CN113807360A - 图像处理方法、装置及存储介质 - Google Patents

图像处理方法、装置及存储介质 Download PDF

Info

Publication number
CN113807360A
CN113807360A CN202010537872.7A CN202010537872A CN113807360A CN 113807360 A CN113807360 A CN 113807360A CN 202010537872 A CN202010537872 A CN 202010537872A CN 113807360 A CN113807360 A CN 113807360A
Authority
CN
China
Prior art keywords
image
texture
features
feature map
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010537872.7A
Other languages
English (en)
Inventor
程捷
蒋磊
曹洋
查正军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Huawei Technologies Co Ltd
Original Assignee
University of Science and Technology of China USTC
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC, Huawei Technologies Co Ltd filed Critical University of Science and Technology of China USTC
Priority to CN202010537872.7A priority Critical patent/CN113807360A/zh
Priority to PCT/CN2021/099560 priority patent/WO2021249520A1/zh
Priority to EP21821901.2A priority patent/EP4156078A4/en
Publication of CN113807360A publication Critical patent/CN113807360A/zh
Priority to US18/064,144 priority patent/US20230109317A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • G06T7/49Analysis of texture based on structural texture description, e.g. using primitives or placement rules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/771Feature selection, e.g. selecting representative features from a multi-dimensional feature space
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Image Analysis (AREA)

Abstract

本申请公开了一种图像处理方法、装置及存储介质,涉及图像处理领域。本申请可以基于方向信息和图像的多尺度特征图,获取图像中各纹理基元的特征之间的依赖关系,以及根据图像的至少一个尺度的特征图获得图像的至少一组纹理特征,并根据依赖关系、及前述至少一组纹理特征获得图像的纹理表示结果。然后,可以根据图像的纹理表示结果对图像进行处理。由于图像的纹理表示结果能够反映出的图像的纹理信息更加完善,所以,根据图像的纹理表示结果,进行图像识别、图像分割、或图像合成等图像处理时,图像处理的效果会更好。

Description

图像处理方法、装置及存储介质
技术领域
本申请实施例涉及图像处理领域,尤其涉及一种图像处理方法、装置及存储介质。
背景技术
纹理表示是计算机视觉的一个重要研究领域,在图像识别、图像分割和图像合成等图像处理领域有着广泛的应用前景。例如,在图像识别中,可以先对待识别图像进行纹理表示,然后,可以根据待识别图像的纹理表示结果,对待识别图像进行识别。如:可以识别待识别图像中的人物、建筑等。
而现有技术中,根据图像的纹理表示结果,对图像进行处理时,效果欠佳。例如,对待识别图像进行识别时,识别准确率较低。
发明内容
本申请实施例提供一种图像处理方法、装置及存储介质,可以提高对图像的处理效果,如:可以提高图像识别的准确率。
第一方面,本申请实施例提供一种图像处理方法,该方法可以通过神经网络来实现。该方法包括:根据方向信息和图像的多尺度特征图获取图像中各纹理基元的特征之间的依赖关系,其中,多尺度特征图包括所述图像的多个纹理基元在多个不同尺度下的特征,方向信息包括一个或多个方向。根据图像的至少一个尺度的特征图获得图像的至少一组纹理特征;其中,根据一个尺度的特征图获得图像的一组纹理特征。根据依赖关系、及至少一组纹理特征获得图像的纹理表示结果。根据图像的纹理表示结果对图像进行处理。
该图像处理方法中,由于图像的纹理表示结果中既可以包含该图像的纹理特征,还可以包含该图像中不同纹理基元的特征之间的依赖关系,图像的纹理表示结果能够反映出的图像的纹理信息更加完善。所以,后续根据图像的纹理表示结果,进行图像识别、图像分割、或图像合成等图像处理时,图像处理的效果会更好。例如,可以有效提高图像识别的准确率。
在一种可能的设计中,方向信息包括第一方向以及与所述第一方向相反的第二方向。
例如,方向信息可以包括多组方向,每组方向可以包括两个相反的第一方向和第二方向。也即,方向信息中包括的方向可以为成对出现的偶数个方向。
本设计中,当方向信息中包括成对出现的偶数个方向时,可以更加充分地获取到图像中各纹理基元的特征之间的依赖关系。
在一种可能的设计中,上述根据图像的至少一个尺度的特征图获得图像的至少一组纹理特征,包括:提取图像的至少一个尺度的特征图中各纹理基元的特征,获得多个纹理基元的特征;对多个纹理基元的特征进行池化,得到至少一组纹理特征。
本设计通过对图像的至少一个尺度的特征图中各纹理基元的特征进行提取,可以获取到图像的空间有序的纹理特征。
在一种可能的设计中,上述根据方向信息和图像的多尺度特征图获取图像中各纹理基元的特征之间的依赖关系,包括:根据方向信息提取图像的多尺度特征图中各纹理基元的特征,得到图像的多个区域的纹理基元的特征;根据多个区域的纹理基元的特征,获取每个区域中各纹理基元的特征之间的依赖关系,得到与多个区域分别对应的多组依赖关系;根据多组依赖关系,确定图像中各纹理基元的特征之间的依赖关系。
例如,可以根据方向信息,提取图像的多尺度特征图中各纹理基元的特征,得到多个第一矩阵;其中,一个第一矩阵包含有图像的一个区域的纹理基元的特征。然后,可以根据每个第一矩阵确定对应的第二矩阵,得到多个第二矩阵,第二矩阵可以包含相应第一矩阵对应的图像区域中各纹理基元的特征之间的依赖关系,从而可以得到与多个区域分别对应的多组依赖关系。将前述多组依赖关系进行聚合,即可得到图像中各纹理基元的特征之间的依赖关系。
