RU2720423C1 - Способ защиты овощных культур от инфекций, вызываемых вирусами - Google Patents

Способ защиты овощных культур от инфекций, вызываемых вирусами Download PDF

Info

Publication number
RU2720423C1
RU2720423C1 RU2019102861A RU2019102861A RU2720423C1 RU 2720423 C1 RU2720423 C1 RU 2720423C1 RU 2019102861 A RU2019102861 A RU 2019102861A RU 2019102861 A RU2019102861 A RU 2019102861A RU 2720423 C1 RU2720423 C1 RU 2720423C1
Authority
RU
Russia
Prior art keywords
plants
enzyme
virus
viruses
protecting
Prior art date
Application number
RU2019102861A
Other languages
English (en)
Inventor
Наталья Владимировна Блажко
Султан Хаджибикарович Вышегуров
Юрий Иванович Хрипко
Валерия Алексеевна Рябинина
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный аграрный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный аграрный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный аграрный университет"
Priority to RU2019102861A priority Critical patent/RU2720423C1/ru
Application granted granted Critical
Publication of RU2720423C1 publication Critical patent/RU2720423C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Изобретение относится к области защиты растений, в частности к способу применения биологически активных веществ для защиты овощных культур от вирусов. Способ защиты овощных культур от инфекций, вызванных вирусами, включает опрыскивание раствором, содержащим 300-600 л воды температурой 30-45°С и pH 6-8, внеклеточный фермент продуцента штамма Serratia marcescens в концентрации 400-3200 тыс. ед./ми активатор фермента MgSOв количестве 0,1-0,8 г/млистовых пластин растений. Обработку растений проводят от четырех раз и более в течение одного периода вегетации. Предлагаемый способ защиты растений обеспечивает не только защиту растений от вирусных заболеваний, но и профилактику вирусиндуцированных заболеваний, адаптированную под условия производства и обладающую экологической безопасностью, а также обеспечивает предотвращение распространения вспышек вирусных инфекций в условиях защищенного грунта. 2 табл., 4 пр.

