RU2717823C1 - Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн - Google Patents

Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн Download PDF

Info

Publication number
RU2717823C1
RU2717823C1 RU2019135165A RU2019135165A RU2717823C1 RU 2717823 C1 RU2717823 C1 RU 2717823C1 RU 2019135165 A RU2019135165 A RU 2019135165A RU 2019135165 A RU2019135165 A RU 2019135165A RU 2717823 C1 RU2717823 C1 RU 2717823C1
Authority
RU
Russia
Prior art keywords
amplitude
signal
signals
elevation angle
phase
Prior art date
Application number
RU2019135165A
Other languages
English (en)
Inventor
Иван Павлович Назаренко
Александр Васильевич Шербинко
Евгений Евгеньевич Фенюк
Владимир Иванович Ермошкин
Станислав Борисович Шатковский
Original Assignee
Закрытое акционерное общество Научно-исследовательский центр «РЕЗОНАНС» (ЗАО НИЦ «РЕЗОНАНС»)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество Научно-исследовательский центр «РЕЗОНАНС» (ЗАО НИЦ «РЕЗОНАНС») filed Critical Закрытое акционерное общество Научно-исследовательский центр «РЕЗОНАНС» (ЗАО НИЦ «РЕЗОНАНС»)
Priority to RU2019135165A priority Critical patent/RU2717823C1/ru
Application granted granted Critical
Publication of RU2717823C1 publication Critical patent/RU2717823C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/68Radar-tracking systems; Analogous systems for angle tracking only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/68Radar-tracking systems; Analogous systems for angle tracking only
    • G01S13/685Radar-tracking systems; Analogous systems for angle tracking only using simultaneous lobing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/72Diversity systems specially adapted for direction-finding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области радиолокации и может быть использовано при измерении угла места (УМ) воздушного объекта в метровом диапазоне электромагнитных волн. Способ измерения угла места заключается в приеме с помощью вертикальной N-канальной антенной решетки (АР) прямых и отраженных от подстилающей поверхности Земли радиосигналов воздушного объекта (ВО). Согласно изобретению формируют массив квадратур сигналов Xn и Yn принятого многоканального сигнала АР, затем подвергают амплитудной нормировке по N каналам приема относительного амплитуды заданного антенного элемента АР. Одновременно с амплитудной нормировкой сигналов проводят их фазовую нормировку относительно фазы сигнала заданного элемента. Далее производят сравнение нормированного по амплитуде и фазе принятого многоканального сигнала с рассчитанными заранее значениями модельного сигнала с заданными коэффициентами отражения Френеля Gm, ϕm, предполья АР в заданном диапазоне УМ, с заданным шагом по УМ. Далее сравнивают нормированные по амплитуде и фазе принятые и модельные многоканальные сигналы по условию их невязки между собой. Результат сравнения этих сигналов представляют в виде суммы квадратов «невязок»: δxm по х-квадратурам», δym - по у-квадратурам, δAm - по А-амплитудам. Далее по найденным значениям суммы квадратов «невязок» δxm, δym, δAm строят нелинейную спектральную функцию Rm по правилу:
Figure 00000079
После этого на массиве Rm находят максимальное значение спектра Rmax, его положение Mmax по угловой координате и принимают решение об измеренном GBO угле места ВО по правилу: GBO=d⋅Mmax, где: d - принятый размер дискретного шага измерений по УМ, град. Изобретение обеспечивает измерение углового положение GBO маловысотных ВО в «зоне θ их нечувствительности» (GBO<θ=1.5-2 град.). Вне «зоны нечувствительности» CBO≥2 град. изобретение обеспечивает повышение точности измерения угла места. 6 ил.

