RU2720440C1 - Способ сегментации изображения с использованием нейронной сети - Google Patents
Способ сегментации изображения с использованием нейронной сети Download PDFInfo
- Publication number
- RU2720440C1 RU2720440C1 RU2019108609A RU2019108609A RU2720440C1 RU 2720440 C1 RU2720440 C1 RU 2720440C1 RU 2019108609 A RU2019108609 A RU 2019108609A RU 2019108609 A RU2019108609 A RU 2019108609A RU 2720440 C1 RU2720440 C1 RU 2720440C1
- Authority
- RU
- Russia
- Prior art keywords
- image
- images
- adjacent
- stack
- dimensional
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
- G06T2207/10012—Stereo images
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30028—Colon; Small intestine
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30081—Prostate
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Quality & Reliability (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Radiation-Therapy Devices (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/248,490 | 2016-08-26 | ||
| US15/248,490 US9947102B2 (en) | 2016-08-26 | 2016-08-26 | Image segmentation using neural network method |
| PCT/US2017/048245 WO2018039368A1 (en) | 2016-08-26 | 2017-08-23 | Image segmentation using neural network method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| RU2720440C1 true RU2720440C1 (ru) | 2020-04-29 |
Family
ID=59791164
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| RU2019108609A RU2720440C1 (ru) | 2016-08-26 | 2017-08-23 | Способ сегментации изображения с использованием нейронной сети |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9947102B2 (enExample) |
| EP (1) | EP3504681B1 (enExample) |
| JP (1) | JP6884853B2 (enExample) |
| CN (1) | CN109906470B (enExample) |
| AU (1) | AU2017315674B2 (enExample) |
| RU (1) | RU2720440C1 (enExample) |
| WO (1) | WO2018039368A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2852459C1 (ru) * | 2025-06-02 | 2025-12-08 | Государственное Бюджетное Учреждение Здравоохранения Города Москвы "Московский Многопрофильный Научно-Клинический Центр Имени С.П. Боткина" Департамента Здравоохранения Города Москвы (Гбуз Ммнкц Им. С.П. Боткина Дзм) | Способ оценки фактического анатомического объема остаточной паренхимы печени перед обширными резекциями печени с использованием технологии компьютерного зрения |
Families Citing this family (92)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10853449B1 (en) * | 2016-01-05 | 2020-12-01 | Deepradiology, Inc. | Report formatting for automated or assisted analysis of medical imaging data and medical diagnosis |
| US10503998B2 (en) * | 2016-11-07 | 2019-12-10 | Gracenote, Inc. | Recurrent deep neural network system for detecting overlays in images |
| US10580131B2 (en) * | 2017-02-23 | 2020-03-03 | Zebra Medical Vision Ltd. | Convolutional neural network for segmentation of medical anatomical images |
| EP3568811B1 (en) * | 2017-02-24 | 2024-10-16 | DeepMind Technologies Limited | Training machine learning models |
| US11157131B2 (en) * | 2017-02-24 | 2021-10-26 | Vrad Inc. | Virtual reality-based radiology practice apparatus and method |