Description

Изобретение относится к области защиты растений, в частности к способу применения биологически активных веществ для защиты овощных культур от вирусов и предотвращению распространения вспышек вирусных инфекций в условиях защищенного грунта.
Способ заключается в обработке овощных культур препаратом из эндонуклеаз с активатором методом опрыскивания.
Аналогом изобретения является способ применения панкреатической рибонуклеазы, обладающей гидролитическими свойствами в отношении фитопатогенных вирусов, способностью инактивировать вирусы, замедлять или предотвращать размножение вирусов [1].
Недостатком применения панкреатической рибонуклеазы в качестве противовирусного средства защиты растений являются высокие затраты на получение фермента в производственных масштабах, несоизмеримые с недополученной прибылью от поражения вирусной инфекцией.
Известен аналог - способ применения средства защиты растений от вирусных инфекций и профилактики заболеваний, обладающий широким спектром действия, высокой эффективностью защиты, экологической безопасностью и безвредностью для человека, животных, растений. В качестве ингибитора развития вирусов - средства защиты растений от вирусных инфекций и профилактики заболеваний используют продуцируемый бактериями Bacillus pumilus внеклеточный фермент - бактериальную рибонуклеазу Bacillus pumilus [2].
Недостатком данного способа является отсутствие возможности промышленного применения, а также наличие результатов исследований только по ингибирующей способности вируса.
Наиболее близким к заявленному способу, является способ применения бактериальной нуклеазы Serratia marcescens для защиты картофеля от вирусов [3].
Недостатком данного способа в качестве способа защиты растений от вирусов являются трудоемкость наработки, отсутствие способа промышленного производства, использовании необходимых для получения бактериальной нуклеазы Serratia marcescens трансгенных растений, а также недостаточной изученностью проблемы безопасности применения трансгенных растений и дороговизной осуществления технологии. Отмечено наличие условной патогенности применяемого продуцента фермента штамма бактерий Serratia marcescens.
Эти недостатки существенно ограничивают область применения для защиты растений, используемых для получения продуктов питания.
Технической задачей предлагаемого изобретения является разработка способа защиты растений от вирусных инфекций и профилактики вирусиндуцированных заболеваний, адаптированного под условия производства, оказывающего высокоэффективную защиту от вирусов, обладающего экологической безопасностью.
Это достигается опрыскиванием листовых пластин рабочим раствором, который содержит воду 300-600 мл, внеклеточный фермент продуцента Serratia marcescens в концентрации 400-3200 тыс. ед./м и активатор фермента MgSO4 в количестве 0,1-0,8 г/м. Воду нагревают до 30-45 градусов, рн 6-8.
В качестве противовирусного средства использовали продуцируемый бактериями Serratia marcescens внеклеточный фермент - бактериальную эндонуклеазу Serratia marcescens, очищенную способом, указанным в ТУ 9382-016-00479979-96-2 ООО «Диафарм», отличающуюся от прототипа отсутствием токсичности [4], полученную без применения трансгенных растений, нарабатываемую в достаточных для производственных масштабов количестве, отличающуюся от аналогов степенью очистки и наличием ферментов, оказывающих гидролитическое действие не только на ДНК/РНК, но и на липопротеиды, в частности на оболочку вирусов. Активацию фермента производили катионами магния [5].
Отличительной особенностью настоящего изобретения являются подходы к способам обработки, в частности расчет кратности и концентрации обработок с учетом степени распространения вирусной инфекции в тепличном комплексе, с применением молекулярно-генетических методов контроля вирусной нагрузки, как в помещениях (оборудование, инвентарь, вспомогательные материалы, стены, настилы), так и в растениях. Определена концентрация катионов магния, которая необходима для активации фермента.
Технический результат достигается следующим образом. Скрининг на наличие/отсутствие вирусов: вирус зеленой крапчатой мозаики (ВЗКМО) и вирус обычной мозаики (ВОМ) производили раз в две недели. В качестве исследуемого материала использовали верхушки растений и смывы с поверхностей помещений. После выявления РНК вирусов в исследуемом материале до проявления вирусной инфекции исследования производили еженедельно. От момента выявления РНК в исследуемом материале, до появления признаков инфекции был инкубационный период вируса, который в среднем составлял 3 недели. Появление первых признаков вирусной инфекции на верхушках растений в виде скручиваний, звездчатости, мозаичности, укороченных междоузлий, условно считали первым после появления признаков вирусной инфекции. Далее последующими контрольными точками считали еженедельные визуальные скрининговые обследования на наличие вирусной инфекции.
Известно, что при устойчивости организма к вирусным инфекциям, эпидемия развивается в начале по прямой, а затем экспоненциально (Fig. 1) [6, 7].
