RU2720119C1 - Полимерный конструкционный материал и способ его изготовления - Google Patents

Полимерный конструкционный материал и способ его изготовления Download PDF

Info

Publication number
RU2720119C1
RU2720119C1 RU2019124744A RU2019124744A RU2720119C1 RU 2720119 C1 RU2720119 C1 RU 2720119C1 RU 2019124744 A RU2019124744 A RU 2019124744A RU 2019124744 A RU2019124744 A RU 2019124744A RU 2720119 C1 RU2720119 C1 RU 2720119C1
Authority
RU
Russia
Prior art keywords
binder
fabric
epoxy
layers
impregnated
Prior art date
Application number
RU2019124744A
Other languages
English (en)
Inventor
Александр Юрьевич Филатов
Виктор Николаевич Борисов
Светлана Алексеевна Ведерникова
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом"), Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Priority to RU2019124744A priority Critical patent/RU2720119C1/ru
Application granted granted Critical
Publication of RU2720119C1 publication Critical patent/RU2720119C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/12Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Изобретение относится к слоистым изделиям, где в качестве пропитывающего, связующего вещества использована эпоксикремнийорганическая смола, а в качестве наполнителя - арамидная ткань, и способам их изготовления. Полимерный конструкционный материал содержит эпоксидное связующее, состоящее из 71,4 массовых долей эпоксикремнийорганической смолы, и 28,6 массовых долей полиаминного отвердителя. Связующим пропитана арамидная ткань при следующем соотношении масс связующего и ткани на 100 масс. % Органита К: эпоксикремнийорганическое связующее 35-40 масс. %, арамидная ткань 65-60 масс. %. Изобретение также относится к способу изготовления полимерного конструкционного материала, который включает в себя предварительную обработку поверхности пресс-формы раствором силоксанового каучука технического назначения в толуоле, затем нанесение на слои ткани эпоксидного связующего на основе эпоксикремнийорганической смолы и сборку пакета из необходимого количества слоев ткани, чередуя пропитанный слой с непропитанным, после чего формуют слои в гидравлическом прессе при температуре 23°С, не менее 24 часов и удельном давлении 50-60 кгс/см2, затем при температуре 75°С не менее 3 часов и удельном давлении 15-20 кгс/см2. Технический результат заключается в выборе и соотношении исходных материалов, оптимизации технологических режимов формования, повышающих броне- и теплозащитные характеристики. Это позволяет решить задачу разработки теплоизоляционного материала, обладающего одновременно бронезащитными свойствами и малой массой. 2 н.п. ф-лы, 3 ил.

