓光電股▲ふん▼有限公司 窒化ガリウム系発光ダイオードの製造方法
CN102157640A (zh) * 2011-03-17 2011-08-17 中国科学院半导体研究所 具有p-GaN层表面粗化的GaN基LED芯片的制作方法
CN102709426A (zh) * 2012-06-11 2012-10-03 华灿光电股份有限公司 一种表面粗化的GaN基LED芯片的制作方法
RU2494498C2 (ru) * 2011-02-24 2013-09-27 Юрий Георгиевич Шретер Светоизлучающее полупроводниковое устройство
RU2530487C1 (ru) * 2013-06-04 2014-10-10 Федеральное государственное бюджетное учреждение науки "Научно-технологический центр микроэлектроники и субмикронных гетероструктур Российской академии наук" Способ изготовления нитридного светоизлучающего диода
RU2690036C1 (ru) * 2018-07-25 2019-05-30 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления нитридного светоизлучающего диода

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129919A (ja) * 1995-10-27 1997-05-16 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2005197560A (ja) * 2003-12-29 2005-07-21 ▲さん▼圓光電股▲ふん▼有限公司 窒化ガリウム系発光ダイオードの製造方法
RU2494498C2 (ru) * 2011-02-24 2013-09-27 Юрий Георгиевич Шретер Светоизлучающее полупроводниковое устройство
CN102157640A (zh) * 2011-03-17 2011-08-17 中国科学院半导体研究所 具有p-GaN层表面粗化的GaN基LED芯片的制作方法
CN102709426A (zh) * 2012-06-11 2012-10-03 华灿光电股份有限公司 一种表面粗化的GaN基LED芯片的制作方法
RU2530487C1 (ru) * 2013-06-04 2014-10-10 Федеральное государственное бюджетное учреждение науки "Научно-технологический центр микроэлектроники и субмикронных гетероструктур Российской академии наук" Способ изготовления нитридного светоизлучающего диода
RU2690036C1 (ru) * 2018-07-25 2019-05-30 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления нитридного светоизлучающего диода

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747132C1 (ru) * 2020-08-21 2021-04-28 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления нитридного светоизлучающего диода
RU2755769C1 (ru) * 2021-02-25 2021-09-21 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления светоизлучающего диода

Similar Documents

Publication Publication Date Title
US6806503B2 (en) Light-emitting diode and laser diode having n-type ZnO layer and p-type semiconductor laser
CN100568548C (zh) 半导体发光元件及其制造方法
US9070839B2 (en) Method of manufacturing a light emitting diode
US20080315229A1 (en) Light-Emitting Device Comprising Conductive Nanorods as Transparent Electrodes
JP2004022625A (ja) 半導体デバイス及び該半導体デバイスの製造方法
JP2006236997A (ja) 発光デバイスおよびその製造方法
RU2721166C1 (ru) Способ изготовления нитридного светоизлучающего диода
US20080142810A1 (en) Self assembled controlled luminescent transparent conductive photonic crystals for light emitting devices
CN101093866A (zh) 氮化物半导体发光器件的透明电极及其制法
JP2003168822A (ja) 発光素子及びその製造方法
CN102195234B (zh) n型ZnO和p型GaN组合ZnO基垂直腔面发射激光器及制备方法
RU2690036C1 (ru) Способ изготовления нитридного светоизлучающего диода
US20050167681A1 (en) Electrode layer, light emitting device including the same, and method of forming the electrode layer
JP7450127B2 (ja) 発光ダイオード装置
US8723199B2 (en) Radiation emitting body and method for producing a radiation-emitting body
CN100452464C (zh) 氮化物半导体发光器件和制备氮化物半导体激光器的方法
US9412904B2 (en) Structured substrate for LEDs with high light extraction
RU2530487C1 (ru) Способ изготовления нитридного светоизлучающего диода
KR100716752B1 (ko) 발광 소자와 이의 제조 방법
RU2747132C1 (ru) Способ изготовления нитридного светоизлучающего диода
KR100621918B1 (ko) 투명 전도성 나노막대를 전극으로 포함하는 발광소자
KR20210057824A (ko) 초저 누설 전류를 갖는 마이크로-led
KR100308419B1 (ko) 질화갈륨계발광소자의전극제작방법
KR20130068448A (ko) 발광다이오드
JP2012136759A (ja) Ito膜およびその製造方法、半導体発光素子およびその製造方法