在一种可能的设计中,在上述根据多组依赖关系,确定图像中各纹理基元的特征之间的依赖关系之前,该方法还包括:按照第一函数,对多组依赖关系中的每组依赖关系中任意两个纹理基元的特征之间的双向关系值进行更新。
本设计中,通过对每组依赖关系中任意两个纹理基元的特征之间的双向关系值进行更新,可以强化每组依赖关系,在每组依赖关系中任意两个纹理基元的特征之间建立关联,从而使得神经网络更容易学习到纹理基元之间的空间结构依赖性。
在一种可能的设计中,上述根据方向信息提取图像的多尺度特征图中各纹理基元的特征,包括:沿一个或多个方向提取图像的多尺度特征图中各纹理基元的特征。
例如,可以采用一个方向图或多个方向图作为空间上下文引导条件,沿方向图对应的方向提取图像的多尺度特征图中各纹理基元的特征,从而能够有效提升提取空间上下文线索的能力,进而更好的感知纹理基元的特征,以尽可能多的提取出多尺度特征图中潜在的纹理基元的特征,获取更加全面的图像中各纹理基元的特征之间的依赖关系。
可选地,在上述根据方向信息和图像的多尺度特征图获取图像中各纹理基元的特征之间的依赖关系之前,该图像处理方法还包括:提取图像的多个尺度的特征图。将图像的多个尺度的特征图缩放至相同尺度大小后进行拼接,得到图像的多尺度特征图。
在一种可能的设计中,在上述提取图像的多个尺度的特征图之前,该图像处理方法还可以包括:采用双边线性插值将原始图像的尺寸调整至第一尺寸。
在一种可能的设计中,在上述采用双边线性插值将原始图像的尺寸调整至第一尺寸之后,该图像处理方法还可以包括:从大小为第一尺寸的原始图像中,裁剪出大小为第二尺寸的图像块作为待处理的图像。
在一种可能的设计中,在上述提取图像的多个尺度的特征图之前,该图像处理方法还可以包括:对图像进行标准化处理。
通过对图像进行标准化处理,可以实现图像中各纹理基元的特征数据中心化,能够增加图像处理的泛化能力。
在一种可能的设计中,上述对图像进行处理,包括:对图像进行识别、对图像进行分割、以及根据图像进行图像合成中的任意一种。
第二方面,本申请实施例提供一种图像处理装置,可以通过神经网络来实现。该装置具有实现上述第一方面所述方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,例如,纹理表示模块、处理模块等。
其中,纹理表示模块,可以用于根据方向信息和图像的多尺度特征图获取图像中各纹理基元的特征之间的依赖关系,其中,多尺度特征图包括图像的多个纹理基元在多个不同尺度下的特征,方向信息包括一个或多个方向;根据图像的至少一个尺度的特征图获得图像的至少一组纹理特征,其中,根据一个尺度的特征图获得图像的一组所述纹理特征;根据依赖关系、及至少一组纹理特征获得图像的纹理表示结果。处理模块,可以用于根据图像的纹理表示结果对图像进行处理。
第三方面,本申请实施例提供一种图像处理装置,包括:接口电路,用于接收待处理的图像的数据;处理器,连接接口电路并用于执行如第一方面或第一方面的可能的设计中任一所述的方法。
第四方面,本申请实施例还提供一种图像处理装置,包括:处理器,处理器用于与存储器相连,调用存储器中存储的程序,以执行如第一方面或第一方面的可能的设计中任一所述的方法。
第五方面,本申请实施例还提供一种计算机可读存储介质,包括:计算机软件指令;当计算机软件指令在图像处理装置或内置在图像处理装置的芯片中运行时,使得图像处理装置执行如第一方面或第一方面的可能的设计中任一所述的方法。
第六方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品被执行时可以实现如第一方面或第一方面的可能的设计中任一所述的方法。
第七方面,本申请实施例还提供一种芯片系统,该芯片系统应用于图像处理设备;芯片系统包括一个或多个接口电路和一个或多个处理器;接口电路和处理器通过线路互联;处理器通过接口电路从电子设备的存储器接收并执行计算机指令,以实现如第一方面或第一方面的可能的设计中任一所述的方法。
可以理解地,上述提供的第二方面至第七方面所能达到的有益效果,可参考第一方面及其任一种可能的设计方式中的有益效果,此处不再赘述。
附图说明
图1示出了一种华夫饼图像的示意图;
图2示出了一种现有的图像识别网络的示意图;
图3示出了本申请实施例提供的一种图像处理设备的组成示意图;
图4示出了本申请实施例提供的图像处理方法的流程示意图;
图5示出了本申请实施例提供的图像处理方法的另一流程示意图;
图6示出了本申请实施例提供的一种神经网络的组成示意图;
图7示出了本申请实施例提供的图像处理装置的结构示意图。
具体实施方式
图像纹理是一种重要的视觉手段,是图像中普遍存在的特征。对于一幅图像而言,图像纹理通常由多个纹理基元组成,多个纹理基元可能是同一种类型,也可能是不同类型。例如,图1示出了一种华夫饼图像的示意图。如图1所示,对于华夫饼图像而言,纹理基元可以是华夫饼图像中的四边形格子(图1中所示的基元1)、或华夫饼图像中的叉形纹理(图1中所示的基元2)。也即,华夫饼图像的纹理基元可以包含有基元1和基元2两种类型。
当然,可以理解的是,前述关于华夫饼图像的纹理基元的描述仅仅为示例性说明。在其他图像中,纹理基元也可以是其他划分方式,本申请在此不作限制。
通过提取图像的纹理基元的特征,可以实现对图像纹理的表示。而根据图像纹理的表示结果,则可以进行图像识别、图像分割、图像合成等图像处理操作。因此,图像纹理表示在人像检测、医学图像分析、工业视觉检测、图像分类与检索等领域有着广泛的应用。
例如,在图像识别中,可以根据待识别图像的纹理表示结果,识别待识别图像中存在的人物、建筑、动物等。在图像分割中,可以根据待分割图像的纹理表示结果,将待分割图像分割为若干个特定的、具有独特性质的区域。在图像合成中,可以根据多幅不同图像的纹理表示结果,将多幅不同图像合成为一幅图像。如:可以将某个背景为沙漠的图像中的人物嵌入到背景为海滩的图像中。
下面以图像识别为例,结合图2对现有的图像纹理表示过程进行说明。
图2示出了一种现有的图像识别网络的示意图,如图2所示,现有的图像识别网络可以包括:输入层、特征提取层、纹理编码层、全连接层和输出层。纹理编码层中预设有一个包含多个码字的字典基,且还包括残差编码模块、权重分配模块和特征聚合模块。
通过输入层可以向图像识别网络中输入待识别的图像。特征提取层可以对输入层输入的图像进行特征提取,得到图像中各纹理基元的特征。在纹理编码层中,残差编码模块可以根据特征提取层提取到的图像的各纹理基元的特征、以及字典基中的码字,计算得到图像的各纹理基元的特征对应的残差。权重分配模块可以根据特征提取层提取到的图像的各纹理基元的特征、以及字典基中的码字,计算得到图像的各纹理基元的特征对应的权重。特征聚合模块可以将残差编码模块得到的残差、以及权重分配模块得到的权重进行聚合,得到图像的纹理表示结果。全连接层可以根据纹理编码层得到的图像的纹理表示结果,对图像进行识别,如:可以根据图像的纹理表示结果,进行人像识别、材质检测、物品分类等。