Отличительной чертой настоящего изобретения является учет данных по распространению инфекции, с учетом которых выстраивался способ противовирусной обработки. Такой подход позволяет рассчитывать концентрацию противовирусного препарата с учетом накопления вирусной инфекции как в помещении тепличного комплекса, так и непосредственно в растениях, а также спрогнозировать необходимое количество препарата с учетом цикла репликации вируса в соответствии с математической моделью распространения эпидемического процесса.
Figure 00000001
Представленная в таблице методика расчета концентрации и кратности применения препарата позволяет контролировать распространение вирусной инфекции на разных этапах развития эпидемического процесса. Расчет ограничен 7 неделями, далее применение средств защиты с целью борьбы с вирусными инфекциями малоэффективны и экономически не целесообразны, ввиду развития экспоненциальной стадии эпидемии, которую сложно купировать и остановить распространение инфекции.
Обработку проводят от четырех раз и более в течение одного периода вегетации.
Заявляемое техническое решение характеризуется примерами.
Пример 1. Эксперименты по оценке действия предложенного способа противовирусной обработки проводили на базе лаборатории энзимного анализа и ДНК-технологий ФГБОУ ВО Новосибирский ГАУ, а также в одном из тепличных комплексов Новосибирской области в производственных условиях.
Вирусную нагрузку оценивали молекулярно-генетическими методами, с применение количественной тест-системы с флуоресцентными метками. На начало эксперимента было обнаружено 17 растений с признаками инфекции.
Обработку производили еженедельно методом опрыскивания. Применяли препарат концентрацией 4 млн. ед. акт. на 600 л воды, активировали эндонуклеазу MgSO4 1 кг [5].
При начале обработок с 3 недели после появления первых визуальных признаков инфекции можно ингибировать распространение вируса (Fig. 2), при этом инфекционный процесс не переходит в экспоненциальную стадию.
Применение противовирусной обработки ферментом Serratia marcescens сразу после обнаружения первых признаков развития вирусной инфекции, позволяет купировать эпидемический процесс и прогнозировать дальнейшее его развитие по линейной модели.
Пример 2. Исследования проводили в производственных условиях в тепличном комплексе с применением интенсификации производства, в частности интерплантинга.
При начале обработки заявленным способом через 4 недели после появления вирусной инфекции, используя концентрацию 8 млн. ед. акт. активировали эндонуклеазу MgSO4 - 2 кг [5].
При начале обработок в экспоненциальной стадии течения инфекции необходимо увеличение концентрации фермента, а также начальной активности за счет добавления большего количества активатора. Быстрое экспоненциальное распространение инфекции имеет тенденцию к переходу в линейное после четырех применений препарата, что говорит о сдерживании эпидемического распространения, но при этом достаточно быстрых темпах развития очагов инфекции.
Во втором севообороте без смены культуры, редко, удается избежать вспышек инфекции. Своевременное применение препарата позволит не только купировать распространение инфекции, но и сохранить урожай с наименьшими затратами на защиту от инфекций.
Пример 3. Применение препарата до появления признаков инфекции, с учетом достижения максимально допустимой
Figure 00000002
вирусной нагрузки.
Опыт проводили в производственных условиях с применением интенсификации, в частности интерплантинга. Начало опыта было заложено в первом севообороте. Контрольный участок обрабатывался препаратами в соответствии с технологическим процессом комплекса. Опытный участок еженедельно обрабатывали Serratia marcescens 8 млн. ед. акт., активировали эндонуклеазу катионами магния (Mg2+) в количестве 2 кг. До обработки производили отбор проб для определения вирусной нагрузки. После 3 обработок на контрольном и опытном участках были обнаружены следы вируса (ВЗКМО). После 4 обработок количество вирусных копий в смывах с рабочих поверхностей и настила общей площадью 20 см2 составило -0,068×106 копий.
Далее вирусная нагрузка возрастала, как в смывах, так в листах растений, однако признаков вирусной инфекции не было визуализировано. Скорость распространения инфекции, кривая распространения в период времени, как в контрольном, так и в опытном участках.
Пример 4.
Опыт проводили в лабораторных условиях с применением интенсификации, в частности интерплантинга. Начало опыта было заложено в первом севообороте. Контрольный участок обрабатывался препаратами в соответствии с технологическим процессом комплекса. Опытный участок еженедельно обрабатывали Serratia marcescens, до обработки производили отбор проб для определения вирусной нагрузки. После 3 обработок на контрольном и опытном участках были обнаружены следы вируса (ВЗКМО). После 4 обработок количество вирусных копий в смывах с рабочих поверхностей и настила общей площадью 20 см2 составило -0,068×106 копий.
Таким образом, разработанный способ противовирусной обработки овощных культур в производственных условиях, с применением представленной схемы обработки и кратности применения препарата, позволяет купировать распространение инфекционного процесса, снизить вирусную нагрузку на обрабатываемом участке. При применении препарата в профилактических целях до появления визуальных признаков инфекции, позволяет добиться полной ремиссии инфекционного процесса. При применении препарата по разработанному способу листовые пластины верхнего яруса отрастают визуально полностью здоровыми. Листовые пластины среднего яруса не содержат вируса (ПЦР), однако при этом не полностью восстанавливают здоровый вид, при визуальной оценке на некоторых листьях был отмечен хлороз.