Description

Область техники
Заявляемое изобретение относится к слоистым изделиям, содержащим в основном синтетические смолы. Точнее к слоистым изделиям, где в качестве пропитывающего, связывающего вещества использована эпоксикремнийорганическая смола, а в качестве наполнителя - арамидная ткань.
Изобретение может быть использовано в качестве материала для броне- и теплозащиты или деталей теплоотсечки в авиационной промышленности, ракето- и машиностроении. Там, где требуется сохранение работоспособности материала при многократном воздействии температуры порядка +250°С.
Предшествующий уровень техники
Известен аналог полимерного конструкционного материала, приведенный в заявке РФ №2001112342/042001112342/04, «Теплостойкие полимерные матрицы для изготовления слоистых композиционных материалов на основе стекло-, угле-, боро- и органических волокон»; МПК C08L 63/00, В32В 27/38, C08J 5/24; приоритет 04.05.2001; опубликовано 10.07.2003; авторы Симонов В.Ф., Урмансов Ф.Ф., Биткин В.Е., Сухих О.Н.
Теплостойкие эпоксикремнийорганические матрицы для создания слоистых композиционных материалов на основе стекло-, угле-, боро- и органических волокон с температурой эксплуатации от -15 до +200°С и низким коэффициентом линейного температурного расширения (КЛТР).
Недостатками данного полимерного композиционного материала является его недостаточно высокая рабочая температура.
Известен аналог, в котором описан способ изготовления полимерного конструкционного материала, приведенный в патенте РФ №2405675 «Способ получения конструкционного композиционного материала», МПК: В29С 51/10, В32В 27/12, C08J 5/00; приоритет 15.07.2009, опубликовано: 10.12.2010, патентообладатели Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России), Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ").
Способ включает сборку пакета из слоев арамидной ткани и полимерного связующего и формование его при повышенной температуре и давлении. Сборку пакета осуществляют из слоев арамидной ткани и полимерного связующего в количестве (40-55) масс. %, а перед формованием собранный пакет помещают в гермочехол, подключают к вакуумной системе, вакуумируют до остаточного давления (0,07-0,09) МПа и выдерживают при температуре (70-120)°С не менее 30 минут. В качестве связующего используют модифицированное каучуком, полисульфоном или диапластом эпоксидное связующее.
Недостатками данного способа являются необходимость операции вакуумирования перед формованием, повышенная температура формования.
В качестве прототипа для полимерного конструкционного материала был выбран препрег, приведенный в патенте РФ №2264295 «Препрег и изделие, выполненное из него»; МПК В32В 27/2, В32В 5/24, C08J 5/24; приоритет 25.06.2004; опубликовано 20.11.2005; авторы Е.Н. Каблов, В.В. Кривонос, Н.П. Кувшинов и др.
Препрег, включающий полимерное связующее и арамидный наполнитель, отличающийся тем, что в качестве наполнителя он содержит арамидный наполнитель из нейтральных арамидных нитей Русар с номинальной линейной плотностью 14,3; 29,4; 58,8 текс, удельной разрывной нагрузкой не менее 210 сН/текс и удлинением при разрыве не менее 2,6% при следующем соотношении компонентов, масс. %: наполнитель (45-65) масс. %, связующее (35-55) масс. %.
Недостатками данного препрега являются повышенный расход связующего (до 55 масс. %), недостаточно высокие теплоизоляционные свойства при высоких рабочих температурах.
В качестве прототипа для способа изготовления полимерного конструкционного материала (ПКМ) был выбран способ, приведенный в патенте РФ №2264295 «Препрег и изделие, выполненное из него»; МПК В32В 27/2, В32В 5/24, C08J 5/24; приоритет 25.06.2004; опубликовано 20.11.2005; авторы Е.Н. Каблов, В.В. Кривонос, Н.П. Кувшинов и др.
В процессе изготовления ПКМ отвердитель наносят на ткань, сушат при комнатной температуре. На предварительно подготовленную поверхность пресс-формы выкладывают слои препрега и формуют в автоклаве по ступенчатому режиму с минимальной температурой нагрева 140°С при удельном давлении Руд=5 атм.
Недостатками данного способа являются использование дополнительного сложного и дорогостоящего оборудования (намоточного станка и автоклава), повышенная температура формования и сложность последующей механической обработки заготовки.
Раскрытие изобретения
Задачей, на решение которой направлено заявляемое изобретение, является разработка теплоизоляционного материала, обладающего одновременно бронезащитными свойствами и малой массой.
Технический результат заключается в выборе и соотношении исходных материалов, оптимизации технологических режимов формования, повышающих броне - и теплозащитные характеристики.
Технический результат в полимерном конструкционном материале достигается тем, что в полимерном конструкционном материал Органит К, содержащем в составе полимерное связующее и органический волокнистый наполнитель в виде ткани из арамидных нитей, согласно изобретению, в качестве полимерного связующего использовано эпоксикремнийорганическое связующее, состоящее из 71,4 массовых долей смолы эпоксикремнийорганической и 28,6 массовых долей полиаминного отвердителя. Связующе взято в количестве (35-40) масс. %, которым пропитана арамидная ткань в количестве (65-60) масс. % при соотношении масс связующего и ткани на 100 масс. % Органита К.
Технический результат в способе изготовления ПКМ Органит К достигается тем, что наносят на слои арамидной ткани эпоксидное связующее, размещают их в пресс-форме и затем формуют, согласно изобретению, предварительно поверхности пресс-формы обрабатывают раствором силоксанового каучука технического назначения в толуоле (СКТН), наносят на слои ткани эпоксидное связующее на основе эпоксикремнийорганической смолы. Далее собирают пакет из необходимого количества слоев ткани, чередуя пропитанный слой с непропитанным. После чего формуют слои в гидравлическом прессе при температуре +23°С, не менее 24 часов, и удельном давлении 50-60 кгс/см2, затем при температуре +75°С не менее 3 часов и удельном давлении 15-20 кгс/см2.