但是,上述图2所示图像识别网络中,纹理编码层仅仅是将图像中各纹理基元的特征无序化的聚集,得到了图像的纹理表示结果,所得到的图像的纹理表示结果能够反映出的图像的纹理信息有限。所以,后续根据图像的纹理表示结果,进行图像识别、图像分割、或图像合成等图像处理时,图像处理的效果欠佳。例如,图像识别的准确率会较低。
本申请实施例提供了一种图像处理方法,可以通过神经网络来实现。该方法可以根据图像的至少一个尺度的特征图获得图像的至少一组纹理特征,以及根据方向信息和图像的多尺度特征图获取图像中各纹理基元的特征之间的依赖关系,并根据依赖关系、及前述至少一组纹理特征获得图像的纹理表示结果。然后,可以根据图像的纹理表示结果对图像进行处理。
其中,对图像进行处理可以是对图像进行识别、对图像进行分割、以及根据图像进行图像合成中的任意一种,在此不作限制。
本申请实施例提供的该图像处理方法中,根据图像中各纹理基元的特征之间的依赖关系、及图像的至少一组纹理特征获得图像的纹理表示结果,可以使得图像的纹理表示结果中既可以包含该图像的纹理特征,还可以包含该图像中不同纹理基元的特征之间的依赖关系,图像的纹理表示结果能够反映出的图像的纹理信息更加完善。所以,后续根据图像的纹理表示结果,进行图像识别、图像分割、或图像合成等图像处理时,图像处理的效果会更好。例如,可以有效提高图像识别的准确率。
以下结合附图对本申请实施例提供的图像处理方法进行示例性说明。
需要说明的是,在本申请的描述中,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样仅仅是为了区分描述,并不用于对某个特征的特别限定。“和/或”用于描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
在示例性实施例中,本申请实施例提供一种可以用于执行该图像处理方法的图像处理设备,该图像处理设备可以是台式计算机、服务器、电视、显示器、手机、平板电脑、扫描仪等电子设备,本申请对图像处理设备的具体类型不作限制。
图3示出了本申请实施例提供的一种图像处理设备的组成示意图。
如图3所示,本申请实施例的图像处理设备可以包括:处理器310,外部存储器接口320,内部存储器321,通用串行总线(universal serial bus,USB)接口330。
处理器310可以包括一个或多个处理单元,例如:处理器310可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processingunit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(Neural-network Processing Unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
上述控制器可以是指挥图像处理设备的各个部件按照指令协调工作的决策者。其是图像处理设备的神经中枢和指挥中心。上述控制器根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现图像处理设备的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
处理器310中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器310中的存储器为高速缓冲存储器,可以保存处理器310刚用过或循环使用的指令或数据。如果处理器310需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器310的等待时间,因而提高了效率。
在一些实施例中,处理器310可以包括接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purposeinput/output,GPIO)接口,SIM卡接口,和/或USB接口等。
外部存储器接口320可以用于连接外部存储卡,例如Micro SD卡,实现扩展图像处理设备的存储能力。外部存储卡通过外部存储器接口320与处理器310通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器321可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器310通过运行存储在内部存储器321的指令,从而执行图像处理设备的各种功能应用以及数据处理。例如,可以执行本申请实施例提供的图像处理方法。内部存储器321可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储图像处理设备使用过程中所创建的数据。此外,内部存储器321可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,其他易失性固态存储器件,通用闪存存储器(universal flash storage,UFS)等。
USB接口330可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口330可以用于连接充电器为图像处理设备充电,也可以用于图像处理设备与外围设备之间传输数据。如:可以向处理器310中传输待处理的图像。
本发明实施例示意的结构并不构成对图像处理设备的限定。图像处理设备也可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
例如,一些实施例中,图像处理设备还可以包括充电管理模块,电源管理模块,电池,天线,射频模块,通信模块,音频模块,扬声器,受话器,麦克风,耳机接口,传感器,按键,指示器,摄像头,显示屏,以及用户标识模块(subscriber identity module,SIM)卡接口等,不再一一赘述。
图4示出了本申请实施例提供的图像处理方法的流程示意图。如图4所示,该图像处理方法可以包括S401-S409。
S401、提取图像的多个尺度的特征图。
可选地,图像可以是通过手机、摄像机等拍摄设备拍摄到的图像,也可以是通过扫描仪扫描得到的图像,还可以是一些视频中的某一帧图像或者某个画面的截图。
在实现该图像处理方法的神经网络中,用于提取图像的多个尺度的特征图的部分可以是深度残差网络(Deep residual network,Resnet)、VGG网络、Alexnet网络、GoogLeNet网络等,本申请对此不作限制。
以Resnet为例,Resnet可以对输入的图像进行特征提取,并输出图像在多个尺度下的特征图,每个尺度下的特征图包含了图像的多个纹理基元在该尺度下的特征。
S402、将图像的多个尺度的特征图缩放至相同尺度大小后进行拼接,得到图像的多尺度特征图。
其中,多尺度特征图包括了图像的多个纹理基元在多个不同尺度下的特征。
举例说明:以前述Resnet为Resnet50为例,假设Resnet50中的第三个残差模块(Res3)、第四个残差模块(Res4)、以及第五个残差模块(Res5)的输出分别依次为特征图3、特征图4和特征图5。特征图3、特征图4和特征图5则为该图像在三个不同尺度下的特征图。可以以特征图3的大小为基准,将特征图4和特征图5对应的矩阵缩放至与特征图3尺度大小相同、但通道数不同。例如,缩放方式可以为插值缩放。在完成缩放后,可以将特征图3、特征图4和特征图5沿着通道维度进行拼接,得到该图像的多尺度特征图。