Description

Область техники. Изобретение относится к области радиолокации, конкретно к способу измерения угла места (УМ) воздушного объекта (ВО) в метровом диапазоне электромагнитных волн с помощью вертикальной антенной решетки (АР).
Уровень техники. Известны способы измерения УМ воздушного объекта (ВО) с помощью вертикальной АР /RU 2317566, RU 2038607, RU 2307375, RU 2615491, RU 2630686, RU 2649899, RU 2697662, RU 2291464/.
Наиболее близким к заявляемому изобретению относится способ измерения угла места воздушного объекта /RU 2291464/ с помощью вертикальной АР при наличии отражений принимаемого эхосигнала от земной поверхности, выбранный в качестве прототипа изобретения.
Известный способ измерения угла места /RU 2291464/ воздушного объекта, заключается в приеме с помощью вертикальной N-канальной АР прямых и отраженных от подстилающей поверхности Земли массива квадратур Xn и Yn принятого многоканального радиосигнала от ВО и от предполья АР.
Далее в известном способе /RU 2291464/ производят пространственную фильтрацию на основе комплексного сопряжения суммы принятого от цели эхосигнала и его отражения от подстилающей поверхности, модельно приближенной к реальному рельефу земной поверхности позиции -предполья АР. При этом пространственную фильтрацию осуществляют в соответствии с весовыми комплексными коэффициентами, которые определяются с привлечением априорной информации, содержащейся в цифровых картах местности. Численное значение весовых коэффициентов цифровых карт местности пропорционально напряжению, создаваемому на каждом приемном элементе АР волной, отраженной непосредственно от цели и напряжение, создаваемое волной, переотраженной от земной поверхности, учитывающие угол в вертикальной плоскости прихода волны, отраженной непосредственно от цели. Для измерения угла места ВО в /RU 2291464/ используется алгоритм дискретного преобразования Фурье с фиксированным шагом по углу места.
Недостатком известного способа /RU 2291464/ является невозможность измерения УМ целей при предельно малых УМ, в так называемой «зоне нечувствительности» измерения угловых координат ВО даже при наличии ровного предполья. Это связано с тем, что угловой размер 0 «зоны нечувствительности» пропорционален ширине диаграммы направленности АР в вертикальной плоскости, и он оценивается:
Figure 00000001
где:
λ - длина волны, м
D - длина АР, м
В соответствии с выражением (1) численное значение 0 «зоны нечувствительности» для прототипа /RU 2291464/ составляет ~ 2 град. Это связано с тем, что в прототипе для измерения угла места ВО используется алгоритм дискретного преобразования Фурье с фиксированным шагом по углу места. С помощью этого алгоритма измерение УМ маловысотных ВО имеет трудности из-за сложной суперпозиции на приемной АР прямых и отраженных от подстилающей поверхности Земли радиосигналов ВО, даже с использованием электронной карты местности.
В конечном итоге, это приводит к неполной компенсации ошибок в «зоне нечувствительности». Решение этой проблемы особенно важно в диапазоне метровых волн.
Технической проблемой, решаемой изобретением, является решение проблемы измерения угловых координат маловысотных ВО в условиях наличия на приемной АР прямых и отраженных от подстилающей поверхности Земли радиосигналов ВО.
Техническим результатом изобретения является решение проблемы измерения угловых координат маловысотных ВО в «зоне их нечувствительности θ» при углах места, сравнимых с шириной диаграммы направленности приемной угломестной АР, а также повышение точности измерений при углах места ВО, превышающих θ град.
Сущность изобретения
Решение указанной технической проблемы и достижения заявленного технического результата обеспечивается тем, что способ измерения угла места воздушного объекта состоит в приеме с помощью вертикальной N-канальной АР многоканального массива квадратур Xn и Yn прямых и отраженных от подстилающей поверхности Земли радиосигналов воздушного объекта (ВО).
Новым в изобретении является следующие отличительные признаки:
Отличие 1. Принятый многоканальной АР массив квадратур прямого и отраженного от Земли сигналов Xn и Yn, сначала подвергают амплитудной нормировке по N каналам приема из условий:
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
где:
Figure 00000006
- х-квадратура нормированного сигнала;
Figure 00000007
- у-квадратура нормированного сигнала;
As - средние значение амплитуды сигналов на N элементах угломестной АР;
n=0÷N-1 - порядковый номер приемного элемента АР;
N - общее количество приемных элементов вертикальной АР.
Отличие 2. Одновременно с амплитудной нормировкой принятых многоканальных сигналов проводят их фазовую нормировку относительно фазы сигнала заданного элемента по правилам:
Figure 00000008
Figure 00000009
Figure 00000010
Отличие 3. Сравнение нормированного по амплитуде и фазе принятого многоканального сигнала проводят с заранее рассчитанными значениями модельного сигнала с заданными коэффициентами Gm, ϕm Френеля отражения предполья АР в заданном диапазоне УМ, с заданным шагом по УМ.
Отличие 4. Многоканальный модельный сигнал, характеризующий предполье АР и его Gm, ϕm - амплитудные и фазовые коэффициенты Френеля в зависимости от угла места падающей волны, отраженной от предполья, рассчитывают по правилу:
Figure 00000011
Figure 00000012
где:
Zn,m - первая квадратура модельного сигнала;
Wn,m - вторая квадратура модельного сигнала;
n=0÷N-1 - номер индекса по антенным элементам;
Figure 00000013
- номер индекса по углу места;
Figure 00000014
- волновое число, 1/м;
F - рабочая частота, МГц;
