RU2717262C1 - Способ изготовления сферического резонатора - Google Patents

Способ изготовления сферического резонатора Download PDF

Info

Publication number
RU2717262C1
RU2717262C1 RU2019131978A RU2019131978A RU2717262C1 RU 2717262 C1 RU2717262 C1 RU 2717262C1 RU 2019131978 A RU2019131978 A RU 2019131978A RU 2019131978 A RU2019131978 A RU 2019131978A RU 2717262 C1 RU2717262 C1 RU 2717262C1
Authority
RU
Russia
Prior art keywords
glass
plate
planar side
silicon
blind holes
Prior art date
Application number
RU2019131978A
Other languages
English (en)
Inventor
Алексей Сергеевич Новоселов
Сергей Александрович Москалев
Руслан Шабанович Мусаев
Валерий Евгеньевич Пауткин
Антонина Алексеевна Папко
Original Assignee
Акционерное общество "Научно-исследовательский институт физических измерений"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт физических измерений" filed Critical Акционерное общество "Научно-исследовательский институт физических измерений"
Priority to RU2019131978A priority Critical patent/RU2717262C1/ru
Application granted granted Critical
Publication of RU2717262C1 publication Critical patent/RU2717262C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Изобретение относится к области приборостроения и может применяться при создании резонаторов твердотельных волновых гироскопов и датчиков угловой скорости. В способе изготовления сферического резонатора формируют глухие отверстия в кремниевой пластине с планарной стороны, размещают на ней стеклянную пластину. Проводят первое анодное соединение кремниевой и стеклянной пластин при атмосферном давлении с герметизацией глухих отверстий, утоняют стеклянную пластину до заданной толщины. Нагревают соединенные пластины до температуры размягчения стекла до появления микросфер за счет термически генерируемого давления, обусловленного расширением газа, заключенного в герметизированных глухих отверстиях. Травят кремниевую пластину с непланарной стороны со вскрытием глухих отверстий. Размещают вторую стеклянную пластину на кремниевой пластине с непланарной стороны и проводят второе анодное соединение кремниевой пластины со стеклянной пластиной с образованием внутренней вакуумированной полости. Перед нагревом соединенных пластин их располагают с ориентацией стеклянной пластины «вниз», перед травлением кремниевой пластины проводят стабилизирующий отжиг при температуре, ниже температуры размягчения стекла. Стабилизирующий отжиг и нагрев пластин до температуры размягчения стекла проводят во влажной атмосфере. Технический результат изобретения - повышение метрологических характеристик за счет снижения дрейфа нуля и повышения добротности путем формирования сферических резонаторов с формой, приближающейся к идеальной при отсутствии дефектов его структуры. 6 ил.