但需要说明的是,本申请其他实施方式中,当采用了其他如:VGG网络、Alexnet网络、GoogLeNet网络等提取图像的多个尺度的特征图时,也可能是将这些网络中不同网络层输出的特征图进行拼接,以获取多尺度特征图。其基本原理与前述举例说明类似,在此不再赘述。
一方面,在得到图像的多尺度特征图后,可以根据方向信息和图像的多尺度特征图获取图像中各纹理基元的特征之间的依赖关系。
其中,方向信息可以包括一个或多个方向。
例如,在一种可能的设计中,方向信息可以包括预设的至少一个方向图,每个方向图可以用于指示一个方向,不同方向图对应的方向不同。以方向信息包括8个方向图为例,8个方向图可以依次指示:上、下、左、右、左上、左下、右上、右下等8个方向。方向图对应的矩阵可以在方向图对应的方向上数值渐变,以能够指示方向。
对应方向为上的方向图的矩阵可以如下:
Figure BDA0002537660670000071
对应方向为下的方向图的矩阵可以如下:
Figure BDA0002537660670000072
对应方向为左上的方向图的矩阵可以如下:
Figure BDA0002537660670000073
对应方向为右下的方向图的矩阵可以如下:
Figure BDA0002537660670000074
一些实施例中,方向信息可以包括第一方向以及与第一方向相反的第二方向。
例如,方向信息中包括的方向图的数量可以为偶数个,且对于方向信息中的任意一个第一方向图,方向信息中还包括与第一方向图对应的方向相反的第二方向图。也即,方向信息中的方向图都是成对存在的。例如,若方向信息包括2个方向图,则2方向图对应的方向可以是左和右、上和下、左上和右下等中的某一对。类似地,若存在4个方向图,则可以是前述一对或多对。当方向信息中包括的方向图为成对出现的偶数个时,可以充分地获取到图像中各纹理基元的特征之间的依赖关系。
当然,可以理解的,在实际实施时,方向信息也可以包括更多(如:16、32)个用于指示不同方向的方向图,或更少(如:1、2)个用于指示不同方向的方向图。或者,在一些实施例中,方向信息也可以采用如:相对坐标、绝对坐标等其他方式实现,本申请并不作限制。
根据方向信息和图像的多尺度特征图获取图像中各纹理基元的特征之间的依赖关系的具体步骤,可以参考S403-S405。
S403、根据方向信息提取图像的多尺度特征图中各纹理基元的特征,得到图像的多个区域的纹理基元的特征。
可选地,可以沿方向信息中包括的一个或多个方向提取图像的多尺度特征图中各纹理基元的特征。
以前述方向图为例对S403进行举例说明。
神经网络可以根据一个或多个方向图,沿方向图对应的方向提取图像的多尺度特征图中各纹理基元的特征,得到多个第一矩阵。
其中,每个第一矩阵包含有图像的多尺度特征图中局部区域的纹理基元的特征。根据每个方向图得到的多个第一矩阵中,不同的第一矩阵对应图像的多尺度特征图的不同局部区域。
可选地,神经网络中用于提取图像的多尺度特征图中各纹理基元的特征的部分,可以为一个卷积网络。通过该卷积网络可以根据方向图,对多尺度特征图进行多次卷积操作,得到多个第一矩阵。
通过该卷积网络可以根据方向图,对多尺度特征图进行多次卷积操作时,可以先采用线性函数或非线性函数将方向图的值映射至一个固定的数值范围内,如:[-1,1],并采用一个卷积网络将方向图映射到与多尺度特征图相同的特征空间。通过这种方式对方向图和多尺度特征图进行归一化,可以缩小方向图和多尺度特征图在数值上的差异,从而使得神经网络更容易收敛,也能够更准确地捕捉纹理基元的特征。
举例说明:假设多尺度特征图的矩阵为一个9*9(9行9列)的矩阵,卷积网络的卷积核为一个3*3的矩阵,则方向图的矩阵也应当为一个3*3的矩阵(可参考前述示例说明)。该卷积网络可以沿着方向图对应的方向,通过卷积核对应的3*3的矩阵,对多尺度特征图对应的9*9的矩阵进行卷积,每次卷积可以提取出一个3*3的矩阵,则为上述第一矩阵。
以方向图对应方向为右下为例,则卷积网络第一次卷积得到的第一矩阵包含了多尺度特征图对应的9*9的矩阵中,同时属于第一行至第三行、第一列至第三列的局部的各纹理基元的特征。类似地,卷积网络第二次卷积得到的第一矩阵则包含了多尺度特征图对应的9*9的矩阵中,同时属于第四行至第六行、第四列至第六列的局部的各纹理基元的特征。
S404、根据多个区域的纹理基元的特征,获取每个区域中各纹理基元的特征之间的依赖关系,得到与多个区域分别对应的多组依赖关系。
如S403中所述,神经网络可以根据一个或多个方向图,沿方向图对应的方向提取图像的多尺度特征图中各纹理基元的特征,得到多个第一矩阵,从而得到图像的多个区域的纹理基元的特征。进一步,神经网络还可以根据多个第一矩阵,获取每个区域中各纹理基元的特征之间的依赖关系,得到与多个区域分别对应的多组依赖关系。例如,可以确定每个第一矩阵对应的第二矩阵,得到多个第二矩阵,第二矩阵可以包含有对应第一矩阵所包含的局部区域的各纹理基元的特征之间的依赖关系。
以第一矩阵为A矩阵为例,假设A矩阵的大小为(k_w,k_h,c),其中k_w表示A矩阵的行数,k_h表示A矩阵的列数、c表示A矩阵的通道维度。可以将A矩阵进行两次不同的非线性变换,得到A矩阵对应的两个非线性变换后的矩阵(如:可以通过两个非线性函数进行变换),这里称之为B1矩阵和B2矩阵。B1矩阵和B2矩阵的大小均为(k_w,k_h,c)。
在得到B1矩阵和B2矩阵后,可以先将B1矩阵整形并转置成大小为(k_w*k_h,1,c)的矩阵,将B2矩阵整形成大小为(1,k_w*k_h,c)的矩阵。B1矩阵整形并转置得到的矩阵可以称之为B1'矩阵,B2矩阵整形得到的矩阵可以称之为B2'矩阵。
然后,可以将B1'矩阵和B2'矩阵进行相乘,得到一个C矩阵,该C矩阵即为前述包含有对应第一矩阵(A矩阵)所包含的局部的各纹理基元的特征之间的依赖关系的第二矩阵。C矩阵的大小为(k_w*k_h,k_w*k_h)。
通过将A矩阵通过两个非线性函数分别映射得到B1矩阵和B2矩阵,可以极化A矩阵中纹理基元的特征的不同特性,从而使得之后建立的纹理基元的特征之间的依赖关系更加可靠。
但需要说明的是,上述A矩阵至C矩阵的过程,仅仅为根据第一矩阵确定第二矩阵的过程的示例性说明。例如,其他实施方式中,也可以直接将A矩阵与A矩阵自身进行相乘,得到C矩阵,本申请在此不作限制。
S405、根据多组依赖关系,确定图像中各纹理基元的特征之间的依赖关系。
如上所述,S404中得到与多个区域分别对应的多组依赖关系后,可以通过S405将多组依赖关系聚合在一起,作为图像中各纹理基元的特征之间的依赖关系。
以前述第一矩阵和第二矩阵为例:神经网络可以根据每个第一矩阵、及第一矩阵对应的第二矩阵,确定每个第一矩阵所包含的局部区域的纹理基元的特征对应的特征向量,得到多个特征向量,并将多个特征向量聚合到一起,作为图像中各纹理基元的特征之间的依赖关系。其中,特征向量用于指示第一矩阵所包含的局部区域的各纹理基元的特征之间的依赖关系。
可选地,在根据多组依赖关系,确定图像中各纹理基元的特征之间的依赖关系之前,神经网络还可以按照第一函数,对多组依赖关系中的每组依赖关系中任意两个纹理基元的特征之间的双向关系值进行更新。