| US10373313B2 (en) * | 2017-03-02 | 2019-08-06 | Siemens Healthcare Gmbh | Spatially consistent multi-scale anatomical landmark detection in incomplete 3D-CT data |
| JP6915349B2 (ja) * | 2017-04-04 | 2021-08-04 | コニカミノルタ株式会社 | 画像処理装置、画像処理方法、及び画像処理プログラム |
| KR102475826B1 (ko) * | 2017-04-21 | 2022-12-09 | 삼성메디슨 주식회사 | 영상 분할 방법 및 그 전자 장치 |
| CN108304936B (zh) * | 2017-07-12 | 2021-11-16 | 腾讯科技(深圳)有限公司 | 机器学习模型训练方法和装置、表情图像分类方法和装置 |
| US10902559B2 (en) * | 2017-08-04 | 2021-01-26 | Outward, Inc. | Machine learning based image processing techniques |
| JP6659641B2 (ja) * | 2017-09-13 | 2020-03-04 | ファナック株式会社 | 3次元モデル作成装置 |
| US10692602B1 (en) * | 2017-09-18 | 2020-06-23 | Deeptradiology, Inc. | Structuring free text medical reports with forced taxonomies |
| US10496884B1 (en) | 2017-09-19 | 2019-12-03 | Deepradiology Inc. | Transformation of textbook information |
| US10499857B1 (en) | 2017-09-19 | 2019-12-10 | Deepradiology Inc. | Medical protocol change in real-time imaging |
| WO2019138001A1 (en) | 2018-01-10 | 2019-07-18 | Institut de Recherche sur les Cancers de l'Appareil Digestif - IRCAD | Automatic segmentation process of a 3d medical image by one or several neural networks through structured convolution according to the anatomic geometry of the 3d medical image |
| WO2019137997A1 (en) | 2018-01-10 | 2019-07-18 | Institut de Recherche sur les Cancers de l'Appareil Digestif - IRCAD | Automatic segmentation process of a 3d medical image by several neural networks through structured convolution according to the geometry of the 3d medical image |
| US10393842B1 (en) * | 2018-02-20 | 2019-08-27 | The Board Of Trustees Of The Leland Stanford Junior University | Highly-scalable image reconstruction using deep convolutional neural networks with bandpass filtering |
| JP7022195B2 (ja) * | 2018-02-28 | 2022-02-17 | 富士フイルム株式会社 | 機械学習装置、方法およびプログラム並びに記録媒体 |
| CN108446730B (zh) * | 2018-03-16 | 2021-05-28 | 推想医疗科技股份有限公司 | 一种基于深度学习的ct肺结节检测装置 |
| CN108830854A (zh) * | 2018-03-22 | 2018-11-16 | 广州多维魔镜高新科技有限公司 | 一种图像分割方法及存储介质 |
| JP6996413B2 (ja) * | 2018-04-27 | 2022-01-17 | トヨタ自動車株式会社 | 解析装置および解析プログラム |
| CN108734222B (zh) * | 2018-05-24 | 2021-06-15 | 西南大学 | 基于校对网络的卷积神经网络图像分类方法 |
| EP3807814A4 (en) * | 2018-06-15 | 2022-03-16 | Subtle Medical, Inc. | MAGNETIC RESONANCE IMAGING STANDARDIZATION SYSTEMS AND METHODS USING DEEP LEARNING |
| CN108932720A (zh) * | 2018-07-24 | 2018-12-04 | 深圳先进技术研究院 | 一种磁共振图像的颅内斑块和颈动脉斑块智能分割方法 |
| US11486950B2 (en) * | 2018-08-01 | 2022-11-01 | General Electric Company | Systems and methods for automated graphical prescription with deep neural networks |
| JP2020025730A (ja) * | 2018-08-10 | 2020-02-20 | キヤノン株式会社 | 画像処理装置、画像処理方法、およびプログラム |
| CN110874170A (zh) * | 2018-08-31 | 2020-03-10 | 杭州海康威视数字技术股份有限公司 | 一种图像区域修正方法、图像分割方法及装置 |
| CN111091524A (zh) * | 2018-10-08 | 2020-05-01 | 天津工业大学 | 基于深度卷积神经网络的前列腺经直肠超声图像分割方法 |
| CN109473168A (zh) * | 2018-10-09 | 2019-03-15 | 五邑大学 | 一种医学影像机器人及其控制、医学影像识别方法 |
| CN111062952B (zh) | 2018-10-16 | 2022-09-30 | 腾讯科技(深圳)有限公司 | 肺部图像分割设备、方法及存储介质 |