Description

Изобретение относится к области приборостроения и может применяться при создании резонаторов твердотельных волновых гироскопов и датчиков угловой скорости.
К гироскопам, предназначенным для функционирования в составе навигационных систем, предъявляются повышенные требования к длительности рабочего ресурса, точности, надежности. Такие гироскопы должны обладать малой массой, габаритами и энергопотреблением. Повышенные требования к гироскопам стимулируют развитие новых технологий их создания, одними из которых являются технологии создания твердотельных волновых гироскопов, преимуществом которых по сравнению с разработанными ранее типами гироскопов является отсутствие подвижных вращающихся частей. Важной составной частью твердотельных волновых гироскопов является резонатор, имеющий сферическую форму и выполненный из аморфных материалов, например, кварцевого стекла. Такие резонаторы должны иметь форму, максимально приближенную к идеальной сферической с отсутствием разбаланса масс по его диаметру, обусловленного разнотолщинностью стенок резонатора, а также характеризоваться отсутствием дефектов структуры резонатора, поскольку именно эти параметры определяют метрологические характеристики приборов, влияя на добротность и дрейф смещения нуля. Таким образом, технологии создания резонаторов являются определяющими при создании твердотельных волновых гироскопов с улучшенными метрологическими характеристиками.
Известен способ изготовления [Патент РФ №2025664 С1, МПК GO1C 25/00, G01C 19/56, опубл. 30.12.1994] полусферического резонатора волнового твердотельного гироскопа, включающий вытачивание полусферического резонатора диаметром 60 мм из кварцевого стекла и нанесение металлического слоя хрома на внешнюю и внутреннюю поверхности.
Известен способ [Патент РФ №2 580175 С1, МПК G01C 19/56, опубл. 10.04.2016] балансировки кварцевого полусферического резонатора волнового твердотельного гироскопа. В способе предварительно определяют величины параметров первых четырех форм массового дефекта резонатора, частично погружают резонатор в травильный раствор на основе водных растворов плавиковой кислоты или растворов солей плавиковой кислоты в серной кислоте.
Недостатком перечисленных способов является значительный дрейф нулевого сигнала, обусловленный разбросом массы резонатора по его диаметру из-за невозможности получения механической обработкой кварцевых заготовок резонаторов с формой, приближающейся к идеальной сферической.
Наиболее близким к предлагаемому решению является способ получения [Патент США №8151600 В2, МПК С03В 9/31, С03В 19/08, С03В 19/10] самовыдуваемых стеклянных микросфер. Способ включает формирование множества микроотверстий в пластине, размещение листа термически формуемого материала на пластине поверх микроотверстий, нагрев листа термически формуемого материала до заданной степени пластичности. При этом газ, заключенный в микроотверстиях расширяется, оказывая давление на термически формуемый материал листа, образуя при этом множество выдувных микрообъектов в листе на пластине посредством продолжительного приложения давления в течение заранее определенного времени.
Недостатком указанного способа применительно к формированию резонаторов волновых твердотельных гироскопов являются низкие метрологические характеристики, обусловленные низкой добротностью резонаторов из-за возникновения дефектов, таких как центры кристаллизации, образующиеся в объеме стекла и являющихся центрами рассеяния механической энергии, что приводит к снижению добротности резонаторов.
Целью изобретения является повышение метрологических характеристик за счет снижения дрейфа нуля и повышения добротности резонаторов.
Поставленная цель достигается тем, что в способе изготовления сферического резонатора, включающем формирование глухих отверстий в кремниевой пластине с планарной стороны, размещение стеклянной пластины на кремниевой пластине с планарной стороны, первое анодное соединение кремниевой и стеклянной пластин при атмосферном давлении с герметизацией глухих отверстий, утонение стеклянной пластины до заданной толщины, нагрев пластин до температуры размягчения стекла до появления микросфер за счет термически генерируемого давления, обусловленного расширением газа, заключенного в герметизированных глухих отверстиях, травление кремниевой пластины с непланарной стороны со вскрытием глухих отверстий, размещение второй стеклянной пластины на кремниевой пластине с непланарной стороны, второе анодное соединение кремниевой пластины со стеклянной пластиной с образованием внутренней вакуумированной полости, согласно изобретению, перед нагревом соединенных пластин до температуры размягчения стекла их располагают с ориентацией стеклянной пластины «вниз», а перед травлением кремниевой пластины с непланарной стороны проводят стабилизирующий отжиг при температуре, ниже температуры размягчения стекла, при этом стабилизирующий отжиг и нагрев пластин до температуры размягчения стекла проводят во влажной атмосфере.
Предлагаемый способ изготовления сферического резонатора характеризуется следующими технологическими решениями:
- расположение соединенных пластин с ориентацией стеклянной пластины «вниз» предполагает воздействие гравитационной силы тяжести на формируемые термически генерируемым давлением стеклянные микросферы сферического резонатора, что максимально приближает их форму к идеально сферической и приводит к минимизации разбаланса масс по диаметру резонатора, что приводит к снижению дрейфа нуля гироскопов.
- перед травлением кремниевой пластины с непланарной стороны проводят стабилизирующий отжиг во влажной атмосфере при температуре ниже температуры размягчения стекла. Отжиг во влажной атмосфере (при подаче водяного пара) устраняет возникновение дефектов в объеме стекла из-за снижения сил поверхностного натяжения при его охлаждении, таким образом устраняя возникновение дефектов в виде центров кристаллизации и повышая добротность резонаторов. Нагрев пластин до температуры размягчения стекла также проводят во влажной атмосфере, устраняя возникновение дефектов в объеме сферического резонатора и повышая его добротность.
Таким образом, указанное повышает метрологические характеристики резонаторов за счет снижения дрейфа нуля и повышения добротности резонаторов.
На чертежах фиг. 1-5 показана последовательность операций, применяемых для реализации предложенного способа.
На фиг. 1 изображена кремниевая пластина 1, на которой с планарной стороны сформированы глухие отверстия 2.
На фиг. 2 показана утоненная стеклянная пластина 3, размещенная на планарной стороне кремниевой пластины 1 с герметизированными глухими отверстиями 2.
На фиг. 3 изображена соединенная кремниевая пластина 1 и стеклянная пластина 3 с ориентацией «вниз», глухие отверстия 2, микросферы 4.
На фиг. 4 изображена кремниевая пластина 1, протравленная с непланарной стороны 5 со вскрытием глухих отверстий 2.
На фиг. 5 показана вторая стеклянная пластина 6, размещенная на кремниевой пластине 1 с непланарной стороны 5, внутренняя вакуумированная полость 7.
Пример реализации предложенного способа.
На кремниевой пластине 1 n- или p-типа проводимости толщиной 750…1450 мкм с планарной стороны известными методами, например, глубоким реактивным ионно-плазменным травлением, выполняют несквозные, также известные как глухие отверстия 2 заданной глубины, в пределах 500…1200 мкм, при этом глухие отверстия 2 могут иметь круглую форму радиусом 0,4…2,0 мм. Диаметр и глубина глухого отверстия определяют его объем, который впоследствии определяет высоту и объем микросфер (фиг. 1). На планарной стороне кремниевой пластины 1 размещают стеклянную пластину 3 с высоким содержанием ионов щелочного металла, например, таким стеклом может являться стекло марок ЛК-5, ТС, после чего пластины на воздухе при атмосферном давлении соединяют электростатическим методом, также известным также как анодная сварка, при температуре (420-460)°С при подаче потенциала (400-600) В, герметизируя таким образом глухие отверстия 2. После этого стеклянную пластину 3 известными методами, например шлифовкой и полировкой, утоняют до необходимой толщины, порядка (80-120) мкм (фиг. 2). Соединенные кремниевую пластину 1 и стеклянную пластину 3 располагают в печи с ориентацией стеклянной пластины 3 «вниз», после чего нагревают до температуры размягчения стекла, находящейся в диапазоне (820…870)°С для указанных марок стекол и выдерживают в течение заданного периода времени, в пределах (3-10) мин. При этом подают влажный водяной пар в реактор печи в течение указанного времени, создавая таким образом влажную атмосферу. Генерируемое термическим путем давление РТ газа (из-за его расширения), заключенного в глухих отверстиях 2, приводит к пластической деформации стеклянной пластины 3 до появления микросфер 4. После этого проводят стабилизирующий отжиг во влажной атмосфере при подаче водяного пара в реактор печи при температуре ниже температуры размягчения стекла, находящейся в диапазоне (700-800)°С в течение времени (20-35) мин. (фиг. 3). После этого кремниевую пластину 1 с непланарной стороны 5 травят известными методами, например, глубоким реактивно-ионным травлением до вскрытия глухих отверстий 2 (фиг. 4). Далее размещают вторую стеклянную пластину 6 из стекла марок ЛК-5, ТС на кремниевой пластине 1 с непланарной стороны, проводят второе анодное соединение кремниевой пластины 1 со стеклянной пластиной 6 при температуре (420-460)°С при подаче потенциала (400-600) В, при этом соединение проводят в вакууме с образованием внутренней вакуумированной полости 7 микросфер 4 (фиг. 5), получая заданную структуру сферического резонатора 8 (фиг. 6).
Формируемым таким образом сферическому резонатору свойственна форма, приближающаяся к идеальной сферической за счет физического процесса его формирования - образование термически генерируемым давлением новой поверхности из стекла, находящегося в условиях размягчения, причем формируемая стеклянная микросфера резонатора в соответствии с законами термодинамики стремится приобрести форму с минимальной поверхностной энергией, т.е. сферы. Ориентация утоненной стеклянной пластины «вниз» предполагает воздействие гравитационной силы на формируемые микросферы, ускоряя процесс их образования. При этом сформированному сферическому резонатору характерно отсутствие разнотолщинности стенок стеклянных микросфер за счет исключения дефектных зон в приповерхностных слоях стекла и его объеме, что особенно важно для создания твердотельных волновых гироскопов и датчиков угловой скорости.
Технический результат изобретения - повышение метрологических характеристик за счет снижения дрейфа нуля и повышения добротности путем формирования сферических резонаторов с формой, приближающейся к идеальной при отсутствии дефектов его структуры.

Claims (1)

  1. Способ изготовления сферического резонатора, включающий формирование глухих отверстий в кремниевой пластине с планарной стороны, размещение стеклянной пластины на кремниевой пластине с планарной стороны, первое анодное соединение кремниевой и стеклянной пластин при атмосферном давлении с герметизацией глухих отверстий, утонение стеклянной пластины до заданной толщины, нагрев пластин до температуры размягчения стекла до появления микросфер за счет термически генерируемого давления, обусловленного расширением газа, заключенного в герметизированных глухих отверстиях, травление кремниевой пластины с непланарной стороны со вскрытием глухих отверстий, размещение второй стеклянной пластины на кремниевой пластине с непланарной стороны, второе анодное соединение кремниевой пластины со стеклянной пластиной с образованием внутренней вакуумированной полости, отличающийся тем, что перед нагревом соединенных пластин до температуры размягчения стекла их располагают с ориентацией стеклянной пластины «вниз», а перед травлением кремниевой пластины с непланарной стороны проводят стабилизирующий отжиг при температуре, ниже температуры размягчения стекла, при этом стабилизирующий отжиг и нагрев пластин до температуры размягчения стекла проводят во влажной атмосфере.
RU2019131978A 2019-10-09 2019-10-09 Способ изготовления сферического резонатора RU2717262C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019131978A RU2717262C1 (ru) 2019-10-09 2019-10-09 Способ изготовления сферического резонатора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019131978A RU2717262C1 (ru) 2019-10-09 2019-10-09 Способ изготовления сферического резонатора