也即,神经网络可以在根据每个第一矩阵、及第一矩阵对应的第二矩阵,确定每个第一矩阵所包含的局部区域的纹理基元的特征对应的特征向量之前,对第二矩阵包含的依赖关系进行更新。
同样以第一矩阵为前述A矩阵,第二矩阵为前述C矩阵进行举例说明。
在得到C矩阵后,可以基于第一函数,通过神经网络对C矩阵进行双向协同操作,得到D矩阵。D矩阵的大小与C矩阵相同。
一些实施例中,对C矩阵进行双向协同操作的双向协同策略(也即第一函数)可以如下。
Figure BDA0002537660670000091
Figure BDA0002537660670000092
其中,rij和rji表示C矩阵中纹理基元i和纹理基元j之间的双向关系值;
Figure BDA0002537660670000093
Figure BDA0002537660670000094
表示D矩阵中(对C矩阵进行双向协同操作后)纹理基元i和纹理基元j之间的双向关系值。
对C矩阵进行双向协同操作是指按照前述双向协同策略,对纹理基元i和纹理基元j之间的权重比例进行计算,得到新的D矩阵。计算权重比例时,可以采用softmax、logit等重赋权函数,本申请对函数类型不作限制。
相对于C矩阵而言,对C矩阵进行双向协同操作得到的D矩阵中,第一矩阵所包含的局部的各纹理基元的特征之间的依赖关系可以得到加强。
在得到D矩阵后,可以先将D矩阵对应的(与C矩阵对应,D矩阵由C矩阵得到,所以与D矩阵对应)A矩阵整形成大小为(1,k_w*k_h,c)的矩阵,如:称之为A'矩阵。然后,可以将A'矩阵和D矩阵进行相乘,并对相乘的结果矩阵进行整形,得到E矩阵。E矩阵的大小(k_w,k_h,c)。可以理解的,根据前述一系列的矩阵操作,每个A矩阵(第一矩阵)都会得到一个对应的E矩阵。
在得到E矩阵后,可以对E矩阵进行池化,得到E矩阵中心位置处的特征向量,即为A矩阵(第一矩阵)所包含的局部的各纹理基元的特征对应的特征向量。特征向量的大小为(1,1,c)。
可选地,对E矩阵进行池化可以包括平均池化、最大值池化等,在此不作限制。
按照上述从A矩阵至特征向量的过程,即可确定得到每个第一矩阵对应的特征向量,从而得到多个特征向量。
将多个特征向量聚合到一起,即可得到图像中各纹理基元的特征之间的依赖关系。
例如,在得到多个特征向量后,可以根据多个特征向量组成第四矩阵,如:可以称之为F矩阵,F矩阵的大小为(ww,hh,c),ww表示多尺度特征图的长度,hh表示多尺度特征图的宽度。第四矩阵即可以用于指示图像中各纹理基元的特征之间的依赖关系。
另一方面,除了执行前述一方面所述的S403-S405外,还可以根据图像的至少一个尺度的特征图获得图像的至少一组纹理特征。如:可以执行下述S406-S407。
S406、提取图像的至少一个尺度的特征图中各纹理基元的特征,获得多个纹理基元的特征。
S407、对多个纹理基元的特征进行池化,得到至少一组纹理特征。
可选地,本申请所述的神经网络中用于提取图像的至少一个尺度的特征图中各纹理基元的特征的部分,也可以通过一个卷积网络实现,其基元原理与前述提取图像的多尺度特征图中各纹理基元的特征类似,在此不再赘述。
一种实施方式中,S406中提取图像的至少一个尺度的特征图中各纹理基元的特征,可以是指:对从S401中得到的图像的多个尺度的特征图中的一个或多个特征图进行特征提取,得到一个或多个特征图的纹理特征。相应地,S407中则是对一个或多个特征图的纹理特征进行池化。
另一种实施方式中,S406中提取图像的至少一个尺度的特征图中各纹理基元的特征,也可以是指:对从S402中得到的图像的多尺度特征图进行特征提取,得到多尺度特征图的纹理特征。相应地,S407中则是对多尺度特征图的纹理特征进行池化。
本申请对S406和S407的具体实施方式并不作限制。
通过上述两个方面,得到图像中各纹理基元的特征之间的依赖关系、及图像的至少一组纹理特征后,可以将图像中各纹理基元的特征之间的依赖关系、及图像的至少一组纹理特征进行聚合,得到图像的纹理表示结果。如:可以执行S408。
S408、根据依赖关系、及至少一组纹理特征获得图像的纹理表示结果。
假设图像中各纹理基元的特征之间的依赖关系为前述S405中所述的第四矩阵(F矩阵)、至少一组纹理特征组成第五矩阵。
一些实施例中,根据依赖关系、及至少一组纹理特征获得图像的纹理表示结果可以是指:将第四矩阵和第五矩阵进行相加,从而实现对图像中各纹理基元的特征之间的依赖关系和图像的纹理特征的聚合,得到的第四矩阵和第五矩阵的和,即为图像的纹理表示结果。
另外一些实施例中,也可以是将第四矩阵和第五矩阵进行相乘、或其他更复杂的矩阵运算,实现对图像中各纹理基元的特征之间的依赖关系和图像的纹理特征的聚合,得到图像的纹理表示结果,本申请在此亦不作限制。
根据S408得到的图像的纹理表示结果,即可对图像进行处理。如:可以执行S409。
S409、根据图像的纹理表示结果对图像进行处理。
可选地,对图像进行处理可以是指:对图像进行识别、对图像进行分割、或者根据该图像进行图像合成等。根据不同的图像处理需求,本申请实施例提供的该图像处理方法,可以应用于任何需要根据图像的纹理表示结果进行图像处理的场景。
由上所述,本申请实施例可以根据图像中各纹理基元的特征之间的依赖关系、及图像的至少一组纹理特征获取图像的纹理表示结果,能够使得图像的纹理表示结果中既可以包含该图像的纹理特征,还可以包含该图像中不同纹理基元的特征之间的依赖关系,从而使得图像的纹理表示结果能够反映出的图像的纹理信息更加完善,进而提高后续根据图像的纹理表示结果,进行图像识别、图像分割、或图像合成等图像处理时的图像处理效果。例如,可以有效提高根据图像的纹理表示结果进行图像识别的准确率。
另外,本申请实施例中,神经网络沿方向图对应的方向提取图像的多尺度特征图中各纹理基元的特征时,采用至少一个方向图作为空间上下文引导条件,能够有效提升提取空间上下文线索的能力,从而更好的感知纹理基元的特征,以尽可能多的提取出多尺度特征图中潜在的纹理基元的特征。
进一步,本申请实施例中,在根据多组依赖关系,确定图像中各纹理基元的特征之间的依赖关系之前,神经网络按照第一函数,对多组依赖关系中的每组依赖关系中任意两个纹理基元的特征之间的双向关系值进行更新,可以强化每组依赖关系,在任意两个纹理基元的特征的双向关系之间建立关联,从而使得神经网络更容易学习到纹理基元之间的空间结构依赖性。
在一些实施例中,在按照前述S401-S409的过程,对原始图像进行处理之前,可以先对原始图像进行预处理,得到预处理后的图像。然后,可以按照前述S401-S409的过程,对预处理后的图像进行处理。也即,该图像处理方法还可以包括对图像进行预处理的步骤。例如,图5示出了本申请实施例提供的图像处理方法的另一流程示意图。
如图5所示,在前述图4所示的S401之前,该图像处理方法还可以包括S501-S503。
S501、采用双边线性插值将原始图像的尺寸调整至第一尺寸。
例如,第一尺寸可以为512*512,可以通过双边线性插值的方式将原始图像的尺寸调整为512*512。当然,第一尺寸的具体大小也可以是其他数值,如:256*256,本申请不作限制。
S502、从大小为第一尺寸的原始图像中,裁剪出大小为第二尺寸的图像块作为待处理的图像。