Известно, что бактерии Serratia marcescens продуцируют фермент гидролизующий РНК/ДНК вирусов, кроме того, они продуцируют ряд других ферментов, которые гидролизуют оболочку вирусов, состоящую как правило из липопротеидов, то есть сложных белков, не являются токсиноми для человека и животных. Данный штамм бактерий Serratia marcescens ранее применяли для профилактики и борьбы с вирусами в пчеловодстве. Заявленный способ отличается областью применения, кратностью применения фермента эндонуклеазы продуцента Serratia marcescens, концентрацией активатора фермента MgSO4, а также кратностью применения, периодами между обработками препаратом и способом внесения препарата.
Заявленный способ защиты овощных культур от вирусных инфекций заключается в следующем: внеклеточный фермент эндонуклеазу с активатором применяют в производственных условиях с интерплантингом при выращивании овощных культур с применением гидропоники; в производственных условиях без применения интерплантинга с применением гидропоники (Таблица 1), в условиях ведения частного подсобного хозяйства при выращивании в грунте и в домашних условиях при выращивании рассады (Таблица 2). Фермент и активатор фермента применяют в количестве и концентрации указанных в таблицах 1, 2, в которых представлена схема расчета концентрации фермента миллионов единиц активности (МЕА), рассчитывают необходимое количество активатора фермента, в качестве которого применяют MgSO4, достигая купирование распространения инфекции, восстановление листовых пластин овощных культур, сохранения сортности плодов.
Перед разведением фермента (активностью 2 МЕА) и активатора фермента, предварительно наливают 10 л воды, температура которой от 37 до 50°С; измеряют рН, оптимальным считается рН 8, допустимым 6-9. Три флакона с ферментом вскрывают и вносят леофилизированный фермент в заранее приготовленную воду. После чего к нему добавляют активатор фермента в соответствии с Таблицей 1, размешивают концентрированный раствор до полного растворения MgSO4. Затем полученный концентрированный раствор выливают в 600 л емкость.
Предварительного разведения для фермента концентрацией менее 500 тысяч активных единиц не требуется.
Фермент концентрацией 50 тысяч единиц активности вносят к 3 л воды температура которой от 37 до 50°С, измеряют рН, оптимальным считается рН 8, допустимым 7-9. После чего к нему добавляют активатор фермента в соответствии с Таблицей 2, размешивают концентрированный раствор до полного растворения MgSO4.
Обработку осуществляют методом опрыскивания в кратности и концентрациях, приведенных в таблице 2.
Оптимальные условия работы противовирусного препарата: оптимальное внесение дополнительных веществ, препаратов и т.п.допустимо через один полив (то есть следующий полив за внесенным ферментов не предполагает дополнительных препаратов, после него можно вносить предусмотренные технологией выращивания препараты); время действия препарата ограничивается следующим поливом растения, предусмотренным технологией выращивания); кратность обработки препаратом - еженедельно.
При обработке площади меньшей, чем указано в Таблице 1, расчет препарата и катионов магния производится пропорционально - с сохранением концентраций в объеме воды.
Figure 00000003
При обработке площади меньшей, чем указано в Таблице 2 расчет препарата и активатора производится пропорционально - с сохранением концентраций в объеме воды.
Расчет концентрации Serratia marcescens на 300 мл воды для обработки 5 м2 рассады составляет 5 тыс. ед. акт. с добавлением 1 г активатора MgSO4. Расчет препарата и катионов магния производится пропорционально - с сохранением концентраций в объеме воды.
1. Мартынова Р.В. Ингибирующее действие панкреатической рибонуклеазы на фитопатогенные вирусы // Биологические исследования на Дальнем Востоке. Владивосток: ДВНЦ АН СССР, 1975. - С. 149-152.
2. Шарипова М.Р., Балабан Н.П., Марданова A.M., Тойменцева А.А. Применение фермента рибонуклеазы bacillus pumilus в качестве ингибитора фитопатогенных вирусов. Патент 2542480 RU от 20.05.2015.
3. Леонова Н.С., Салганик Р.И. Применение бактериальной эндонуклеазы для оздоровления картофеля от вирусов / Сибирский вестник сельскохозяйственной науки, 1991, №5, С. 25-28.
4. Benedik М.J., Strych U. Serratia marcescens and its extracellular nuclease // FEMS Microbiology Letters 165 (1998) 1-13.
5. Романова Ю.Д., Губская В.П., Нуретдинов И.А. и др. О механизме регуляции активности эндонуклеазы Serratia Marcescens катионами магния. Ю.Д. Романова, В.П. Губская, И.А Нуретдинов, А.А. Сусарова, М.Н. Филимонова // Ученые записки Казанского государственного университета, 2008 Том 150, кн. 2. С. 176-185.
6. Бароян О.В., Рвачев Л.А. Математика и эпидемиология. М., «Знание», 1977.
7. Боев. Б.В. Современные этапы математического моделирования процессов развития и распространения инфекционных заболеваний // Эпидемиологическая кибернетика: модели, информация, эксперименты. М., 1991, С. 111-114.