Publications (1)

Publication Number Publication Date
RU2717262C1 true RU2717262C1 (ru) 2020-03-19

Family

ID=69898401

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019131978A RU2717262C1 (ru) 2019-10-09 2019-10-09 Способ изготовления сферического резонатора

Country Status (1)

Country Link
RU (1) RU2717262C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776512A (zh) * 2021-09-22 2021-12-10 中国电子科技集团公司第二十六研究所 一种微半球陀螺球面电极成型装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025664C1 (ru) * 1992-08-04 1994-12-30 МГУ им.М.В.Ломоносова Способ изготовления полусферического резонатора волнового твердотельного гироскопа
RU2056038C1 (ru) * 1993-03-25 1996-03-10 Химический факультет МГУ им.М.В.Ломоносова Полусферический резонатор из кварцевого стекла волнового твердотельного гироскопа
US8151600B2 (en) * 2007-05-03 2012-04-10 The Regents Of The University Of California Self-inflated micro-glass blowing
RU2580175C1 (ru) * 2014-12-09 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ балансировки кварцевого полусферического резонатора волнового твердотельного гироскопа
US20180188030A1 (en) * 2015-12-18 2018-07-05 Southeast University Micro three-dimensional shell resonator gyroscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025664C1 (ru) * 1992-08-04 1994-12-30 МГУ им.М.В.Ломоносова Способ изготовления полусферического резонатора волнового твердотельного гироскопа
RU2056038C1 (ru) * 1993-03-25 1996-03-10 Химический факультет МГУ им.М.В.Ломоносова Полусферический резонатор из кварцевого стекла волнового твердотельного гироскопа
US8151600B2 (en) * 2007-05-03 2012-04-10 The Regents Of The University Of California Self-inflated micro-glass blowing
RU2580175C1 (ru) * 2014-12-09 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ балансировки кварцевого полусферического резонатора волнового твердотельного гироскопа
US20180188030A1 (en) * 2015-12-18 2018-07-05 Southeast University Micro three-dimensional shell resonator gyroscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776512A (zh) * 2021-09-22 2021-12-10 中国电子科技集团公司第二十六研究所 一种微半球陀螺球面电极成型装置及方法

Similar Documents

Publication Publication Date Title
CN105424019B (zh) 一种基于硼硅酸盐玻璃退火成型的微型半球谐振陀螺及制造方法
Senkal et al. Achieving sub-Hz frequency symmetry in micro-glassblown wineglass resonators
Cho et al. A high-q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding
CN102506841B (zh) 半环形谐振器陀螺仪
CN103528576B (zh) 半球谐振式微机械陀螺仪及其加工工艺
Nagourney et al. 259 second ring-down time and 4.45 million quality factor in 5.5 kHz fused silica birdbath shell resonator
RU2717262C1 (ru) Способ изготовления сферического резонатора
US9702728B2 (en) Method of fabricating micro-glassblown gyroscopes
KR101825238B1 (ko) 광 흡수 기판의 제조 방법, 및 그것을 제조하기 위한 성형형의 제조 방법
US20130167640A1 (en) Inertial sensor and method of manufacturing the same
CN105387852A (zh) 微半球陀螺谐振子的自对准技术制备方法
CN111796119B (zh) 基于纳米压电梁的谐振式加速度传感器及其制备方法
Nagourney et al. Micromachined high-Q fused silica bell resonator with complex profile curvature realized using 3D micro blowtorch molding
CN105115486A (zh) 静电悬浮三轴球壳谐振微陀螺仪及其加工方法
CN107560607A (zh) 基于半环壳谐振子的微陀螺仪及其制备方法
CN113359404B (zh) 碱金属原子气室的制作方法及碱金属原子气室
Senkal et al. Demonstration of sub-1 Hz structural symmetry in micro-glassblown wineglass resonators with integrated electrodes
TWI787565B (zh) 用於移轉表面層至凹穴上之方法
Luo et al. Hemipherical wineglass shells fabricated by a Chemical Foaming Process
CN111579147A (zh) 谐振式mems差压压力传感器及其制备方法
Lin et al. Polaris-a low cost mems fabrication platform for navigation-grade inertial sensors
Shi et al. Wafer-level fabrication process for micro hemispherical resonators
CN103232022B (zh) 三维曲面微结构的批量热成型微加工方法
CN207050741U (zh) 一种基于半环壳谐振子的微陀螺仪
CN106134431B (zh) 一种石英微机械加速度计敏感结构的保护装置及加工方法