Совокупность существенных признаков обеспечивает получение технического результата, заключающегося в выборе и соотношении исходных материалов, оптимизации технологических режимов формования, повышающих броне - и теплозащитные характеристики. Это позволяет решить задачу разработки бронезащитного материала, обладающего высокими теплоизоляционными свойствами, работоспособного при многократном воздействии температуры 250°С.
Варианты осуществления изобретения
Для получения полимерного конструкционного материала Органит К готовят полимерное связующее. В качестве полимерного связующего используют состав, включающий 71,4 массовых долей эпоксикремнийорганической смолы, и 28,6 массовых долей полиаминного отвердителя.
Такое соотношение компонентов позволяет получить эпоксикремнийорганическое связующее, обладающее высокими теплозащитными свойствами и высокой рабочей температурой не менее +250°С.
Полученным эпоксикремнийорганическим связующим пропитывают арамидную ткань при следующем соотношении масс связующего и ткани на 100% Органита К:
эпоксикремнийорганическое связующее 35-40 масс. %,
арамидная ткань 65-60 масс. %.
Соотношение компонентов и тип связующего дает снижение максимальной температуры формования до +75°С по сравнению с минимальной температурой +140°С в прототипе. Соотношение ткань - связующее в полимерном конструкционном материале Органит К придает тепло- и бронезащитные свойства материалу. Бронезащитные свойства характеризуются пределом прочности при сдвиге и пределом прочности при разрыве.
В результате проведенных экспериментов был установлен диапазон масс. % эпоксикремнийорганического связующего и арамидной ткани. Результаты приведены в таблице 1 на фиг. 1.
Как видно из таблицы 1, при содержании связующего в композиционном материале менее 30 масс. % получаемый материал не обладает необходимой прочностью.
При увеличении массового содержания связующего больше 40% вместе с прочностными характеристиками увеличивается плотность и масса полученного материала. Это не соответствует требованиям, предъявляемым к деталям из Органита К.
Поэтому были выбраны диапазоны соотношения связующего и ткани, позволяющие при низкой массе полученного материала сохранить необходимые тепло- и бронезащитные свойства.
Полимерный конструкционный материал Органит К получают следующим образом.
Для уменьшения адгезии образца к поверхностям пресс-формы поверхности пресс-формы предварительно обрабатывают раствором силоксанового каучука технического назначения (СКТН) в толуоле.
Закрепляют слои ткани на твердой и ровной поверхности. При помощи шпателя или валика равномерно наносят на слои ткани эпоксидное связующее на основе эпоксикремнийорганической смолы.
Далее собирают пакет из необходимого количества слоев ткани, чередуя пропитанный слой с непропитанным. Сочетание пропитанных слоев с непропитанными и усилия прессования позволяет снизить расход связующего при улучшении теплоизоляционных и бронезащитных характеристик по сравнению с прототипом. В то же время чередование слоев не приводит к ухудшению вышеуказанных характеристик по сравнению со сплошной пропиткой всех слоев ткани. Результат проведенных исследований представлен в таблице 2 на фиг. 2.
Это позволяет решить задачу разработки бронезащитного материала, обладающего высокими теплоизоляционными свойствами.
Затем помещают пакет в пресс-форму, проложив между пакетом и пресс-формой полиэтиленовую пленку. После этого формуют слои в гидравлическом прессе сначала при температуре 23°С, и удельном давлении (50-60) кгс/см2 в течение не менее 24 часов. Затем при температуре 75°С и удельном давлении (15-20) кгс/см2 в течение не менее 3 часов.
В предлагаемом способе отверждение происходит при максимальной температуре +75°С по сравнению с минимальной температурой +140°С в прототипе. Это позволяет исключить применение автоклава при формовании. Броне- и теплозащитные свойства полученного материала сохраняются.
В результате проведенных экспериментов было установлено, что полученный полимерный конструкционный материал Органит К обладает высокими теплоизоляционными свойствами, представленными в таблице 3 на фиг. 3. То есть при высоких рабочих температурах Органит К обладает низкой тепло- и температуропроводностью, а так же высокой теплоемкостью.
Достигаемый результат обеспечивается не только наличием известных отличительных признаков, но и зависит от взаимодействия его с другими существенными признаками заявляемого способа, что позволяет ему расширить свои функциональные возможности и обеспечить высокий технический результат, заключающийся в выборе и соотношении исходных материалов, оптимизации технологических режимов формования, повышающих броне - и теплозащитные характеристики.
Расширенная функция, обеспечиваемая отличительными признаками, и получение неожиданного результата от использования этих признаков в совокупности с другими признаками, свидетельствует о соответствии предлагаемого технического решения критерию "изобретательский уровень".
При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Следовательно, заявленное изобретение соответствует условию «новизна».
Промышленная применимость
Предлагаемое техническое решение обеспечивает возможность изготовления бронезащитного материала, обладающего высокими теплоизоляционными свойствами на существующем оборудовании. Это подтверждает промышленную применимость предлагаемого материала. Предложенный способ может быть использован в машиностроении, авиастроении и космической технике, там, где предъявляются высокие требования по обеспечению термостойкости и теплоизоляции элементов изделий. Предложенный вариант осуществления способа может быть реализован на существующем в настоящее время оборудовании с использованием имеющихся материалов. Это доказывает работоспособность и подтверждает промышленную применимость способа.