Claims (1)

  1. Способ защиты овощных культур от инфекций, вызываемых вирусами, при котором листовые пластины растений опрыскивают раствором, содержащим 300-600 л воды температурой 30-45°С и рН 6-8, внеклеточный фермент эндонуклеазу продуцента Serratia marcescens в концентрации 400-3200 тыс. ед./м2 и активатор фермента MgSO4 в количестве 0,1-0,8 г/м2, обработку проводят от четырех раз и более в течение одного периода вегетации.
RU2019102861A 2019-02-01 2019-02-01 Способ защиты овощных культур от инфекций, вызываемых вирусами RU2720423C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019102861A RU2720423C1 (ru) 2019-02-01 2019-02-01 Способ защиты овощных культур от инфекций, вызываемых вирусами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019102861A RU2720423C1 (ru) 2019-02-01 2019-02-01 Способ защиты овощных культур от инфекций, вызываемых вирусами

Publications (1)

Publication Number Publication Date
RU2720423C1 true RU2720423C1 (ru) 2020-04-29

Family

ID=70553038

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019102861A RU2720423C1 (ru) 2019-02-01 2019-02-01 Способ защиты овощных культур от инфекций, вызываемых вирусами

Country Status (1)

Country Link
RU (1) RU2720423C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022055395A1 (ru) * 2020-09-11 2022-03-17 Общество С Ограниченной Ответственностью Научно-Исследовательский Центр "Инновации" (Ru), Способ защиты овощных культур от вирусных инфекций

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110594A1 (en) * 2012-01-25 2013-08-01 Bayer Intellectual Property Gmbh Active compound combinations containing fluopyram and biological control agent
RU2542480C1 (ru) * 2013-11-19 2015-02-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) ПРИМЕНЕНИЕ ФЕРМЕНТА РИБОНУКЛЕАЗЫ Bacillus pumilus В КАЧЕСТВЕ ИНГИБИТОРА ФИТОПАТОГЕННЫХ ВИРУСОВ
RU2615834C2 (ru) * 2012-01-25 2017-04-11 Байер Интеллектуэль Проперти Гмбх Комбинация активных соединений, а также содержащая комбинацию композиция и их применение, семя, обработанное комбинацией или композицией, и способ борьбы для защиты сельскохозяйственных культур

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110594A1 (en) * 2012-01-25 2013-08-01 Bayer Intellectual Property Gmbh Active compound combinations containing fluopyram and biological control agent
RU2615834C2 (ru) * 2012-01-25 2017-04-11 Байер Интеллектуэль Проперти Гмбх Комбинация активных соединений, а также содержащая комбинацию композиция и их применение, семя, обработанное комбинацией или композицией, и способ борьбы для защиты сельскохозяйственных культур
RU2542480C1 (ru) * 2013-11-19 2015-02-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) ПРИМЕНЕНИЕ ФЕРМЕНТА РИБОНУКЛЕАЗЫ Bacillus pumilus В КАЧЕСТВЕ ИНГИБИТОРА ФИТОПАТОГЕННЫХ ВИРУСОВ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛЕОНОВА Н.С., САЛГАНИК Р.И., СИМОНОВА О.Г. "Применение бактериальной эндонуклеазы для оздоровления картофеля от вирусов", Сибирский вестник сельскохозяйственной науки, 1991, Ν5, с. 42-45. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022055395A1 (ru) * 2020-09-11 2022-03-17 Общество С Ограниченной Ответственностью Научно-Исследовательский Центр "Инновации" (Ru), Способ защиты овощных культур от вирусных инфекций
RU2768037C2 (ru) * 2020-09-11 2022-03-23 Общество С Ограниченной Ответственностью Научно-Исследовательский Центр"Инновации" Способ защиты овощных культур от вирусных инфекций

Similar Documents

Publication Publication Date Title
van Aubel et al. COS-OGA: A novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew
Beuchat Vectors and conditions for preharvest contamination of fruits and vegetables with pathogens capable of causing enteric diseases
STROBEL et al. Agrobacterium rhizogenes promotes the initial growth of bare root stock almond
Ma et al. Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks
Degani et al. The microflora of maize grains as a biological barrier against the late wilt causal agent, Magnaporthiopsis maydis
Malathi et al. Mechanized means of sett treatment: an effective way of delivering fungicides for the management of red rot in sugarcane
JP6605637B2 (ja) 寄生性、病原性又は外部寄性生物系の核酸を含む、前記系の増殖を阻害及び/又は制御するための組成物
Xu et al. Comparing the microbiological status of pre-and postharvest produce from small organic production
RU2720423C1 (ru) Способ защиты овощных культур от инфекций, вызываемых вирусами
Bouissil et al. Induction of defense gene expression and the resistance of date palm to Fusarium oxysporum f. sp. albedinis in response to alginate extracted from Bifurcaria bifurcata
Archer et al. Efficacy of trunk injected imidacloprid and oxytetracycline in managing huanglongbing and Asian citrus psyllid in infected sweet orange (Citrus sinensis) trees
Rivas-Garcia et al. Effect of Ulvan on the Biocontrol Activity of Debaryomyces hansenii and Stenotrophomonas rhizophila against Fruit Rot of Cucumis melo L.
Lev-Yadun et al. Extended phenotype in action. Two possible roles for silica needles in plants: not just injuring herbivores but also inserting pathogens into their tissues
Oyesola et al. Impact and Management of Diseases of Solanum tuberosum
Nazarko et al. Advantages of growing and storaging of organic apples
Sanabria et al. Effectiveness of resistance inductors for potato late blight management in Peru
Lumsden et al. Development of the biocontrol fungus Gliocladium virens: risk assessment and approval for horticultural use
Gitea et al. The consequences of excessive chemicalization on fruits quality
Najdabbasi et al. Combination of potassium phosphite and reduced doses of fungicides encourages protection against Phytophthora infestans in potatoes
RU2768037C2 (ru) Способ защиты овощных культур от вирусных инфекций
Oluoch et al. Thymol and eugenol nanoparticles elicit expression of Ralstonia solanacearum virulence and potato defense genes and are potential bactericides against potato bacterial wilt
Miller Review article Symbiotic Control in agriculture and medicine
Arya Role of epidemiology in plant disease management
JPH03251179A (ja) 軟腐病菌の固定化方法および防除方法
Faria Evaluation of ectomycorrhizal respiration for remediation of pesticides in forestry

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210202