例如,第二尺寸可以为224*224。在将原始图像的尺寸调整为512*512后,可以对512*512大小的原始图像进行裁剪,得到尺寸为224*224的图像块作为后续待处理的图像。裁剪的方式可以是随机裁剪,也可以是以512*512大小的原始图像的中心位置为中心进行裁剪,本申请在此不作限制。
S503、对图像进行标准化处理。
例如,可以对S502得到的图像块进行z-score标准化,从而实现图像块中各纹理基元的特征数据中心化。通过对图像进行标准化处理,能够增加图像处理的泛化能力。
可以理解的,一些实施例中,可以从大小为第一尺寸的原始图像中,裁剪出多个大小为第二尺寸的图像块。对于每个图像块,都可以按照S401-S409所述的过程进行处理。另外,在处理过程中,对于每个作为图像的图像块,可以得到该图像块对应的多个多尺度特征图,构成多尺度特征池。对每个多尺度特征图,均可以按照S403-S405所述的操作,提取多尺度特征图中包含的各纹理基元的特征之间的依赖关系。多个多尺度特征图中分别包含的各纹理基元的特征之间的依赖关系,即可以构成该图像块中各纹理基元的特征之间的依赖关系。
下面以图像识别为例,对本申请实施例进行更进一步的说明。
前述图4或图5所示的图像处理方法中,S409具体可以是指:根据图像的纹理表示结果,通过神经网络确定图像的预测分类标签。图像的预测分类标签即为该图像的识别结果。
例如,若原始图像为用户M的照片,则输出的预测分类标签可以用户M的职业、性别、姓名等中的任意一种或多种。预测分类标签的具体类型与训练时的训练样本中的实际分类标签有关。也即,与用于图像识别的神经网络具体的识别功能有关。
图6示出了本申请实施例提供的一种神经网络的组成示意图。如图6所示,在一种可能的设计中,当该图像处理方法应用于图像识别中时,本申请实施例提供的神经网络可以包括:输入层、特征提取层、纹理编码层、全连接层和输出层。
其中,输入层可以用于输入原始图像或对原始图像进行预处理后的图像。
特征提取层可以包括Resnet50网络和缩放拼接模块,Resnet50网络能够对图像进行特征提取,输出图像的多个尺度的特征图(如实现前述S401的功能)。缩放拼接模块能够将图像的多个尺度的特征图缩放至相同尺度大小后进行拼接,得到图像的多尺度特征图(如实现前述S402的功能)。
纹理编码层可以包括:结构揭示模块、第一池化模块、卷积网络、第二池化模块、以及特征聚合模块。结构揭示模块可以将方向图作为空间上下文引导条件,并根据特征提取层输出的多尺度特征图,获取图像中各纹理基元的特征之间的依赖关系(如实现前述S403-S405的功能)。第一池化模块可以对结构揭示模块的输出结果进行池化。卷积网络可以根据特征提取层输出的多尺度特征图,或至少一个尺度的特征图,提取图像的全局纹理特征(如实现前述S406的功能)。第二池化模块可以对卷积网络输出的图像的全局纹理特征进行池化(如实现前述S407的功能)。特征聚合模块可以将图像的纹理特征和图像中各纹理基元的特征之间的依赖关系进行聚合,得到图像的纹理表示结果(如实现前述S408的功能)。
全连接层可以根据纹理编码层输出的图像的纹理表示结果,对图像进行识别,输出图像的预测分类标签,预测分类标签即为图像的识别结果(与前述图2所示的全连接层类似,在此不再赘述)。
如前述实施例中所述,本申请实施例所述的图像处理方法可以通过存储器中的程序代码来实现,可以应用或者推理在CPU、GPU等高性能计算设备上。下面以图像识别为例,对神经网络的训练过程和推理过程进行简单说明。
1)神经网络的训练过程可以为:首先,可以构建如图6所示的神经网络的架构,并初始化整个神经网络的权重参数。然后,可以在GPU、CPU等设备上,利用当前的网络权重进行前向推理计算,并利用前向推理计算的结果和真实值计算出误差值。通过误差值即可判断出神经网络是否达到了收敛的要求,若误差值未满足收敛要求,则根据误差值进行反向传播更新神经网络中的所有可训练权重。之后可以循环进行前述步骤直到误差值达到收敛。当误差值达到收敛,可以将神经网络中的所有参数固化不再更新,并存储。
2)神经网络的推理过程可以为:将1)中训练好的神经网络存储到GPU或CPU等其他计算设备上。然后,可以将需要识别的图像输入该神经网络,并利用当前的网络权重进行前向推理计算,神经网络的输出即为该图像的识别结果。
可选地,当该图像处理方法应用于其他图像处理,如:图像分隔、图像合成中时,也可以将图6中所示的纹理编码层嵌入其他神经网络以实现对应的功能。不论将该纹理编码层应用于何种神经网络,均可以具有较好的鲁棒性。在此不再一一举例说明。
上述主要从神经网络或图像处理设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,该神经网络或图像处理设备可以包含执行各个功能相应的硬件结构和/或软件模块。
如:本申请实施例还可以提供一种图像处理装置。图7示出了本申请实施例提供的图像处理装置的结构示意图。如图7所示,该图像处理装置可以包括:纹理表示模块701,可以用于根据方向信息和图像的多尺度特征图获取图像中各纹理基元的特征之间的依赖关系,其中,多尺度特征图包括图像的多个纹理基元在多个不同尺度下的特征,方向信息包括一个或多个方向;根据图像的至少一个尺度的特征图获得图像的至少一组纹理特征,其中,根据一个尺度的特征图获得图像的一组所述纹理特征;根据依赖关系、及至少一组纹理特征获得图像的纹理表示结果。处理模块702,可以用于根据图像的纹理表示结果对图像进行处理。
在一种可能的设计中,方向信息可以包括第一方向以及与所述第一方向相反的第二方向。
可选地,纹理表示模块具体可以用于提取图像的至少一个尺度的特征图中各纹理基元的特征,获得多个纹理基元的特征;对多个纹理基元的特征进行池化,得到至少一组纹理特征。
可选地,纹理表示模块具体还用于根据方向信息提取图像的多尺度特征图中各纹理基元的特征,得到图像的多个区域的纹理基元的特征;根据多个区域的纹理基元的特征,获取每个区域中各纹理基元的特征之间的依赖关系,得到与多个区域分别对应的多组依赖关系;根据多组依赖关系,确定图像中各纹理基元的特征之间的依赖关系。
可选地,纹理表示模块具体用于沿一个或多个方向提取图像的多尺度特征图中各纹理基元的特征。
在一种可能的设计中,纹理表示模块还可以用于按照第一函数,对多组依赖关系中的每组依赖关系中任意两个纹理基元的特征之间的双向关系值进行更新。
应理解以上装置中模块或单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。
例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以称为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integratedcircuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。
再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
例如,本申请实施例还可以提供一种图像处理装置,可以包括:接口电路,用于接收待处理的图像的数据;处理器,连接接口电路并用于执行以上方法中所述的各个步骤。该处理器可以包括一个或多个。