| CN109188700B (zh) * | 2018-10-30 | 2021-05-11 | 京东方科技集团股份有限公司 | 光学显示系统及ar/vr显示装置 |
| US11301748B2 (en) | 2018-11-13 | 2022-04-12 | International Business Machines Corporation | Automatic feature extraction from aerial images for test pattern sampling and pattern coverage inspection for lithography |
| US11995854B2 (en) * | 2018-12-19 | 2024-05-28 | Nvidia Corporation | Mesh reconstruction using data-driven priors |
| US10937206B2 (en) | 2019-01-18 | 2021-03-02 | Canon Medical Systems Corporation | Deep-learning-based scatter estimation and correction for X-ray projection data and computer tomography (CT) |
| US10325179B1 (en) * | 2019-01-23 | 2019-06-18 | StradVision, Inc. | Learning method and learning device for pooling ROI by using masking parameters to be used for mobile devices or compact networks via hardware optimization, and testing method and testing device using the same |
| US10311578B1 (en) * | 2019-01-23 | 2019-06-04 | StradVision, Inc. | Learning method and learning device for segmenting an image having one or more lanes by using embedding loss to support collaboration with HD maps required to satisfy level 4 of autonomous vehicles and softmax loss, and testing method and testing device using the same |
| CN113728335A (zh) * | 2019-02-08 | 2021-11-30 | 新加坡健康服务有限公司 | 用于3d图像的分类和可视化的方法和系统 |
| CN109740697B (zh) * | 2019-03-05 | 2023-04-14 | 重庆大学 | 基于深度学习的尿沉渣显微图像有形成分识别方法 |
| JP6815431B2 (ja) * | 2019-03-26 | 2021-01-20 | 株式会社ダイヘン | 塗装面検査装置、及びプログラム |
| JP7269778B2 (ja) * | 2019-04-04 | 2023-05-09 | 富士フイルムヘルスケア株式会社 | 超音波撮像装置、および、画像処理装置 |
| EP3726460B1 (en) * | 2019-04-06 | 2023-08-23 | Kardiolytics Inc. | Autonomous segmentation of contrast filled coronary artery vessels on computed tomography images |
| US10839955B2 (en) | 2019-04-16 | 2020-11-17 | International Medical Solutions, Inc. | Methods and systems for electronically receiving, modifying and distributing three-dimensional medical images |
| US12141694B2 (en) | 2019-04-23 | 2024-11-12 | The Johns Hopkins University | Abdominal multi-organ segmentation with organ-attention networks |
| US11062183B2 (en) * | 2019-05-21 | 2021-07-13 | Wipro Limited | System and method for automated 3D training content generation |
| CN110443268B (zh) * | 2019-05-30 | 2022-02-08 | 杭州电子科技大学 | 一种基于深度学习的肝部ct图像良性恶性分类方法 |
| CN110197712B (zh) * | 2019-06-05 | 2023-09-15 | 桂林电子科技大学 | 一种医学图像储存系统及储存方法 |
| US12154354B2 (en) | 2019-06-12 | 2024-11-26 | Carnegie Mellon University | System and method for labeling ultrasound data |
| US11508079B2 (en) * | 2019-06-28 | 2022-11-22 | Intel Corporation | Parallelism in disparity map generation |
| JPWO2021002356A1 (enExample) * | 2019-07-02 | 2021-01-07 | ||
| US11308623B2 (en) | 2019-07-09 | 2022-04-19 | The Johns Hopkins University | System and method for multi-scale coarse-to-fine segmentation of images to detect pancreatic ductal adenocarcinoma |
| CN110243827B (zh) * | 2019-07-18 | 2020-11-20 | 华中科技大学 | 一种适用于光透明样本的快速三维成像方法 |
| CN110427954A (zh) * | 2019-07-26 | 2019-11-08 | 中国科学院自动化研究所 | 基于肿瘤影像的多区域的影像组学特征提取方法 |
| CN110490878A (zh) * | 2019-07-29 | 2019-11-22 | 上海商汤智能科技有限公司 | 图像处理方法及装置、电子设备和存储介质 |
| US11238580B2 (en) * | 2019-08-29 | 2022-02-01 | Varian Medical Systems International Ag | Systems and methods for image cropping and anatomical structure segmentation in medical imaging |
| JP2021047711A (ja) * | 2019-09-19 | 2021-03-25 | キオクシア株式会社 | 演算装置、演算方法、及び学習方法 |
| WO2021052552A1 (en) * | 2019-09-20 | 2021-03-25 | Brainlab Ag | Training a machine learning algorithm using digitally reconstructed radiographs |
| JP7453767B2 (ja) * | 2019-09-25 | 2024-03-21 | キヤノン株式会社 | 情報処理装置、情報処理方法 |
| US20220375099A1 (en) * | 2019-10-10 | 2022-11-24 | Koninklijke Philips N.V. | Segmentating a medical image |
| US11144790B2 (en) * | 2019-10-11 | 2021-10-12 | Baidu Usa Llc | Deep learning model embodiments and training embodiments for faster training |
| KR102624027B1 (ko) * | 2019-10-17 | 2024-01-11 | 삼성전자주식회사 | 영상 처리 장치 및 방법 |
| US11836921B2 (en) * | 2019-10-28 | 2023-12-05 | Ai4Medimaging—Medical Solutions, S.A. | Artificial-intelligence-based global cardiac motion classification |
| EP3816933B1 (en) * | 2019-10-28 | 2021-09-08 | AI4Medimaging - Medical Solutions, S.A. | Artificial intelligence based cardiac motion classification |
| GB201916371D0 (en) * | 2019-11-11 | 2019-12-25 | Five Ai Ltd | 3D object detection |
| WO2021096991A1 (en) | 2019-11-11 | 2021-05-20 | The Johns Hopkins University | Early detection of pancreatic neoplasms using cascaded machine learning models |
| KR102394757B1 (ko) * | 2019-12-10 | 2022-05-06 | (주)헬스허브 | 복수의 축 상에서 오브젝트를 탐색하여 결합하는 결합 인공지능 세그먼테이션 방법 및 그 장치 |
| CN111192320B (zh) * | 2019-12-30 | 2023-07-25 | 上海联影医疗科技股份有限公司 | 一种位置信息确定方法、装置、设备和存储介质 |
| CN111091575B (zh) * | 2019-12-31 | 2022-10-18 | 电子科技大学 | 一种基于强化学习方法的医学图像分割方法 |
| CN111275714B (zh) * | 2020-01-13 | 2022-02-01 | 武汉大学 | 一种基于注意力机制的3d卷积神经网络的前列腺mr图像分割方法 |
| GB202003239D0 (en) * | 2020-03-05 | 2020-04-22 | Mirada Medical Ltd | System and method for interactive contouring of medical images |
| CN111462086B (zh) * | 2020-03-31 | 2024-04-26 | 推想医疗科技股份有限公司 | 图像分割方法及装置、神经网络模型的训练方法及装置 |
| TWI783219B (zh) * | 2020-04-01 | 2022-11-11 | 緯創資通股份有限公司 | 醫學影像辨識方法及醫學影像辨識裝置 |
| CN111652066B (zh) * | 2020-04-30 | 2022-07-26 | 北京航空航天大学 | 基于多自注意力机制深度学习的医疗行为识别方法 |
| CN113807360A (zh) * | 2020-06-12 | 2021-12-17 | 华为技术有限公司 | 图像处理方法、装置及存储介质 |
| US12307657B2 (en) * | 2020-09-15 | 2025-05-20 | University of Pittsburgh—of the Commonwealth System of Higher Education | System and method for quantifying the extent of disease from 2-D images |
| CN112200224B (zh) * | 2020-09-23 | 2023-12-01 | 温州大学 | 医学图像特征处理方法和装置 |
| US12322111B2 (en) * | 2020-12-30 | 2025-06-03 | United Imaging Research Institute of Innovative Medical Equipment | Image segmentation method, device, equipment and storage medium |
| US20220284643A1 (en) * | 2021-02-26 | 2022-09-08 | Washington University | Methods of estimation-based segmentation and transmission-less attenuation and scatter compensation in nuclear medicine imaging |
| CN112802036A (zh) | 2021-03-16 | 2021-05-14 | 上海联影医疗科技股份有限公司 | 一种三维医学图像靶区分割的方法、系统和装置 |