Figure 00000015
- длина волны на рабочей чистоте, м;
hn - высоты антенных элементов над землей, м;
d - принятый размер дискретного шага измерений по УМ, град;
Gm, ϕm - амплитудные и фазовые коэффициенты Френеля в зависимости от угла места падающей волны, отраженной от предполья.
Отличие 5. Полученные массивы Zn,m, Wn,m модельных сигналов нормируют по амплитуде с помощью условий:
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Отличие 6. Полученные массивы Zn,m, Wn,m модельных сигналов после амплитудной нормировки нормируют по фазе с помощью правил:
Figure 00000020
Figure 00000021
Figure 00000022
Отличие 7. Сравнение нормированные по амплитуде и фазе принятых и модельных многоканальных сигналов проводят по условию их невязки между собой.
Отличие 8. В качестве критериев невязки используют суммы квадратов «невязок»: δxm по х-квадратурам», δym - по у-квадратурам, δAm - по А-амплитудам, рассчитанные по правилам:
Figure 00000023
Figure 00000024
Figure 00000025
Отличие 9. Построение по найденным значениям суммы квадратов «невязок» δxm, δym, δAm нелинейной спектральной функции Rm по правилу:
Figure 00000026
Отличие 10. На массиве Rm проводят поиск максимального значения Mmax спектра и его положение Mmax по угловой координате принимают за истинное положение угла места ВО по правилу:
Figure 00000027
где:
d - принятый размер дискретного шага измерений по УМ, град.
Обоснование достижения заявленного технического результата.
Амплитудная нормировка (отличие 1) принятого массива квадратур сигналов Xn и Yn, многоканального сигнала, принятого одновременно всеми N всеми приемными каналами угломестной АР, относительного амплитуды заданного антенного элемента АР, например, нижнего нулевого элемента, а также одновременная фазовая их нормировка (отличие 2) относительно фазы сигнала соответствующего элемента АР амплитудной нормировки. Это, в свою очередь, позволяет производить адекватную оценку квадратур сигналов, отраженных от ВО и от постилающей поверхности АР на каждом периоде повторения зондирующих сигналов, после сжатия принятого многоканального сигнала по дальности или после суммирования на интервале когерентного накопления.
Сравнение (отличие 3) нормированного по амплитуде и фазе принятого многоканального сигнала с заранее рассчитанными значениями модельного сигнала с заданными коэффициентами отражения Френеля Gm, ϕm предполья АР в заданном диапазоне УМ, с заданным шагом по УМ позволяют учесть искажения, вносимые предпольем АР, в принятый ей многоканальный сигнал.
Расчет (отличие 4) модельного сигнала с учетом отражающих характеристик предполья АР, включая его Gm, ϕm - амплитудные и фазовые коэффициенты Френеля, с учетом текущих изменения угла места прямой падающей волны и переотраженной от предполья АР в процессе полета ВО, с учетом размеров антенны и частоты зондирующих сигналов позволяют учесть искажения, вносимые не только предпольем АР, но и траекторией движения ВО и параметрами зондирующего сигнала.
Амплитудная нормировка (отличие 5) и фазовая (отличие 6) модельных сигналов позволяют обеспечить адекватную сравнительную оценку (отличие 7) с соответствующими нормированными значениями принятого многоканального сигнала АР по условию их невязки между собой.
Использование в качестве критериев невязки (отличие 8) суммы квадратов «невязок»: δxm по х-квадратурам», δym - по у-квадратурам, δAm - по А-амплитудам позволяют сформировать (отличие 9) функцию Rm спектра принятого многоканального сигнала, а также нахождение на спектре Rm максимального значения спектра Rmax (отличие 10), соответствующее точному угломестному местоположения ВО в «зоне θ нечувствительности» АР.
В целом указанные технические преимущества заявленного изобретения позволяют приобрести возможность измерения угла места в «зоне нечувствительности» способа прототипа /RU 2291464/, а выше этой зоны повысить точность измерения УМ в 3-5 раз по сравнению с прототипом.
Ссылка на чертежи.
Сущность изобретения поясняется чертежами, представленными на фиг. 1-6.
На фиг. 1 представлен рисунок, поясняющий предлагаемый способ измерения угла места ВО с помощью вертикальной фазированной АР.
На фиг. 2 - функциональная схема устройства, реализующая предлагаемый способ измерения угла места ВО.
На фиг. 3 - график зависимости измеренных i1 и реальных i2 значений угла места (GBO) ВО от углового направления εво на ВО по предлагаемому способу измерения УМ.
На фиг. 4 - график зависимости измеренных i1, i3 значений угла места (GBO) ВО от углового направления εво на ВО по предложенному и известному /RU 2291464/ способу измерения УМ соответственно.
На фиг. 5 - рисунок кругового ровного (ΔН ≤ Λ/10) предполья приемной позиции радиолокационной станции (PJIC) кругового обзора.
На фиг. 6 - вертикальный разрез, по линии А-А, кругового предполья, представленного на фиг. 4.
На фиг. 1-6 обозначены:
1 - вертикальная фазированная антенная решетка (АР);
2 - приемные элементы (полуволновые вибраторы) АР 1;
3 - приемники радиосигналов с цифровым выходом;
4 - блок нормировки принятого сигнала по амплитуде;
5 - блок нормировки сигнала по фазе;
6 - блок расчета и нормировки модельных сигналов Zn,m, Wn,m;
7-блок сравнения нормированных составляющих выборок Xn, Yn и Zn,m, Wn,m по критерию их «невязки», построение функции Rm;
8 - блок поиска максимума функции обратной суммам «невязок»;
9 - блок вычислителя угла места (УМ) воздушного объекта (ВО), GBO, град;
10 - предполье перед АР 1 - ровная площадка радиусом не менее 10 км для РЛС метрового диапазона электромагнитных волн;
