RU2716766C1 - Энергетическая установка с машинным преобразованием энергии - Google Patents

Энергетическая установка с машинным преобразованием энергии Download PDF

Info

Publication number
RU2716766C1
RU2716766C1 RU2019106839A RU2019106839A RU2716766C1 RU 2716766 C1 RU2716766 C1 RU 2716766C1 RU 2019106839 A RU2019106839 A RU 2019106839A RU 2019106839 A RU2019106839 A RU 2019106839A RU 2716766 C1 RU2716766 C1 RU 2716766C1
Authority
RU
Russia
Prior art keywords
heat
heat exchanger
turbine
steam
circuit
Prior art date
Application number
RU2019106839A
Other languages
English (en)
Inventor
Владимир Иванович Морозов
Михаил Николаевич Середников
Борис Федорович Негрецкий
Original Assignee
Акционерное общество "Государственный космический научно-производственный центр имени М.В. Хруничева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Государственный космический научно-производственный центр имени М.В. Хруничева" filed Critical Акционерное общество "Государственный космический научно-производственный центр имени М.В. Хруничева"
Priority to RU2019106839A priority Critical patent/RU2716766C1/ru
Application granted granted Critical
Publication of RU2716766C1 publication Critical patent/RU2716766C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к объектам энергетического машиностроения. Изобретение направлено на повышение КПД турбокомпрессорных энергетических установок путем уменьшения затрат энергии турбины на привод компрессора. Эта задача решается снижением потребной степени сжатия компрессора только до необходимой для прокачки газообразного теплоносителя через газовый контур величины и выработкой полезной мощности, идущей на привод электрогенератора 1, парожидкостным контуром. Для этого теплообменник-парогенератор 6 включен теплопередающим трактом в магистраль газового контура, реализующего термодинамический цикл Брайтона, между источником тепла 2 и турбиной турбокомпрессора 3, а теплопринимающим трактом - в магистраль парожидкостного контура на входе в паровую турбину турбонасосного агрегата 9, при этом в магистраль парожидкостного контура, реализующего термодинамический цикл Ренкина, между насосом турбонасосного агрегата 9 и теплообменником-парогенератором 6 последовательно включены межконтурный теплообменник 7, теплопринимающий тракт которого включен в магистраль газового контура между теплообменником-регенератором 5 и теплообменником-холодильником 8, и теплообменник-регенератор 11, теплопередающий тракт которого включен в магистраль между выходом турбины турбонасосного агрегата 9 и входом в холодильник-конденсатор 12. 1 ил.