Claims (7)

1. Полимерный композиционный материал, содержащий в составе полимерное связующее и органический волокнистый наполнитель в виде ткани из арамидных нитей, отличающийся тем, что в качестве полимерного связующего использовано эпоксидное связующее, состоящее из 71,4 массовых долей эпоксикремнийорганической смолы и 28,6 массовых долей полиаминного отвердителя, которым пропитана арамидная ткань при следующем соотношении масс связующего и ткани на 100 масс. % композиционного материала, масс.%:
эпоксикремнийорганическое связующее 35-40 арамидная ткань 65-60
2. Способ изготовления полимерного композиционного материала, включающий в себя нанесение на слои арамидной ткани эпоксидного связующего, размещение их в пресс-форме и последующее формование, отличающийся тем, что
сначала поверхности пресс-формы обрабатывают раствором силоксанового каучука технического назначения в толуоле,
затем наносят на слои ткани эпоксидное связующее на основе эпоксикремнийорганической смолы,
далее собирают пакет из необходимого количества слоев ткани, чередуя пропитанный слой с непропитанным,
после чего формуют слои в гидравлическом прессе при температуре +23°С не менее 24 часов и удельном давлении 50-60 кгс/см2, затем при температуре +75°С не менее 3 часов и удельном давлении 15-20 кгс/см2.
RU2019124744A 2019-08-01 2019-08-01 Полимерный конструкционный материал и способ его изготовления RU2720119C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019124744A RU2720119C1 (ru) 2019-08-01 2019-08-01 Полимерный конструкционный материал и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019124744A RU2720119C1 (ru) 2019-08-01 2019-08-01 Полимерный конструкционный материал и способ его изготовления

Publications (1)