在一种实现中,分别实现以上方法中各个对应步骤的模块可以通过处理元件调度程序的形式实现。例如,图像处理装置可以包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中所述的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于实现以上方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中所述的方法。
例如,本申请实施例还可以提供一种图像处理装置,可以包括:处理器,处理器用于与存储器相连,调用存储器中存储的程序,以执行如前述方法实施例中所述的方法。该存储器可以位于该图像处理装置之内,也可以位于该图像处理装置之外。且该处理器包括一个或多个。
在又一种实现中,用于实现以上方法中各个步骤的模块可以是被配置成一个或多个处理元件,这些处理元件可以设置于终端上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
在又一种实现中,用于实现以上方法中各个步骤的模块可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现对应的方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现对应的方法;或者,该芯片内可以集成至少一个集成电路,用于实现对应的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,如:程序。该软件产品存储在一个程序产品,如计算机可读存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
例如,本申请实施例还可以提供一种计算机可读存储介质,包括:计算机软件指令;当计算机软件指令在图像处理装置或内置在图像处理装置的芯片中运行时,可以使得图像处理装置执行如前述方法实施例中所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

1.一种图像处理方法,其特征在于,所述方法通过神经网络来实现,所述方法包括:
根据方向信息和图像的多尺度特征图获取所述图像中各纹理基元的特征之间的依赖关系,其中,所述多尺度特征图包括所述图像的多个纹理基元在多个不同尺度下的特征,所述方向信息包括一个或多个方向;
根据所述图像的至少一个尺度的特征图获得所述图像的至少一组纹理特征;其中,根据一个尺度的所述特征图获得所述图像的一组所述纹理特征;
根据所述依赖关系、及所述至少一组纹理特征获得所述图像的纹理表示结果;
根据所述图像的纹理表示结果对所述图像进行处理。
2.根据权利要求1所述的方法,其特征在于,所述方向信息包括第一方向以及与所述第一方向相反的第二方向。
3.根据权利要求1或2所述的方法,其特征在于,所述根据所述图像的至少一个尺度的特征图获得所述图像的至少一组纹理特征,包括:
提取所述图像的至少一个尺度的特征图中各纹理基元的特征,获得多个纹理基元的特征;
对所述多个纹理基元的特征进行池化,得到所述至少一组纹理特征。
4.根据权利要求1-3任一项所述的方法,其特征在于,所述根据方向信息和图像的多尺度特征图获取所述图像中各纹理基元的特征之间的依赖关系,包括:
根据所述方向信息提取所述图像的多尺度特征图中各纹理基元的特征,得到所述图像的多个区域的纹理基元的特征;
根据所述多个区域的纹理基元的特征,获取每个区域中各纹理基元的特征之间的依赖关系,得到与所述多个区域分别对应的多组依赖关系;
根据所述多组依赖关系,确定所述图像中各纹理基元的特征之间的依赖关系。
5.根据权利要求4所述的方法,其特征在于,在所述根据所述多组依赖关系,确定所述图像中各纹理基元的特征之间的依赖关系之前,所述方法还包括:
按照第一函数,对所述多组依赖关系中的每组依赖关系中任意两个纹理基元的特征之间的双向关系值进行更新。
6.根据权利要求4或5所述的方法,其特征在于,所述根据所述方向信息提取所述图像的多尺度特征图中各纹理基元的特征,包括:
沿所述一个或多个方向提取所述图像的多尺度特征图中各纹理基元的特征。
7.根据权利要求1-6任一项所述的方法,其特征在于,所述对所述图像进行处理,包括:对所述图像进行识别、对所述图像进行分割、以及根据所述图像进行图像合成中的任意一种。
8.一种图像处理装置,其特征在于,所述装置通过神经网络来实现,所述装置包括:
纹理表示模块,用于根据方向信息和图像的多尺度特征图获取所述图像中各纹理基元的特征之间的依赖关系,其中,所述多尺度特征图包括所述图像的多个纹理基元在多个不同尺度下的特征,所述方向信息包括一个或多个方向;根据所述图像的至少一个尺度的特征图获得所述图像的至少一组纹理特征,其中,根据一个尺度的所述特征图获得所述图像的一组所述纹理特征;根据所述依赖关系、及所述至少一组纹理特征获得所述图像的纹理表示结果;
处理模块,用于根据所述图像的纹理表示结果对所述图像进行处理。
9.根据权利要求8所述的装置,其特征在于,所述方向信息包括第一方向以及与所述第一方向相反的第二方向。
10.根据权利要求8或9所述的装置,其特征在于,所述纹理表示模块,具体用于提取所述图像的至少一个尺度的特征图中各纹理基元的特征,获得多个纹理基元的特征;对所述多个纹理基元的特征进行池化,得到所述至少一组纹理特征。
11.根据权利要求8-10任一项所述的装置,其特征在于,所述纹理表示模块,具体用于根据所述方向信息提取所述图像的多尺度特征图中各纹理基元的特征,得到所述图像的多个区域的纹理基元的特征;根据所述多个区域的纹理基元的特征,获取每个区域中各纹理基元的特征之间的依赖关系,得到与所述多个区域分别对应的多组依赖关系;根据所述多组依赖关系,确定所述图像中各纹理基元的特征之间的依赖关系。
12.根据权利要求11所述的装置,其特征在于,所述纹理表示模块,还用于按照第一函数,对所述多组依赖关系中的每组依赖关系中任意两个纹理基元的特征之间的双向关系值进行更新。
13.根据权利要求11或12所述的装置,其特征在于,所述纹理表示模块,具体用于沿所述一个或多个方向提取所述图像的多尺度特征图中各纹理基元的特征。
14.根据权利要求8-13任一项所述的装置,其特征在于,所述对所述图像进行处理,包括:对所述图像进行识别、对所述图像进行分割、以及根据所述图像进行图像合成中的任意一种。
15.一种图像处理装置,其特征在于,包括:
接口电路,用于接收待处理的图像的数据;
处理器,连接所述接口电路并用于执行权利要求1至7中任一项所述的方法。
16.一种图像处理装置,其特征在于,包括:处理器,所述处理器用于与存储器相连,调用所述存储器中存储的程序,以执行权利要求1至7中任一项所述的方法。
17.一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
当所述计算机软件指令在图像处理装置或内置在所述图像处理装置的芯片中运行时,使得所述图像处理装置执行如权利要求1至7中任一项所述的方法。
CN202010537872.7A 2020-06-12 2020-06-12 图像处理方法、装置及存储介质 Pending CN113807360A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010537872.7A CN113807360A (zh) 2020-06-12 2020-06-12 图像处理方法、装置及存储介质