| WO2022198554A1 (zh) * | 2021-03-25 | 2022-09-29 | 中国科学院近代物理研究所 | 三维图像引导运动器官定位方法、系统及存储介质 |
| CN113822845B (zh) * | 2021-05-31 | 2025-11-04 | 腾讯科技(深圳)有限公司 | 医学图像中组织结构的层级分割方法、装置、设备及介质 |
| IT202100016502A1 (it) * | 2021-06-23 | 2022-12-23 | Xspline S P A | Metodo di segmentazione automatica del seno coronario |
| EP4364667A4 (en) * | 2021-06-29 | 2024-10-30 | FUJIFILM Corporation | TRAINING METHOD, IMAGE PROCESSING METHOD, TRAINING DEVICE, IMAGE PROCESSING DEVICE, TRAINING PROGRAM AND IMAGE PROCESSING PROGRAM |
| KR102871424B1 (ko) * | 2021-09-17 | 2025-10-15 | 삼성전자주식회사 | 뉴럴 네트워크 연산 방법 및 장치 |
| US11538578B1 (en) | 2021-09-23 | 2022-12-27 | International Medical Solutions, Inc. | Methods and systems for the efficient acquisition, conversion, and display of pathology images |
| CN113888751A (zh) * | 2021-10-19 | 2022-01-04 | 杭州柳叶刀机器人有限公司 | 一种关节关键点的识别方法、装置及计算机设备 |
| CN113674281B (zh) | 2021-10-25 | 2022-02-22 | 之江实验室 | 一种基于深度形状学习的肝脏ct自动分割方法 |
| JP2023078879A (ja) | 2021-11-26 | 2023-06-07 | キヤノン株式会社 | 情報処理装置、情報処理方法およびプログラム |
| US12144672B2 (en) * | 2021-11-29 | 2024-11-19 | GE Precision Healthcare LLC | System and method for autonomous identification of heterogeneous phantom regions |
| EP4202825A1 (en) | 2021-12-21 | 2023-06-28 | Koninklijke Philips N.V. | Network architecture for 3d image processing |
| US20230326596A1 (en) * | 2022-04-12 | 2023-10-12 | Canon Medical Systems Corporation | Information processing method, medical image diagnostic apparatus, and information processing system |
| CN117583281B (zh) * | 2023-11-29 | 2024-04-19 | 广州赛志系统科技有限公司 | 板件机器人分拣码垛优化方法、控制系统及分拣生产线 |
| CN119152212B (zh) * | 2024-11-15 | 2025-06-17 | 感跃医疗科技(成都)有限公司 | 基于Mamba架构的下颌神经管CBCT全景图像分割网络训练方法 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020190982A1 (en) * | 2001-06-11 | 2002-12-19 | Canon Kabushiki Kaisha | 3D computer modelling apparatus |
| US20100322489A1 (en) * | 2009-06-18 | 2010-12-23 | Omisa Inc. | System and method for image segmentation |
| US20130259345A1 (en) * | 2012-03-30 | 2013-10-03 | University Of Louisville Research Foundation, Inc. | Computer aided diagnostic system incorporating shape analysis for diagnosing malignant lung nodules |
| RU2587427C2 (ru) * | 2010-07-30 | 2016-06-20 | Конинклейке Филипс Электроникс Н.В. | Улучшающий фильтр для конкретного органа для надежной сегментации медицинских изображений |
| US20160180195A1 (en) * | 2013-09-06 | 2016-06-23 | Toyota Jidosha Kabushiki Kaisha | Augmenting Layer-Based Object Detection With Deep Convolutional Neural Networks |
| US9378435B1 (en) * | 2014-06-10 | 2016-06-28 | David Prulhiere | Image segmentation in optical character recognition using neural networks |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6901277B2 (en) * | 2001-07-17 | 2005-05-31 | Accuimage Diagnostics Corp. | Methods for generating a lung report |
| US8369598B2 (en) * | 2006-12-06 | 2013-02-05 | Agency For Science, Technology And Research | Method for identifying a pathological region of a scan, such as an ischemic stroke region of an MRI scan |