11 - прямой луч от ВО (между элементами АР 1 разность фаз Δϕm);
12 - переотраженный от предполья луч ВО;
13 - воздушный объект (ВО);
14 - «зона нечувствительности»;
15 - устройство измерения угловых координат.
Раскрытие сущности изобретения
Изобретение, а именно заявленный способ измерения угловых координат ВО 13, стал возможен благодаря разработанному авторами методу имитационного моделирования массивов Zn,m, Wn,m прямых 11 и переотраженных 12 радиосигналов ВО 13 с характерными для подстилающей поверхности Земли, предполья АР 1, коэффициентами отражения Френеля Gm, ϕm в месте расположения АР 1, характеризующими скачок амплитуды и фазы при отражении радиосигнала. Благодаря сравнению массива квадратур принятого сигнала с одним из массивов модельного сигнала - минимальная невязка соответствует искомому УМ. Аналогичная процедура используется для всех ВО.
С учетом описанного выше метода имитационного моделирования массивов Zn,m, Wn,m с заданными коэффициентами отражения Френеля для ровного предполья 10, представленного на фиг. 5-6, перед началом измерений угловых координат ВО, в заданном диапазоне УМ от 0,1 до 80 град, с заданным шагом d=0,1-0,5 угловых градусов по УМ рассчитывают модель многоканального сигнала (далее модельный сигнал) по правилу:
Figure 00000028
Figure 00000029
где:
Zn,m - первая квадратура модельного сигнала;
Wn,m - вторая квадратура модельного сигнала;
n=0÷N-1 - номер индекса антенного элемента;
Figure 00000030
- номер индекса по углу места;
Figure 00000031
- волновое число, 1/м;
F - рабочая частота, МГц;
Figure 00000032
- длина волны на рабочей чистоте, м;
hn - высоты антенных элементов над землей, м;
d - принятый размер дискретного шага измерений по УМ, град;
Gm, ϕm - амплитудные и фазовые коэффициенты Френеля в зависимости от угла места падающей волны, отраженной от Земли.
Полученные массивы Zn,m, Wn,m нормируют по амплитуде с помощью условий:
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Затем нормируют по фазе с помощью правил:
Figure 00000037
Figure 00000038
Figure 00000039
Сформированные массивы (3-9) модельных радиосигналов для предполья АР 10 запоминают и далее используют их при измерении угловых координат ВО 13.
После формирования массивов (3-9) модельных радиосигналов в процессе кругового обзора (фиг. 5) 12 воздушного пространства производят прием прямых 11 и отраженных 12 радиосигналов от ВО 13 с помощью вертикальной N-канальной, где N=8-16 приемных элементов 2, антенной решетки (АР) 1 (фиг. 1), высотой 10-24 м принимают прямые 11 и отраженные 12 от подстилающей поверхности предполья 10 API радиосигналы воздушного объекта (ВО) 13 (фиг. 1) горизонтальной Xn и вертикальной Yn поляризации.
Далее на основе принятых сигналов измеряют массивы квадратур прямого 11 и отраженного 12 от предполья 10 АР 1.
Измеренные массивы квадратур сначала подвергают амплитудной нормировке по N каналам приема из условий:
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
где:
Figure 00000044
- х-квадратура нормированного сигнала;
Figure 00000045
- у-квадратура нормированного сигнала;
Figure 00000046
- амплитуда нормированного сигнала;
As - средние значение амплитуды сигналов на N элементах угломестной АР;
n =0÷N-1 - порядковый номер приемного элемента АР;
N - общее количество приемных элементов вертикальной АР.
Одновременно с амплитудной нормировкой сигналов проводят их фазовую нормировку относительно фазы сигнала заданного элемента по правилам:
Figure 00000047
Figure 00000048
Figure 00000049
После амплитудной и фазовой нормировки радиосигналов, принятых элементами 2 АР 1 от ВО 13, производят их сравнение (по амплитуде и фазе) с рассчитанными ранее (1-2) и нормированными (3-9) модельными радиосигналами.
Результаты сравнения сигналов представляют в виде суммы квадратов «невязок»: δxm по х-квадратурам», δym - по у-квадратурам, δAm - по А-рассчитанные по правилам:
Figure 00000050
Figure 00000051
Figure 00000052
Далее по найденным (17-19) значениям суммы квадратов «невязок» δxm, δym, δAm строят нелинейную спектральную функцию Rm по правилу:
Figure 00000053
После этого на массиве Rm находят максимальное значение спектра Rmax, его положение Mmax по угловой координате и принимают решение об измеренном угле места ВО по правилу:
Figure 00000054
где:
d - принятый размер дискретного шага измерений по УМ, град.
Вычисленное значение GBO принимают и регистрируют в качестве текущего реального углового положения ВО 13.
Далее после прихода очередной пачки радиосигналов от ВО 13 процесс измерений текущего угла места GBO ВО 13 повторяется в рамках правил (10-21).
Устройство, реализующее предложенный способ УМ.
Для реализации предложенного способа измерения УМ ВО 13 разработано устройство (фиг. 2), реализующее предлагаемый способ измерения угла места ВО 13.
Указанное устройство содержит последовательно соединенные вертикальную фазированную АР 1, включающую двадцать приемных крестообразных элементов (полуволновых вибраторов) 2. АР 1 установлена на площадке с заранее известными отражательными характеристиками и размерами ровного предполья до 10 км. Выходы вибраторов 2 через приемники 3 радиосигналов с цифровым выходом соединены с блоком 4 принятых амплитудных нормировок квадратур сигнала Xn, Yn. Выход блока 4 соединен с блоком 5 амплитудной и фазовой нормировки составляющих массивов Xn и Yn принятых радиосигналов. Выход блока 5 по нормированным сигналам от ВО 13 и переотраженным от предполья 10 соединен с первым входом блока 7 сравнения. Второй вход блока 7 соединен с выходом блока 6 модельных представлений нормированных массивов Zn,m, Wn,m модельных выборок прямых 11 и переотраженных 12 радиосигналов ВО. Блок 6 выполнен с возможностью имитации Zn,m, Wn,m, характерных для подстилающей поверхности Земли - предполья 10 АР 1, коэффициентами отражения Френеля в месте расположения АР 1 и в диапазоне вероятных УМ с направления ожидаемого налета ВО 13, а также с заданным шагом дискретизации выборок по УМ. Блок 7 выполнен с возможностью сравнения нормированных составляющих выборок Xn, Yn и Zn,m, Wn,m по критериям (17-19) их «невязки». Выход блока 7 сравнения соединен с входом блока 8 формирования нелинейной спектральной функции Rm, зависящей от «невязок». Блок 8 выполнен в виде вычислителя функции в соответствии с выражением (20). Выход блока 8 соединен с входом вычислителя 9 угла места (УМ) воздушного объекта (ВО). Вычислитель 9 выполнен с возможностью поиска спектральной функции Rm как функции «невязок» и расчета истинного значения εизм, град угла места ВО 13 из выражения (21). Измеренное значение угла места ВО 13 εизм=GBO (град) является выходом блока 9.
Работа устройства измерения УМ
Предложенное устройство (фиг. 2) по предлагаемому способу измерения угла места ВО работает следующим образом.
Перед началом работы угломестную приемную антенную решетку (АР) радиолокационной станции (РЛС) устанавливают (фиг. 1) на ровной отражающей электромагнитные волны (ЭМВ) площадке с предпольем 10, размерами L, превышающими не менее чем, в 10 раз размеры зоны Френеля для используемой в РЛС рабочей частоты зондирующих импульсов.
Предполье 10 должно соответствовать площадке с шероховатостью на дальности до 1 км ΔН ≤ Λ/10 (фиг. 6), на дальности от 1 км до 10 км ΔL = Λ/2, где Λ - длина ЭМВ ответных сигналов ВО 13, соответствующей их зеркальному отражению от предполья 10.
После установки АР 1 на местности проводят имитационное моделирование на элементах 2 АР 1 модельных нормированных массивов и Zn,m, Wn,m прямых 11 и переотраженных 12 радиосигналов от ВО 13 при различных траекториях и высотах его движения.
Формирование массивов Zn,m, Wn,m модельных выборок прямых и переотраженных радиосигналов ВО с характерными для подстилающей поверхности Земли - предполья АР 1 производят в соответствии с выражениями (10-11) в диапазоне вероятных УМ со всех направлений ВО 13 по азимуту, а также с заданным шагом дискретизации выборок по УМ. Сформированные массивы Zn,m, Wn,m вводят в память блока 6 модельных представлений. В случае необходимости проводят контрольный облет зоны ответственности РЛС для подтверждения достоверности сформированных массивов Zn,m, Wn,m.
Далее в процессе обслуживания потоков ВО 13 на вход приемных элементов 2 АР 1 поступает прямые 11 и преотраженные 12 от предполья 10 ответные (эхо) радиосигналы ВО. Принятые радиосигналы с элементов 2 поступают на соответствующие радиоприемники 3 с цифровыми выходами. В радиоприемниках 3 радиосигналы 11 и 12 усиливаются, преобразуются в цифровую форму Xn и Yn и передаются в блок 5 амплитудной и фазовой нормировки. В блоке 5 составляющие массивы Xn и Yn нормируются по амплитуде и фазе относительно нижнего элемента 2 АР 1 в соответствии с выражениями (2-6). Нормированные массивы Xn и Yn с блока 5 передаются на первый вход блока 7 сравнения, на второй вход которого поступают нормированные массивы Zn,m, Wn,m радиосигналов с блока 6 модельных представлений. В блоке 7 производится сравнение массивов Xn и Yn с соответствующими массивами Zn,m, Wn,m по критерию их «невязки» в соответствии с выражениями (17-19). Результаты сравнения с блока 7 передаются в блок 8 формирования спектральной функции Rm, зависящей от «невязок». В блоке 7 формируется функция Rm в соответствии с выражением (20) и передается в вычислитель 9 угла места ВО 13. В вычислителе 9 производится поиск максимального значения спектральной функции Rm и расчет истинного значения (GBO, град) угла места ВО 13 из выражения (21). Измеренное значение (GBO, град) угла места ВО 13 является выходом блока 9.
Промышленная применимость.
Изобретение разработано на уровне технического проекта и программного оборудования измерения угла места ВО для РЛС. Проведено опытное испытание предложенного способа измерения угловых координат при следующих параметрах антенного оборудования: количество антенных элементов 2 в АР 1-20, высота АР 1-40 м, рабочая частота 230 МГц, ширина диаграммы направленности (ДН) ~ 2 град. Результаты испытаний предложенного способа измерений угла места ВО 3 представлены на фиг. 3 и сравнение его с известным способом /RU 2291464/ - на фиг. 4.
Результаты испытаний показали, что в диапазоне УМ 0÷8 град использование предложенного способа (изолиния i1 на фиг. 3) ошибки измерений GBO не превысили 0,1 град., а отношение сигнал/шум ~ 15 дБ,
Результаты сравнения результатов измерений i1 и i3 (фиг. 4) по предлагаемому и известному /RU 2291464/ способу соответственно, показывают, что предлагаемый способ имеет более высокие точностные характеристики в «зоне θ нечувствительности». В этой зоне θ=0÷1,5 град известный способ (линия i3 фиг. 4) численное значение GBO угла места воздушного объекта не измеряет (GBO=0). В отличие от прототипа /RU 2291464/ у предлагаемого способа (линия i1 фиг. 4) появилась возможность измерения GBO при в «зоне θ нечувствительности» (θ<2 град). Вне «зоны нечувствительности» θ предложенный способ повышает точность измерения угла места ВО в 3 раз по сравнению с прототипом /RU 2291464/.
По итогам испытаний рекомендуется использование предлагаемого способа измерения угловых координат ВО 13 для стационарных РЛС в диапазоне 30÷300 МГц.

Claims (52)

  1. Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн, заключающийся в приеме с помощью вертикальной N-канальной антенной решетки (АР) прямых и отраженных от подстилающей поверхности Земли радиосигналов воздушного объекта (ВО), в формировании массива квадратур Xn и Yn принятых прямых и отраженных от подстилающей поверхности Земли радиосигналов, отличающийся тем, что сформированный массив квадратур Xn и Yn подвергают амплитудной нормировке по N каналам приема, относительного амплитуды заданного антенного элемента АР, из условий:
  2. Figure 00000055
  3. Figure 00000056
  4. Figure 00000057
  5. Figure 00000058
  6. где:
  7. Figure 00000059
    - х-квадратура нормированного сигнала;
  8. Figure 00000060
    - у-квадратура нормированного сигнала;
  9. Figure 00000061
    - амплитуда нормированного сигнала;
  10. As - средние значение амплитуды сигналов на N элементах угломестной АР;
  11. n=0÷N-1 - порядковый номер приемного элемента АР;
  12. N - общее количество приемных элементов вертикальной АР,
  13. одновременно с амплитудной нормировкой сигналов проводят их фазовую нормировку относительно фазы сигнала заданного элемента по правилам:
  14. Figure 00000062
  15. Figure 00000063
  16. Figure 00000064
  17. n=0÷N-1,
  18. далее производят сравнение нормированного по амплитуде и фазе принятого многоканального сигнала с рассчитанными заранее значениями модельного сигнала с заданными коэффициентами отражения Френеля Gm, ϕm предполья АР, представляющего собой имитируемую подстилающую поверхность Земли размерами, превышающими не менее чем в 10 раз размеры зоны Френеля, в заданном диапазоне углов места (УМ), с заданным шагом по УМ, при этом многоканальный модельный сигнал рассчитывают по правилу:
  19. Zn,m=cos(-k0hnsin(m⋅d))+Gmcos(k0hnsin(m⋅d)+ϕm),
  20. Wn,m=sin(-k0hnsin(m⋅))+Gmsin(k0hnsin(m⋅d)+ϕm),
  21. где:
  22. Zn,m - первая квадратура модельного сигнала;
  23. Wn,m - вторая квадратура модельного сигнала;
  24. n=0÷N-1 - номер индекса по антенным элементам;
  25. Figure 00000065
    - номер индекса по углу места;
  26. Figure 00000066
    - волновое число, 1/м;
  27. F - рабочая частота, МГц;
  28. Figure 00000067
    - длина волны на рабочей чистоте, м;
  29. hn - высоты антенных элементов над землей, м;
  30. d - принятый размер дискретного шага измерений по УМ, град.;
  31. Gm, ϕm - амплитудные и фазовые коэффициенты Френеля в зависимости от угла места падающей волны, отраженной от предполья АР;
  32. полученные массивы Zn,m, Wn,m модельных сигналов нормируют по амплитуде с помощью условий:
  33. Figure 00000068
  34. Figure 00000069
  35. Figure 00000070
  36. Figure 00000071
  37. затем нормируют по фазе с помощью правил:
  38. Figure 00000072
  39. Figure 00000073
  40. Figure 00000074
  41. n=0÷N-1,
  42. далее сравнивают нормированные принятые и модельные многоканальные сигналы по условию их невязки между собой,
  43. результат сравнения этих сигналов в виде суммы квадратов «невязок»: δxm по х-квадратурам», δym - по у-квадратурам, δAm - по А-амплитудам рассчитывают по правилам:
  44. Figure 00000075
  45. Figure 00000076
  46. Figure 00000077
  47. далее по найденным значениям суммы квадратов «невязок» δxm, δym, δAm строят нелинейную спектральную функцию Rm по правилу:
  48. Figure 00000078
  49. после этого на массиве Rm находят максимальное значение спектра Rmax, его положение Mmax по угловой координате и принимают решение об измеренном GBO угле места ВО по правилу:
  50. GBO=d⋅Mmax,
  51. где:
  52. d - принятый размер дискретного шага измерений по УМ, град.
RU2019135165A 2019-11-01 2019-11-01 Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн RU2717823C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019135165A RU2717823C1 (ru) 2019-11-01 2019-11-01 Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019135165A RU2717823C1 (ru) 2019-11-01 2019-11-01 Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн

Publications (1)

Publication Number Publication Date
RU2717823C1 true RU2717823C1 (ru) 2020-03-26

Family

ID=69943105

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019135165A RU2717823C1 (ru) 2019-11-01 2019-11-01 Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн

Country Status (1)

Country Link
RU (1) RU2717823C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856280B1 (en) * 2002-07-12 2005-02-15 Robert Bosch Gmbh Method and radar system for determining the directional angle of radar objects
RU2005100544A (ru) * 2005-01-11 2006-06-20 Федеральное государственное унитарное предпри тие"Нижегородский научно-исследовательский институт радиотехники" (RU) Способ измерения угла места целей при наличии отражений принимаемого эхо-сигнала от земной поверхности и импульсная наземная трехкоординатная радиолокационная станция для его реализации
RU2371733C1 (ru) * 2008-07-07 2009-10-27 Министерство обороны Российской Федерации Государственное образовательное учреждение высшего профессионального образования ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Способ определения угловой ориентации летательных аппаратов
WO2013179090A1 (en) * 2012-05-30 2013-12-05 Nokia Corporation Determining location and orientation of directional tranceivers
JP5558241B2 (ja) * 2009-07-21 2014-07-23 ノーテル・ネットワークス・リミテッド マルチビームを用いて無線局の位置を推定する方法及び装置
WO2015156873A2 (en) * 2014-03-25 2015-10-15 Raytheon Company Methods and apparatus for determining angle of arrival (aoa) in a radar warning receiver
RU2584458C1 (ru) * 2014-10-17 2016-05-20 Акционерное общество "Конструкторское бюро "Аметист" (АО"КБ"Аметист") Цифровая сканирующая приемная антенная решетка для радиолокационной станции

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856280B1 (en) * 2002-07-12 2005-02-15 Robert Bosch Gmbh Method and radar system for determining the directional angle of radar objects
RU2005100544A (ru) * 2005-01-11 2006-06-20 Федеральное государственное унитарное предпри тие"Нижегородский научно-исследовательский институт радиотехники" (RU) Способ измерения угла места целей при наличии отражений принимаемого эхо-сигнала от земной поверхности и импульсная наземная трехкоординатная радиолокационная станция для его реализации
RU2291464C2 (ru) * 2005-01-11 2007-01-10 Федеральное Государственное Унитарное Предприятие "Нижегородский Научно-Исследовательский Институт Радиотехники" Способ измерения угла места целей при наличии отражений принимаемого эхосигнала от земной поверхности и импульсная наземная трехкоординатная радиолокационная станция для его реализации
RU2371733C1 (ru) * 2008-07-07 2009-10-27 Министерство обороны Российской Федерации Государственное образовательное учреждение высшего профессионального образования ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Способ определения угловой ориентации летательных аппаратов
JP5558241B2 (ja) * 2009-07-21 2014-07-23 ノーテル・ネットワークス・リミテッド マルチビームを用いて無線局の位置を推定する方法及び装置
WO2013179090A1 (en) * 2012-05-30 2013-12-05 Nokia Corporation Determining location and orientation of directional tranceivers
WO2015156873A2 (en) * 2014-03-25 2015-10-15 Raytheon Company Methods and apparatus for determining angle of arrival (aoa) in a radar warning receiver
RU2584458C1 (ru) * 2014-10-17 2016-05-20 Акционерное общество "Конструкторское бюро "Аметист" (АО"КБ"Аметист") Цифровая сканирующая приемная антенная решетка для радиолокационной станции

Similar Documents

Publication Publication Date Title
JP5460066B2 (ja) Vhf/uhfレーダー局を使用して河川流量パラメータを監視するシステムおよび方法
US8077078B1 (en) System and method for aircraft altitude measurement using radar and known runway position
US8378885B2 (en) Device and method for locating a mobile approaching a surface reflecting electromagnetic waves
CN102253376B (zh) 一种基于二维微波成像的低散射共形天线rcs测试方法
CN109358325B (zh) 起伏地形背景下雷达高度表的地形反演方法
CN107883959B (zh) 一种基于相控阵原理的WiFi室内多人定位方法
RU2411538C2 (ru) Способ определения ошибки измерения скорости ла инерциальной навигационной системой и бортовой навигационный комплекс для его реализации
CN103487798A (zh) 一种相控阵雷达测高方法
RU2557808C1 (ru) Способ определения наклонной дальности до движущейся цели пассивным моностатическим пеленгатором
Wu et al. Comparison of the observation capability of an X-band phased-array radar with an X-band Doppler radar and S-band operational radar
RU2569843C1 (ru) Способ формирования трехмерного изображения земной поверхности в бортовой доплеровской рлс с линейной антенной решеткой
RU2717823C1 (ru) Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн
RU2711341C1 (ru) Способ двухмерного пеленгования
CN111880168A (zh) 一种基于无源数字阵列雷达的目标定位方法
Florentino et al. Implementation of a ground based synthetic aperture radar (GB-SAR) for landslide monitoring: system description and preliminary results
RU2572357C1 (ru) Способ формирования трехмерного изображения земной поверхности в бортовой четырехканальной доплеровской рлс
CN111505590A (zh) 一种高频地波雷达通道校准方法及系统
RU2720948C1 (ru) Способ измерения угла места воздушного объекта в метровом диапазоне электромагнитных волн с использованием электронной карты местности
CN106707251A (zh) 应答机功率校准方法及装置
RU2768011C1 (ru) Способ одноэтапного адаптивного определения координат источников радиоизлучений
CN116008925A (zh) 一种改进的目标雷达截面积估计算法
RU2449312C1 (ru) Панорамный радиолокационный способ определения параметров состояния приповерхностного слоя океана со спутника
RU2682239C1 (ru) Способ точного сопровождения по углу места низколетящей цели в условиях интерференции
EP3869616B1 (en) Measurement system for measuring an angular error introduced by a radome and corresponding method
RU2316019C1 (ru) Способ измерения высоты объектов на базе многоканальной рлс