PCT/CN2021/099560 WO2021249520A1 (zh) 2020-06-12 2021-06-11 图像处理方法、装置及存储介质
EP21821901.2A EP4156078A4 (en) 2020-06-12 2021-06-11 IMAGE PROCESSING METHOD AND APPARATUS AND STORAGE MEDIUM
US18/064,144 US20230109317A1 (en) 2020-06-12 2022-12-09 Image processing method and apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010537872.7A CN113807360A (zh) 2020-06-12 2020-06-12 图像处理方法、装置及存储介质

Publications (1)

Publication Number Publication Date
CN113807360A true CN113807360A (zh) 2021-12-17

Family

ID=78846897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010537872.7A Pending CN113807360A (zh) 2020-06-12 2020-06-12 图像处理方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20230109317A1 (zh)
EP (1) EP4156078A4 (zh)
CN (1) CN113807360A (zh)
WO (1) WO2021249520A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5931780A (en) * 1993-11-29 1999-08-03 Arch Development Corporation Method and system for the computerized radiographic analysis of bone
CN103559496B (zh) * 2013-11-15 2016-08-17 中南大学 泡沫图像多尺度多方向纹理特征的提取方法
CN103942540A (zh) * 2014-04-10 2014-07-23 杭州景联文科技有限公司 基于曲波纹理分析和svm-knn分类的假指纹检测算法
CN104091333A (zh) * 2014-07-01 2014-10-08 黄河科技学院 基于区域可信融合的多类无监督彩色纹理图像分割方法
US20170287252A1 (en) * 2016-04-03 2017-10-05 Harshal Dwarkanath Laddha Counterfeit Document Detection System and Method
US9947102B2 (en) * 2016-08-26 2018-04-17 Elekta, Inc. Image segmentation using neural network method
CN110516678B (zh) * 2019-08-27 2022-05-06 北京百度网讯科技有限公司 图像处理方法和装置
CN111078940B (zh) * 2019-12-16 2023-05-23 腾讯科技(深圳)有限公司 图像处理方法、装置、计算机存储介质及电子设备

Also Published As

Publication number Publication date
EP4156078A4 (en) 2023-11-22
WO2021249520A1 (zh) 2021-12-16
US20230109317A1 (en) 2023-04-06
EP4156078A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
CN109902548B (zh) 一种对象属性识别方法、装置、计算设备及系统
CN109829448B (zh) 人脸识别方法、装置及存储介质
CN112651438A (zh) 多类别图像的分类方法、装置、终端设备和存储介质
WO2020098257A1 (zh) 一种图像分类方法、装置及计算机可读存储介质
CN109948397A (zh) 一种人脸图像校正方法、系统及终端设备
CN110287836B (zh) 图像分类方法、装置、计算机设备和存储介质
CN114155365B (zh) 模型训练方法、图像处理方法及相关装置
CN112308866A (zh) 图像处理方法、装置、电子设备及存储介质
WO2023284182A1 (en) Training method for recognizing moving target, method and device for recognizing moving target
CN114969417B (zh) 图像重排序方法、相关设备及计算机可读存储介质
US10452955B2 (en) System and method for encoding data in an image/video recognition integrated circuit solution
WO2022063321A1 (zh) 图像处理方法、装置、设备及存储介质
CN112614110B (zh) 评估图像质量的方法、装置及终端设备
CN112001285B (zh) 一种美颜图像的处理方法、装置、终端和介质
US20190220699A1 (en) System and method for encoding data in an image/video recognition integrated circuit solution
CN112686314A (zh) 基于远距离拍摄场景的目标检测方法、装置及存储介质
CN112183303A (zh) 变电设备图像分类方法、装置、计算机设备和介质
CN114913339B (zh) 特征图提取模型的训练方法和装置
CN113807360A (zh) 图像处理方法、装置及存储介质
CN114445916A (zh) 一种活体检测方法、终端设备及存储介质
CN115147434A (zh) 图像处理方法、装置、终端设备及计算机可读存储介质
CN112069885A (zh) 人脸属性识别方法、装置及移动终端
CN116612287B (zh) 图像识别方法、装置、计算机设备和存储介质
CN115019071B (zh) 光学图像与sar图像匹配方法、装置、电子设备及介质
WO2023241372A1 (zh) 相机内参标定方法及相关设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination