RU2717748C1 - Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе - Google Patents

Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе Download PDF

Info

Publication number
RU2717748C1
RU2717748C1 RU2019130539A RU2019130539A RU2717748C1 RU 2717748 C1 RU2717748 C1 RU 2717748C1 RU 2019130539 A RU2019130539 A RU 2019130539A RU 2019130539 A RU2019130539 A RU 2019130539A RU 2717748 C1 RU2717748 C1 RU 2717748C1
Authority
RU
Russia
Prior art keywords
model
hinge
elastic
elastic elements
axis
Prior art date
Application number
RU2019130539A
Other languages
English (en)
Inventor
Константин Анатольевич Колинько
Original Assignee
Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") filed Critical Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ")
Priority to RU2019130539A priority Critical patent/RU2717748C1/ru
Application granted granted Critical
Publication of RU2717748C1 publication Critical patent/RU2717748C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels

Abstract

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах (АДТ) и может быть использовано при исследовании нестационарных аэродинамических характеристик моделей летательных аппаратов в АДТ. Предложено устройство для исследования нестационарных аэродинамических характеристик модели в АДТ, содержащее державку, упругий шарнир с тензометрическим датчиком измерения угла поворота модели и тензовесами, кронштейн для крепления модели, устройство взвода-сброса модели, причем шарнир выполнен с подшипниками, установленными вдоль оси колебаний модели, и одной или несколькими парами упругих элементов, при этом упругие элементы установлены с предварительным напряжением. Техническим результатом является расширение типов и компоновок испытуемых моделей ЛА, увеличение скоростей потока и чисел Рейнольдца в АДТ, повышение безопасности проведения испытаний, повышение точности измерений, получение возможности точного моделирования безразмерной частоты колебаний модели при не динамически подобных моделях, уменьшение стоимости испытаний при нескольких значениях заданных частот колебаний. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах.
Для исследования нестационарных аэродинамических характеристик летательных аппаратов (ЛА) в настоящее время используются испытания аэродинамических моделей в аэродинамических трубах (АДТ) [Бюшгенс Г.С., Студнев Р.В. Аэродинамика самолета. Динамика продольного и бокового движения//Москва. Машиностроение - 1979, стр. 31-35]. При этом применяются как методы вынужденных колебаний моделей, так и испытания при свободных колебаниях моделей, в том числе и на упругом шарнире.
При вынужденных колебаниях модель либо движется вместе с колеблющейся державкой [Экспериментальные исследования нестационарных аэродинамических характеристик изолированных крыльев в условиях срыва потока, Жук А.Н., Колинько К.А. и др., Препринт №86, ЦАГИ им. Н.Е. Жуковского, 1997], либо закрепляется на шарнире и приводится в движение внешней тягой [Стенд для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, Маслов Л.А., Вишневский Г.А. и др., патент РФ №2515127, от 10.05.2014]. Главным недостатком такого метода испытаний является высокая мощность, которую необходимо подводить к модели с поддерживающим устройством для движения модели с большой частотой и амплитудой, в частности, при испытаниях в АДТ сверхзвуковых скоростей, а также деформация поддерживающих устройств под действием больших приводящих в движение модель сил, что снижает точность экспериментальных исследований.
Известно устройство для испытаний модели ЛА при свободных колебаниях, в котором модель закрепляется на державке с помощью шарнира с датчиком угла и силоизмерительным элементом с возможностью свободного поворота в заданных пределах [Устройство для испытаний моделей летательных аппаратов в аэродинамических трубах, Лагутин В.И., Быков М.А., патент РФ 2539763, от 27.01.2015]. Механизмом установки и пуска с приводом в виде пневмоцилиндра, расположенном внутри державки, управляемым дистанционно, модель поворачивается на заданный угол относительно державки, а затем освобождается и совершает свободные колебания на шарнире. Основным недостатком такого метода испытаний является возможность проводить измерения только в области балансировочных углов атаки и скольжения модели, а также то, что для моделирования безразмерных частот колебания модели она должна быть динамически подобна, при этом испытания проводятся при одном значении частоты колебаний.
В качестве прототипа рассмотрим устройство для исследования нестационарных аэродинамических характеристик модели, содержащее державку, упругий шарнир с тензометрическим датчиком измерения угла поворота модели и пятикомпонентными тензовесами, и устройство взвода-сброса модели, с пневмоприводом, расположенным внутри державки [Беговщиц В.Н., Кабин С.В., Колинько К.А., Нуштаев П.Д., Храбров А.Н., Ученые записки ЦАГИ №3-4/том XXVII/1996, Метод свободных колебаний на упругом шарнире для исследования нестационарных аэродинамических производных при трансзвуковых скоростях потока]. Основным недостатком указанного устройства является то, что его упругий шарнир выполнен в виде системы упругих балок и должен быть достаточно гибким для обеспечения упругих колебаний модели относительно его оси, значительно ограничивает возможную величину аэродинамических нагрузок, действующую на модель, что приводит к необходимости проведения испытаний в узком диапазоне углов атаки и скольжения моделей, при малых значениях скоростного напора в АДТ, а для некоторых типов и компоновок ЛА делает испытания невозможными. Существенным недостатком устройства является то, что в случае поломки балок упругого шарнира модель оказывается незакрепленной в потоке АДТ, что может привести к ее отделению от поддерживающего устройства, и последующему разрушению модели и повреждению АДТ. Поскольку упругий шарнир устройства выполнен неразъемным с пятикомпонентыми тензовесами, для проведения испытаний модели с несколькими заданными частотами колебаний, необходимо изготавливать, тарировать и аттестовывать несколько упругих шарниров с тензовесами с соответствующими параметрами жесткости, что значительно удорожает испытания и замедляет их, вследствие необходимости перемонтажей узла упругого шарнира целиком. Кроме того, используемая кинематическая схема упругого шарнира в виде расположенных накрест упругих балок, приводит к смещению истинной оси колебаний модели относительно теоретической, что ухудшает точность проводимых измерений.
Техническим результатом является расширение типов и компоновок испытуемых моделей ЛА, увеличение скоростей потока и чисел Рейнольдца в АДТ за счет возможности увеличения действующих на модель аэродинамических нагрузок, повышение безопасности проведения испытаний, повышение точности измерений за счет уменьшения смещения истинной оси колебаний модели от теоретической, получение возможности точного моделирования безразмерной частоты колебаний модели при не динамически подобных моделях, уменьшение стоимости испытаний при нескольких значениях заданных частот колебаний.
Технический результат достигается тем, что в устройстве для исследования нестационарных аэродинамических характеристик модели в АДТ, содержащем державку, упругий шарнир с тензометрическим датчиком измерения угла поворота модели и тензовесами, кронштейн для крепления модели, устройство взвода-сброса модели, шарнир выполнен с подшипниками, установленными вдоль оси колебаний модели и одной, или несколькими парами упругих элементов, при этом упругие элементы установлены с предварительным напряжением и могут быть выполнены сменными, а жесткость каждого элемента определяется по формуле с=ωi 2 Ji/(2 N h2), где ωi - заданная круговая частота колебаний модели относительно оси i, N - количество пар упругих элементов, Ji - момент инерции модели относительно оси i, h - плечо установки упругого элемента относительно оси шарнира, а сила его предварительного напряжения по формуле F=1,2 с h ϕ / 57,3, где ϕ - максимальный заданный угол поворота шарнира от нулевого значения.
На фиг. 1 изображена схема устройства.
Модель 1 устанавливается в потоке АДТ при помощи устройства, содержащего кронштейн для крепления модели 2, упругий шарнир с тензометрическим датчиком измерения угла поворота модели, который состоит из тензовесов 3, подшипников 4, установленных вдоль оси колебаний модели, и позволяющих кронштейну поворачиваться относительно тензовесов, одной, или нескольких пар упругих элементов 5, установленными между кронштейном и тензовесами. Упругий шарнир, в свою очередь, устанавливается на державке 6 с механизмом взвода-сброса модели 7, приводимым в действие пневмоприводом 8, расположенным внутри державки. Тензометрический датчик угла поворота шарнира наклеен на упругом элементе и на схеме не выделен. Упругие элементы в шарнире установлены с предварительным напряжением, что позволяет избавиться от люфтов, имеющихся в подшипниках. Упругие элементы могут быть сменными и крепиться болтами 9 к кронштейну и тензовесам. При такой конструкции шарнира основные аэродинамические и инерционные силы и моменты, действующие на модель, воспринимаются подшипниками, а на упругие элементы воздействует лишь момент в направлении поворота шарнира.
При этом, жесткость каждого упругого элемента определена по формуле c=ωi 2 Ji /(2 N h2) где ωi - заданная круговая частота колебаний модели относительно оси i, N - количество пар упругих элементов, Ji - момент инерции модели относительно оси i, h - плечо установки упругого элемента относительно оси шарнира, а сила его предварительного напряжения по формуле F=1,2 с h ϕ / 57,3, где ϕ - максимальный заданный угол поворота шарнира от нулевого значения.
Величина заданной круговой частоты колебаний модели при колебаниях относительно оси OZ определяется по формуле ωzz V/ba, при колебаниях относительно оси OY определяется по формуле ωуy 2V/l, при колебаниях относительно оси ОХ определяется по формуле ωхх 2V/l, где ωxyz - заданные безразмерные угловые скорости колебаний модели, bа - средняя аэродинамическая хорда крыла модели ЛА, l - размах крыла модели ЛА, V - скорость потока в АДТ. Так, при колебаниях относительно оси OZ с максимальным заданным углом относительно нулевого ϕ=3°, значениями параметров аэродинамической модели ЛА bа=0,2 м, l=0,3 м, Jz=0,07 кг м2, при скорости потока в АДТ V=100 м/с с одной парой N=1 упругих элементов в шарнире, установленных на плече h=50 мм, для моделирования заданной безразмерной угловой скорости колебаний ωz=0,1 жесткость каждого из упругих элементов должна быть равна с=(0,1×100/0,2)2×0,07/(2×1×0,052)=35000 Н/м, а сила предварительного напряжения F=1,2×357143×0,05×3/57,3=110Н.
Устройство работает следующим образом. При отсутствии потока в АДТ, державка 6 устанавливается под заданными углами α и β. Производится взвод модели, при этом клин механизма взвода-сброса 7 под действием усилия пневмопривода 8 заходит в кормовую часть модели 1, поворачивая ее на начальный угол. Затем производится сброс модели, при этом клин механизма взвода-сброса 7 выдергивается из кормовой части модели 1 с большой скоростью, и модель начинает совершать угловые колебания, поворачиваясь на подшипниках 4 под действием упругих элементов 5 шарнира. При этом производится запись по времени показаний тензометрического датчика угла поворота шарнира и пятикомпонентных тензовесов 3 на протяжении выбранного времени. Для повышения точности измерений, цикл взвода и сброса модели повторяется несколько раз. Затем включается поток в АДТ, и описанная процедура измерений повторяется. Последующая обработка полученных зависимостей по времени угла поворота модели и действующих на нее сил и моментов «в потоке» и «без потока» АДТ позволяют определить коэффициенты нестационарных аэродинамических характеристик модели. При необходимости произвести испытания для другой частоты колебаний модели производится замена упругих шарниров, крепящихся болтами 9. При проведении измерений относительно различных осей модели, используются упругие шарниры с соответствующим расположением оси установки подшипников.
Таким образом, предлагаемое устройство для исследования нестационарных аэродинамических характеристик модели в отличие от известных устройств позволяет расширить количество типов и компоновок испытуемых моделей ЛА, увеличить скорость потока и чисел Рейнольдца в АДТ за счет возможности увеличения действующих на модель аэродинамичесих нагрузок, повысить безопасность проведения испытаний, повысить точность измерений за счет уменьшения смещения истинной оси колебаний модели от теоретической, а также устранения люфтов в подшипниках, дает возможность точного моделирования безразмерной частоты колебаний модели при не динамически подобных моделях, позволяет уменьшить стоимость испытаний при нескольких значениях заданных частот колебаний.

Claims (3)

1. Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе, содержащее державку, упругий шарнир с тензометрическим датчиком измерения угла поворота модели и тензовесами, кронштейн для крепления модели, устройство взвода-сброса модели, отличающееся тем, что шарнир выполнен с подшипниками, установленными вдоль оси колебаний модели, и одной или несколькими парами упругих элементов, при этом упругие элементы установлены с предварительным напряжением.
2. Устройство по п. 1, отличающееся тем, что упругие элементы выполнены сменными.
3. Устройство по п. 1, отличающееся тем, что жесткость каждого упругого элемента определена по формуле c=ωi 2 Ji /(2 N h2), где ωi - заданная круговая частота колебаний модели относительно оси i, N - количество пар упругих элементов, Ji - момент инерции модели относительно оси i, h - плечо установки упругого элемента относительно оси шарнира, а сила его предварительного напряжения - по формуле F=1,2 с h ϕ / 57,3, где ϕ - максимальный заданный угол поворота шарнира от нулевого значения.
RU2019130539A 2019-09-27 2019-09-27 Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе RU2717748C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019130539A RU2717748C1 (ru) 2019-09-27 2019-09-27 Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019130539A RU2717748C1 (ru) 2019-09-27 2019-09-27 Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе

Publications (1)

Publication Number Publication Date
RU2717748C1 true RU2717748C1 (ru) 2020-03-25

Family

ID=69943185

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019130539A RU2717748C1 (ru) 2019-09-27 2019-09-27 Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе

Country Status (1)

Country Link
RU (1) RU2717748C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1779969C (ru) * 1990-10-14 1992-12-07 Центральный аэрогидродинамический институт им.проф.Н.Е.Жуковского Способ определени аэродинамических сил и моментов при апериодическом перемещении модели и устройство дл его осуществлени
CN101839798B (zh) * 2010-06-02 2011-12-21 中国航天空气动力技术研究院 一种用于高超声速俯仰动态试验的装置
RU2515127C1 (ru) * 2012-10-11 2014-05-10 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Стенд для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе
RU2539763C1 (ru) * 2013-07-24 2015-01-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Устройство для испытаний моделей летательных аппаратов в аэродинамических трубах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1779969C (ru) * 1990-10-14 1992-12-07 Центральный аэрогидродинамический институт им.проф.Н.Е.Жуковского Способ определени аэродинамических сил и моментов при апериодическом перемещении модели и устройство дл его осуществлени
CN101839798B (zh) * 2010-06-02 2011-12-21 中国航天空气动力技术研究院 一种用于高超声速俯仰动态试验的装置
RU2515127C1 (ru) * 2012-10-11 2014-05-10 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Стенд для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе
RU2539763C1 (ru) * 2013-07-24 2015-01-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Устройство для испытаний моделей летательных аппаратов в аэродинамических трубах

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Беговщиц В.Н., Кабин С.В., Колинько К.А., Нуштаев П.Д., Храбров А.Н., Ученые записки ЦАГИ #3-4/том XXVII/1996, Метод свободных колебаний на упругом шарнире для исследования нестационарных аэродинамических производных при трансзвуковых скоростях потока. *

Similar Documents

Publication Publication Date Title
RU2531097C1 (ru) Способ определения статических и нестационарных аэродинамических производных моделей летательных аппаратов и устройство для его осуществления
US9606019B2 (en) Wind tunnel balance and system with wing model and wind tunnel balance
CN106441779A (zh) 一种高速风洞中测量飞行器三自由度动稳定参数的装置
CN106483872B (zh) 模拟柔性太阳翼驱动动力学仿真试验台的精度评判方法
Avin et al. An experimental benchmark of a very flexiblewing
CN103234729B (zh) 风洞常规测力试验中气动刚度与气动阻尼的视频测量方法
CN104198152A (zh) 仿生扑翼飞行器升力测试装置及其测试方法
RU2717748C1 (ru) Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе
Sahoo et al. Dynamic force balances for short-duration hypersonic testing facilities
Bryant et al. Self-powered smart blade: Helicopter blade energy harvesting
CN204855125U (zh) 一种高速风洞中测量飞行器三自由度动稳定参数的装置
Belz et al. Excited blade vibration for aeroelastic investigations of a rotating blisk using piezo-electric macro fiber composites
RU2344397C2 (ru) Способ определения демпфирующих свойств моделей самолетов с винтовыми движителями
RU127464U1 (ru) Стенд для измерения вертикальной нагрузки, воздействующей на объект авиационной техники
RU2624830C1 (ru) Стенд для исследования рабочих органов строительно-дорожных машин
Leconte et al. Experimental assessment of an active flap device
RU2726564C1 (ru) Аэродинамическая модель летательного аппарата с воздушно-реактивным двигателем
RU2703018C1 (ru) Способ определения характеристик колебаний поворотной аэродинамической поверхности беспилотного летательного аппарата
Harash et al. Nonlinear bending-torsion flutter experiments of a medium-aspect-ratio flexible wing model
RU2441214C1 (ru) Устройство для экспериментального определения комплексов вращательных и нестационарных производных
JP3842126B2 (ja) 流体中の物体の振動シミュレーション方法とその装置
CN111645877A (zh) 跷跷板式旋翼疲劳试验装置及其工作方法
Gkiolas et al. Stall Flutter Measurements on a Rectangular Wing
Lee et al. Experimental evaluation of a flapping-wing aerodynamic model for MAV applications
CUNNINGHAM, JR et al. Transonic wind tunnel investigation of limit cycle oscillations on fighter type wings-Update