| US9799098B2 (en) | 2007-04-24 | 2017-10-24 | Massachusetts Institute Of Technology | Method and apparatus for image processing |
| US8565505B2 (en) * | 2008-11-05 | 2013-10-22 | Koninklijke Philips N.V. | Automated sequential planning of MR scans |
| US20100177190A1 (en) * | 2008-12-16 | 2010-07-15 | Ann-Shyn Chiang | Microscopy system with revolvable stage |
| US20110157218A1 (en) | 2009-12-29 | 2011-06-30 | Ptucha Raymond W | Method for interactive display |
| US8390648B2 (en) | 2009-12-29 | 2013-03-05 | Eastman Kodak Company | Display system for personalized consumer goods |
| US9319640B2 (en) | 2009-12-29 | 2016-04-19 | Kodak Alaris Inc. | Camera and display system interactivity |
| US8977629B2 (en) | 2011-05-24 | 2015-03-10 | Ebay Inc. | Image-based popularity prediction |
| CN102411795B (zh) * | 2011-08-16 | 2014-12-10 | 中国人民解放军第三军医大学第一附属医院 | 一种关于冠状动脉的多模图像的联合显示方法 |
| US20130107006A1 (en) * | 2011-10-28 | 2013-05-02 | New York University | Constructing a 3-dimensional image from a 2-dimensional image and compressing a 3-dimensional image to a 2-dimensional image |
| US8712137B2 (en) * | 2012-05-29 | 2014-04-29 | General Electric Company | Methods and system for displaying segmented images |
| DE102012215825A1 (de) * | 2012-09-06 | 2014-03-06 | Siemens Aktiengesellschaft | Bestimmung eines flächigen Untersuchungsbereiches |
| CN105025803B (zh) * | 2013-02-28 | 2018-02-23 | 皇家飞利浦有限公司 | 从多个三维视图对大对象的分割 |
| US9202144B2 (en) | 2013-10-30 | 2015-12-01 | Nec Laboratories America, Inc. | Regionlets with shift invariant neural patterns for object detection |
| CN104616344A (zh) * | 2013-11-05 | 2015-05-13 | 镇江华扬信息科技有限公司 | 纹理映射体绘制的3d java 实现的方法 |
| US9354778B2 (en) | 2013-12-06 | 2016-05-31 | Digimarc Corporation | Smartphone-based methods and systems |
| WO2015179632A1 (en) | 2014-05-22 | 2015-11-26 | Scheffler Lee J | Methods and systems for neural and cognitive processing |
| WO2015192246A1 (en) | 2014-06-19 | 2015-12-23 | Bitlit Media Inc | Method and system for identifying books on a bookshelf |
| US9558268B2 (en) | 2014-08-20 | 2017-01-31 | Mitsubishi Electric Research Laboratories, Inc. | Method for semantically labeling an image of a scene using recursive context propagation |
| DE102014223658A1 (de) * | 2014-11-20 | 2016-05-25 | Siemens Aktiengesellschaft | Verfahren zum Bestimmen eines Ergebnisbildes, Computerprogramm, maschinenlesbarer Datenträger sowie bildgebendes Gerät |
| US9811754B2 (en) | 2014-12-10 | 2017-11-07 | Ricoh Co., Ltd. | Realogram scene analysis of images: shelf and label finding |
| KR102307356B1 (ko) | 2014-12-11 | 2021-09-30 | 삼성전자주식회사 | 컴퓨터 보조 진단 장치 및 방법 |
| US10219737B2 (en) | 2014-12-11 | 2019-03-05 | Skin Depth Inc. | Topical product dispensing tool |
| US9710716B2 (en) | 2014-12-16 | 2017-07-18 | Sighthound, Inc. | Computer vision pipeline and methods for detection of specified moving objects |
| US9368110B1 (en) | 2015-07-07 | 2016-06-14 | Mitsubishi Electric Research Laboratories, Inc. | Method for distinguishing components of an acoustic signal |