Description

Изобретение относиться к области энергетического машиностроения и может быть использовано в конструкциях турбокомпрессорных энергетических установок.
Из технической литературы известно, что достаточно высокую эффективность преобразования тепловой энергии в электрическую могут обеспечить установки с машинным преобразованием энергии, реализующие замкнутый термодинамический цикл Брайтона, включающий нагрев газообразного рабочего тела, преобразование тепловой энергии в механическую энергию посредством турбокомпрессора, регенерацию тепла оставшегося в рабочем теле после преобразования и отвод остаточного (после регенерации) низкопотенциального тепла из рабочего контура во внешнюю среду (А.А. Гуров, Д.Д. Севрук, Д.Н. Суриков "Конструкция и проектирование жидкостных двигательных установок", изд. "машиностроение", 1980 г., стр. 16). Основной недостаток такой установки обусловлен значительными потерями тепловой энергии за счет отвода низкопотенциального тепла в окружающее пространство, что практически ограничивает ее коэффициент полезного действия (к.п.д.) величиной не более 30%.
Известна схема энергоустановки представленная патентом РФ №2508460 с приоритетом от 10.07.12; в которой, наряду с термодинамическим циклом Брайтона (в основном рабочем контуре) реализуется термодинамический цикл Ренкина (в контуре отвода тепла из основного рабочего контура), в котором, часть отводимого низкопотенциального тепла преобразуется в механическую энергию посредством турбонасосного агрегата, паровая турбина которого дополняет мощность, передаваемую на вал электрогенератора.
Выполненная в соответствии с вышеуказанной схемой и принятая за прототип изобретения энергетическая установка, в состав которой входят: электрогенератор; магистральный контур, реализующий замкнутый термодинамический цикл Брайтона, включающий источник тепла, турбокомпрессор, кинематически связанный с электрогенератором, теплообменник-регенератор, теплопередающий тракт теплообменника-парогенератора; и парожидкостной контур, реализующий цикл Ренкина, включающий источник тепла (в виде теплообменника-парогенератора), турбонасосный агрегат с паровой турбиной, кинематически связанный с электрогенератором, и холодильник-конденсатор. Эта установка обеспечивает за счет дополнительной мощности увеличение к.п.д. энергоустановки на 3% по сравнению с аналогом.
Недостаток данной энергоустановки, как и энергоустановки-аналога, заключается в том, что основная часть мощности турбины тратиться на привод компрессора, что обусловлено высокой работой сжатия газообразного рабочего тела с относительно низкой плотностью, при использовании его в цикле Брайтона.
Так, энергоустановки, выполненные в соответствии с аналогом и прототипом изобретения, реализующие замкнутый термодинамический цикл (цикл Брайтона) с температурой газообразного рабочего тела на входе в турбину 1200 К, на входе в компрессор 400 К, максимальным давлением в контуре 37 ата и расходом через замкнутый контур 3,6 кг/с при уровне достигнутых к настоящему времени к.п.д. компрессора и турбины μкт=0,8, имеют следующие мощностные характеристики:
у энергоустановки-аналога мощность компрессора и турбины, соответственно, равны 436 кВт и 527 кВт (затраты мощности турбины на привод компрессора соответственно 82,7%), мощность, поступающая на вал электрогенератора 91 кВт, что при к.п.д. электрогенератора ~0,91 и мощности вырабатываемой им электроэнергии, отбираемой на самопотребление энергоустановки ~10 кВт, обеспечивает выход полезной электрической мощности энергоустановки ~79,5 кВт и ее к.п.д. ~0,1346;
у энергоустановки-прототипа мощность компрессора и суммарная мощность турбин, соответственно, равны 466 кВт и 546 кВт (затраты мощности на привод компрессора и насоса ~79,8%), мощность на валу электрогенератора 110 кВт, полезная мощность ~90 кВт, к.п.д. ~0,1646.
Изобретение направлено на повышение к.п.д. энергоустановки путем уменьшения затрат энергии турбин на привод компрессора.
Результат обеспечивается тем, что теплообменник-парогенератор включен теплопередающим трактом в магистраль газового контура, реализующего термодинамический цикл Брайтона, между источником тепла и турбиной турбокомпрессора, а теплопринимающим трактом - в магистраль парожидкостного контура - на входе в паровую турбину турбонасосного агрегата; при этом в магистраль парожидкостного контура между насосом турбонасосного агрегата и теплообменником-парогенератором последовательно включены теплопринимающими трактами межконтурный теплообменник, теплопередающий тракт которого включен в магистраль между теплообменником-регенератором тепла и теплообменником-холодильником газового контура, и теплообменник-регенератор тепла парожидкостного контура, теплопередающий тракт которого включен в магистраль между выходом турбины турбонасосного агрегата и входом в холодильник-конденсатор.
При таком исполнении энергетической установки суммарные затраты мощностей турбин (располагаемой мощности) на привод компрессора и насоса (потребная мощность) могут быть уменьшены до 37% от их величины за счет уменьшения степени сжатия компрессора с 2,6, как у прототипа, до величины 1,23, достаточной для прокачки газообразного теплоносителя через контур при равенстве мощностей компрессора и турбины, что позволяет (при снижении общего уровня энергобаланса кинематической группы турбокомрессор-электрогенератор-турбонасосный агрегат) за счет мощности паровой турбины, практически полностью поступающей на вращение электрогенератора, увеличить выход полезной электроэнергии энергетической установки и, соответственно, повысить ее коэффициент полезного действия.
На рисунке представлена принципиальная схема предлагаемой энергетической установки.
В состав энергоустановки входят:
- электрогенератор 1;
- замкнутый газовый контур, включающий нагреватель 2, турбокомпрессор 3, соединенный валом через муфту 4 с валом электрогенератора 1, теплообменник-регенератор 5, теплопередающий тракт теплообменника-парогенератора 6 в магистрали между нагревателем 2 и турбиной турбокомпрессора 3, теплопередающий тракт дополнительного межконтурного теплообменника 7 в магистрали на выходе теплопередающего тракта теплообменника-регенератора 5, теплообменник-холодильник 8;
- замкнутый парожидкостной контур, включающий турбонасосный агрегат 9, соединенный валом через муфту 10 с валом электрогенератора 1, теплопринимающий тракт теплообменника-парогенератора 6, теплообменник-регенератор 11, теплопринимающий тракт межконтурного теплообменника 7 в магистрали между насосом турбонасосного агрегата 9 и теплопринимающим трактом теплообменника-регенератора 11, холодильник-конденсатор 12;
- в состав энергоустановки входит также холодильник 13 системы отвода низкопотенциального тепла из газового контура.
При работе энергетической установки в газовом контуре, реализующем замкнутый термодинамический цикл Брайтона, газообразное рабочее тело с выхода компрессора турбокомпрессора 3 поступает теплообменник-регенератор 5, где нагревается за счет теплообмена с отработанным в турбине турбокомпрессора 3 рабочим телом, после чего поступает в нагреватель р 2, где нагревается до максимальной температуры цикла. Из нагревателя 2, высокотемпературное газообразное рабочее тело поступает в теплообменник-парогенератор 6, в котором передает часть тепла рабочему телу парожидкостного контура энергоустановки, после чего направляется в турбину турбокомпрессора 3. В турбине турбокомпрессора 3 тепловая энергия газа преобразуется в механическую энергию, которая полностью или частично компенсирует затраты потребной энергии привода компрессора, а избыток ее через муфту 4 передается электрогенератору 1. Из турбины турбокомпрессора 3 газообразное рабочее тело поступает в теплообменник-регенератор 5, где часть тепловой энергии передается рабочему телу на выходе компрессора турбокомпрессора 3 и, далее, в теплопередающий тракт межконтурного теплообменника 7, где оставшаяся в газообразном теплоносителе (за вычетом низкопотенциального тепла) тепловая энергия передается в парожидкостный контур энергоустановки. Из теплообменника 7 газообразное рабочее тело поступает в теплообменник-холодильник 8, в котором осуществляется теплоотвод оставшегося в нем низкопотенциального тепла в холодильник 13.
При этом параметрической особенностью реализуемого в предлагаемой энергетической установке цикла Брайтона является следующее: потребная и располагаемая мощность турбокомпрессора 3 незначительны и близки по величине, так-как газовый контур обеспечивает лишь теплосъем с нагревателя 2 и передачу тепла в парожидкостной контур теплообменника-парогенератора 6, для чего необходим минимальный (необходимый для преодоления гидросопротивления тракта газового контура) напор компрессора и, соответственно, его минимальная потребная мощность, а передача мощности на вал электрогенератора 1 в основном осуществляется в парожидкостном контуре энергоустановки, реализующем термодинамический цикл Ренкина, где при минимальной потребной мощности насоса, обусловленной высокой плотностью его рабочего тела (в 32…55 раз выше, чем в цикле Брайтона), практически вся мощность турбины турбонасосного агрегата 9 передается на вал электрогенератора 1.
В процессе, реализующим цикл Ренкина при работе энергоустановки, в теплообменнике-парогенераторе 6 за счет поступившего из газового контура тепла происходит испарение оставшейся в теплоносителе жидкой фазы (основная часть ее переходит в парообразное состояние в теплообменнике-регенераторе 11), и подогрев его до максимальной температуры цикла - температуры рабочего тела на входе в турбину турбонасосного агрегата 9. Посредством турбины тепловая энергия перегретого пара преобразуется в механическую энергию, незначительная часть которой расходуется на привод насоса турбонасосного агрегата 9, а основная часть через муфту 10 передается электрогенератору 1, который при вращении ротора преобразует механическую энергию в электрическую энергию. Перегретый пар, с выхода турбины, поступает в теплообменник-регенератор 11, где за счет передаваемого от него тепла происходит подогрев и испарение основной части поступающего из насоса турбонасосного агрегата 9 и подогретого в межконтурном теплообменнике 7 жидкого теплоносителя. После теплообменника-регенератора 11 охлажденное парообразное рабочее тело поступает в холодильник- конденсатор 12, где происходит его конденсация и охлаждение до минимальной температуры цикла Ренкина, после чего жидкое рабочее тело поступает в насос турбонасосного агрегата 9.
Расчетная оценка, проведенная применительно к энергетической установке с расходом газового теплоносителя в цикле Брайтона 3,6 кг/с, параметрами и характеристиками, указанными выше для аналога и прототипа и использованием в парожидкостном контуре воды с расходом ~0,204 кг/с, минимальной температурой цикла Ренкина (на входе в насос турбонасосного агрегата) 400 К; с давлением на входе в насос 4,4 ата, а на выходе из насоса 60 ата, показывает, что при значении коэффициентов полезного действия насоса и турбины турбонасосного агрегата, соответственно, 0,3 и 0,7 (экспериментально подтвержденные величины) возможно достижение коэффициента полезного действия энергоустановки ~0,2, что на ~3,5% выше, чем у прототипа.

Claims (1)

  1. Энергетическая установка с машинным преобразованием энергии, в состав которой входят электрогенератор, магистральный замкнутый газовый контур, реализующий термодинамический цикл Брайтона, включающий источник тепла, турбокомпрессор, кинематически связанный с электрогенератором, теплообменник-регенератор тепла, теплообменник-холодильник системы отвода низкопотенциального тепла из газового контура и магистральный парожидкостный замкнутый контур, реализующий термодинамический цикл Ренкина, включающий источник тепла в виде теплообменника-парогенератора, турбонасосный агрегат, кинематически связанный с электрогенератором, холодильник-конденсатор паровой фазы рабочего тела, отличающаяся тем, что теплообменник-парогенератор включен теплопередающим трактом в магистраль газового контура между нагревателем и турбиной турбокомпрессора, теплопринимающим трактом - в магистраль парожидкостного контура на входе в турбину турбонасосного агрегата, при этом в магистраль парожидкостного контура между насосом турбонасосного агрегата и теплообменником-парогенератором последовательно включены теплопринимающими трактами межконтурный теплообменник, теплопередающий тракт которого включен в магистраль между теплообменником-регенератором тепла и теплообменником-холодильником газового контура, и теплообменник-регенератор парожидкостного контура, теплопринимающий тракт которого включен в магистраль между выходом турбины турбонасосного агрегата и входом в холодильник-конденсатор.
RU2019106839A 2019-03-11 2019-03-11 Энергетическая установка с машинным преобразованием энергии RU2716766C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019106839A RU2716766C1 (ru) 2019-03-11 2019-03-11 Энергетическая установка с машинным преобразованием энергии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019106839A RU2716766C1 (ru) 2019-03-11 2019-03-11 Энергетическая установка с машинным преобразованием энергии

Publications (1)

Publication Number Publication Date
RU2716766C1 true RU2716766C1 (ru) 2020-03-16

Family

ID=69898459

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019106839A RU2716766C1 (ru) 2019-03-11 2019-03-11 Энергетическая установка с машинным преобразованием энергии

Country Status (1)

Country Link
RU (1) RU2716766C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757148C1 (ru) * 2020-11-10 2021-10-11 Акционерное общество "КБхиммаш им. А.М. Исаева" Космическая энергетическая установка с машинным преобразованием энергии

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1263124A (en) * 1968-04-24 1972-02-09 Siemens Ag Gas turbine installation using nuclear energy or fossil fuels as heat source
RU113537U1 (ru) * 2010-06-15 2012-02-20 Открытое акционерное общество "Конструкторское бюро химавтоматики" Энергоустановка
RU2508460C1 (ru) * 2012-07-10 2014-02-27 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" Космическая энергетическая установка с машинным преобразованием энергии

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1263124A (en) * 1968-04-24 1972-02-09 Siemens Ag Gas turbine installation using nuclear energy or fossil fuels as heat source
RU113537U1 (ru) * 2010-06-15 2012-02-20 Открытое акционерное общество "Конструкторское бюро химавтоматики" Энергоустановка
RU2508460C1 (ru) * 2012-07-10 2014-02-27 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" Космическая энергетическая установка с машинным преобразованием энергии

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757148C1 (ru) * 2020-11-10 2021-10-11 Акционерное общество "КБхиммаш им. А.М. Исаева" Космическая энергетическая установка с машинным преобразованием энергии

Similar Documents

Publication Publication Date Title
CN101821502B (zh) 太阳能热发电设备
CN111022137B (zh) 基于有机朗肯循环和有机闪蒸循环的余热回收系统及方法
WO2011068880A2 (en) Utilizing steam and/or hot water generated using solar energy
RU2644801C2 (ru) Термодинамическая система комбинированного цикла для выработки механической энергии и способ выработки механической энергии и приведения в действие турбомашины
CN108005744B (zh) 超临界co2循环的机炉冷能回收与发电一体化供热方法
JP4898854B2 (ja) 発電プラント
RU2508460C1 (ru) Космическая энергетическая установка с машинным преобразованием энергии
JP5766927B2 (ja) 発電システム
WO2011030285A1 (en) Method and apparatus for electrical power production
JP2014034924A (ja) 内燃機関の排熱回収装置及びコジェネレーション・システム
RU2716766C1 (ru) Энергетическая установка с машинным преобразованием энергии
McDaniel et al. A combined cycle power conversion system for the next generation nuclear power plant
JP2016540913A (ja) ギア一体型水蒸気圧縮機を備えた発電装置
JPH11280412A (ja) コンバインドサイクル発電プラント
RU2726961C1 (ru) Высокотемпературная паросиловая установка
RU2686541C1 (ru) Парогазовая установка
RU51171U1 (ru) Тепловая схема водогрейной котельной
JPH04124411A (ja) 蒸気タービン複合発電設備
KR20170138267A (ko) 선박의 폐열회수 시스템
JP4343610B2 (ja) 発電装置及び発電方法
RU2674822C2 (ru) Способ работы парогазовой установки с котлом-утилизатором и испарителями мгновенного вскипания питательной воды
RU2560624C1 (ru) Способ утилизации теплоты тепловой электрической станции
RU145202U1 (ru) Тепловая электрическая станция
RU2560608C1 (ru) Способ работы тепловой электрической станции
RU146343U1 (ru) Тепловая электрическая станция