Publication Number Publication Date
RU2720119C1 true RU2720119C1 (ru) 2020-04-24

Family

ID=70415614

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019124744A RU2720119C1 (ru) 2019-08-01 2019-08-01 Полимерный конструкционный материал и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2720119C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227693A (ja) * 1996-02-21 1997-09-02 Toray Ind Inc エポキシ樹脂組成物、プリプレグ、複合材料およびコンクリート部材
RU2209218C2 (ru) * 2001-05-04 2003-07-27 Симонов Владимир Федорович Теплостойкая эпоксикремнийорганическая матрица для создания слоистых композиционных материалов на основе стекло-, угле-, боро- и органических волокон
RU2264295C1 (ru) * 2004-06-25 2005-11-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Препрег и изделие, выполненное из него
RU2304270C1 (ru) * 2005-11-10 2007-08-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Препрег и стойкое к удару и баллистическому воздействию изделие, выполненное из него
RU2405675C1 (ru) * 2009-07-15 2010-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения конструкционного композиционного материала

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227693A (ja) * 1996-02-21 1997-09-02 Toray Ind Inc エポキシ樹脂組成物、プリプレグ、複合材料およびコンクリート部材
RU2209218C2 (ru) * 2001-05-04 2003-07-27 Симонов Владимир Федорович Теплостойкая эпоксикремнийорганическая матрица для создания слоистых композиционных материалов на основе стекло-, угле-, боро- и органических волокон
RU2264295C1 (ru) * 2004-06-25 2005-11-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Препрег и изделие, выполненное из него
RU2304270C1 (ru) * 2005-11-10 2007-08-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Препрег и стойкое к удару и баллистическому воздействию изделие, выполненное из него
RU2405675C1 (ru) * 2009-07-15 2010-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения конструкционного композиционного материала

Similar Documents

Publication Publication Date Title
Rahmani et al. Mechanical properties of carbon fiber/epoxy composites: Effects of number of plies, fiber contents, and angle‐ply layers
US4533589A (en) Composite materials
KR0139918B1 (ko) 개선된 라미네이트 복합체 및 그 제조 방법
JP2020529962A (ja) 予備含浸繊維強化複合材料、ならびに前記予備含浸材料の成形および後続の熱分解によって得られる繊維強化複合セラミック材料
US4956217A (en) Silicate treated honeycomb structures
CA1184106A (en) Process for producing cured, curved moulded articles
KR101898394B1 (ko) 에폭시 수지 조성물을 포함하는 토우프레그
RU2318666C2 (ru) Способ изготовления армированных волокном изделий на основе эпоксидной смолы
US4101354A (en) Coating for fibrous carbon material in boron containing composites
WO2018193908A1 (ja) 繊維強化複合材料成形品およびその製造方法
US2703775A (en) Bonded silicone rubber products and method of making same
RU2720119C1 (ru) Полимерный конструкционный материал и способ его изготовления
RU2405675C1 (ru) Способ получения конструкционного композиционного материала
JPH0575575B2 (ru)
KR100249395B1 (ko) 시이트 성형 화합물 탄도저항성 유리섬유 복합재 및 탄도저항성 유리섬유 복합재의 제조방법
US4820567A (en) Microcrack resistant fiber reinforced resin matrix composite laminates
TW201627396A (zh) 用於複合材料之環氧基樹脂組合物
KR102294301B1 (ko) 오토클레이브를 이용한 골프채 샤프트의 제조방법
KR102157191B1 (ko) 탄성복합구조체 및 이의 제조방법
KR20210065424A (ko) 폴리에테르이미드 블렌드 및 유리섬유매트를 포함하는 복합소재시트 및 그의 제조방법
US4164601A (en) Coating for fibrous carbon material in boron containing composites
Miwa et al. Strain rate and temperature dependence of tensile strength for carbon/glass fibre hybrid composites
RU2754144C1 (ru) Гибкий слоистый композиционный материал с высокой абляционной стойкостью
EP3083773B1 (en) Method for making a flexible fiber-reinforced composite material
JPH11320735A (ja) 繊維強化プラスチック製耐火建築部材およびその製造方法