| US10521902B2 (en) * | 2015-10-14 | 2019-12-31 | The Regents Of The University Of California | Automated segmentation of organ chambers using deep learning methods from medical imaging |
-
2016
- 2016-08-26 US US15/248,490 patent/US9947102B2/en active Active
-
2017
- 2017-08-23 CN CN201780064971.4A patent/CN109906470B/zh active Active
- 2017-08-23 AU AU2017315674A patent/AU2017315674B2/en active Active
- 2017-08-23 WO PCT/US2017/048245 patent/WO2018039368A1/en not_active Ceased
- 2017-08-23 RU RU2019108609A patent/RU2720440C1/ru active
- 2017-08-23 EP EP17761990.5A patent/EP3504681B1/en active Active
- 2017-08-23 JP JP2019511600A patent/JP6884853B2/ja active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020190982A1 (en) * | 2001-06-11 | 2002-12-19 | Canon Kabushiki Kaisha | 3D computer modelling apparatus |
| US20100322489A1 (en) * | 2009-06-18 | 2010-12-23 | Omisa Inc. | System and method for image segmentation |
| RU2587427C2 (ru) * | 2010-07-30 | 2016-06-20 | Конинклейке Филипс Электроникс Н.В. | Улучшающий фильтр для конкретного органа для надежной сегментации медицинских изображений |
| US20130259345A1 (en) * | 2012-03-30 | 2013-10-03 | University Of Louisville Research Foundation, Inc. | Computer aided diagnostic system incorporating shape analysis for diagnosing malignant lung nodules |
| US20160180195A1 (en) * | 2013-09-06 | 2016-06-23 | Toyota Jidosha Kabushiki Kaisha | Augmenting Layer-Based Object Detection With Deep Convolutional Neural Networks |
| US9378435B1 (en) * | 2014-06-10 | 2016-06-28 | David Prulhiere | Image segmentation in optical character recognition using neural networks |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2852459C1 (ru) * | 2025-06-02 | 2025-12-08 | Государственное Бюджетное Учреждение Здравоохранения Города Москвы "Московский Многопрофильный Научно-Клинический Центр Имени С.П. Боткина" Департамента Здравоохранения Города Москвы (Гбуз Ммнкц Им. С.П. Боткина Дзм) | Способ оценки фактического анатомического объема остаточной паренхимы печени перед обширными резекциями печени с использованием технологии компьютерного зрения |
Also Published As
| Publication number | Publication date |
|---|---|
| US9947102B2 (en) | 2018-04-17 |
| CN109906470A (zh) | 2019-06-18 |
| JP6884853B2 (ja) | 2021-06-09 |
| AU2017315674B2 (en) | 2019-12-12 |
| US20180061058A1 (en) | 2018-03-01 |
| EP3504681B1 (en) | 2021-01-27 |
| CN109906470B (zh) | 2023-06-20 |
| JP2019526863A (ja) | 2019-09-19 |
| WO2018039368A1 (en) | 2018-03-01 |
| AU2017315674A1 (en) | 2019-04-18 |
| EP3504681A1 (en) | 2019-07-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2720440C1 (ru) | Способ сегментации изображения с использованием нейронной сети | |
| RU2720070C1 (ru) | Системы и способы сегментации изображения с использованием свёрточной нейронной сети | |
| US11386557B2 (en) | Systems and methods for segmentation of intra-patient medical images | |
| CN114037726B (zh) | 使用深度学习的基于图谱集的分割 | |
| JP6514325B2 (ja) | 解剖学的ランドマークベースの特徴に基づいた医用画像をセグメント化するためのシステム及び方法 | |
| JP6782051B2 (ja) | オンライン学習により強化されたアトラスベース自動セグメンテーション | |
| Pannone | Changing the structure of the U-Net for brain tumor segmentation |