RU2716258C1 - Пептидный антагонист нмда-рецептора - Google Patents

Пептидный антагонист нмда-рецептора Download PDF

Info

Publication number
RU2716258C1
RU2716258C1 RU2019124086A RU2019124086A RU2716258C1 RU 2716258 C1 RU2716258 C1 RU 2716258C1 RU 2019124086 A RU2019124086 A RU 2019124086A RU 2019124086 A RU2019124086 A RU 2019124086A RU 2716258 C1 RU2716258 C1 RU 2716258C1
Authority
RU
Russia
Prior art keywords
phe
tyr
nmda
peptide
nmda receptor
Prior art date
Application number
RU2019124086A
Other languages
English (en)
Inventor
Дмитрий Сергеевич Карлов
Максим Валерьевич Федоров
Владимир Александрович Палюлин
Владимир Викторович Григорьев
Original Assignee
Автономная некоммерческая образовательная организация высшего образования Сколковский институт науки и технологий
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Автономная некоммерческая образовательная организация высшего образования Сколковский институт науки и технологий filed Critical Автономная некоммерческая образовательная организация высшего образования Сколковский институт науки и технологий
Priority to RU2019124086A priority Critical patent/RU2716258C1/ru
Application granted granted Critical
Publication of RU2716258C1 publication Critical patent/RU2716258C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06078Dipeptides with the first amino acid being neutral and aromatic or cycloaliphatic

Abstract

Изобретение относится к биологически-активным веществам пептидной природы, применяемым в качестве средства для лечения депрессии, большого депрессивного расстройства, нейропатической боли и обладающим нейропротекторной активностью. Предложено применение фармацевтической композиции, содержащей D-Phe-L-Tyr, для лечения или профилактики заболеваний, опосредованных избыточной активностью НМДА-рецепторов. Составы фармацевтической композиции могут быть изготовлены в виде раствора для инъекций, а также капель в нос. Предлагаемая фармацевтическая композиция может найти применение в медицине. 2 ил., 7 пр.

Description

Область техники
Изобретение относится к медицине и фармакологии, а именно к биологически-активным веществам пептидной природы, применяемым в качестве средства для лечения депрессии, большого депрессивного расстройства, нейропатической боли, и обладающим нейропротекторной активностью.
Уровень техники
Депрессия является сложным в лечении психическим расстройством: до 30% лиц, страдающий этим расстройством, не удается излечить с помощью известных препаратов.
Для лечения депрессии было разработано множество препаратов: среди них ингибиторы обратного захвата серотонина (сертралин, флуоксетин), ингибиторы обратного захвата норадреналина (ребоксетин), ингибиторы МАО (моклобемид). Следует отметить, что рассмотренные препараты не лишены недостатков: антидепрессантный эффект наступает через продолжительное время, существенная часть пациентов не реагирует на терапию, при приеме ингибиторов МАО необходимо соблюдать специальную диету. Таким образом, существует потребность в альтернативном эффективном и безопасном лечении депрессии.
НМДА-рецептор (N-метил-D-аспартат, НМДА) представляет собой постсинаптический ионотропный рецептор, который активируется за счет действия возбуждающих аминокислот глутамата и глицина, селективно активация происходит от действия синтетического соединения НМДА. НМДА-рецептор локализован постсинаптически и способен пропускать как двухвалентные, так и одновалентные катионы через канал, ассоциированный с рецептором (Foster et al., Nature 1987, 329: 395-396; Mayer et al., Trends in Pharmacol. Sci. 1990 11: 254-260). Считается, что НМДА-рецепторы участвуют в процессах долговременной потенциации и вовлечен в развитие расстройств центральной нервной системы. НМДА-рецептор играет главную роль в синаптической пластичности, которая лежит в основе многих высших когнитивных функций, таких как формирование памяти и обучение, а также в некоторых когнитивных путях и чувствительности к боли (Collingridge et al., The НМДА Receptor, Oxford University Press, 1994). Кроме того, некоторые свойства НМДА-рецепторов позволяют предположить, что они могут участвовать в обработке информации в мозге, которая лежит в основе самосознания. Данный рецептор представляет особый интерес, поскольку, по-видимому, он вовлечен в широкий спектр расстройств ЦНС. Например, во время ишемии головного мозга, вызванной инсультом или травматическим повреждением, чрезмерное количество возбуждающей аминокислоты глутамата высвобождается из поврежденных или лишенных кислорода нейронов. Избыток глутамата связывается с НМДА-рецепторами открывая их ионные каналы; в свою очередь, поток кальция в клетку увеличивает уровень внутриклеточного кальция, который активирует биохимический каскад, приводящий к гибели клеток. Было показано, что активация НМДА-рецептора ответственна за судороги после инсульта, и в некоторых моделях эпилепсии было показано, что активация НМДА-рецептора приводит к судорогам. Факт вовлеченности НМДА-рецептора в развитие нейропсихиатрических нарушений следующим образом: блокирование ионного канала НМДА-рецептора анестетиком фенциклидином вызывает у человека психотическое состояние, сходное с шизофренией (Johnson, K. and Jones, S., 1990). Некоторые блокаторы НМДА-рецептора (кетамин) обладают высоким антидепрессантным эффектом, который характеризуется высокой скоростью наступления клинического эффекта и низкой дозой препарата, необходимой для проявления данного эффекта, но недостаточной для проявления психотомиметических симптомов. Считается, что НМДА-рецептор состоит из четырех белковых цепей, встроенных в постсинаптическую мембрану. Открытие и закрытие канала регулируется связыванием различных лигандов с доменами (аллостерическими сайтами) белка, находящимися на внеклеточной поверхности. Считается, что связывание лигандов влияет на конформационные изменения в общей структуре белка, которые в конечном итоге на характер ионных токов через рецептор. Кинетика ингибирования НМДА-рецептора может быть очень важна для проявления тех или иных физиологических эффектов за счет разного режима работы нейронов. Соединения, которые не снижают ионный ток до нуля за счет связывания в ионной поре (фенциклидин, МК-801), а уменьшают вероятность открытия канала при связывании агонистов имеют хорошие шансы проявлять быстро наступающий антидепрессантный эффект в отсутствии психотомиметических симптомов. Таким образом, соединения, проявляющие антагонистический эффект по отношению к НМДА-рецептору, могут быть применены в клинической практике для терапии таких болезней как большое депрессивное расстройство. Следует отметить, что один из энантиомеров неселективного блокатора НМДА-рецептора кетамина S-кетамин одобрен FDA в 2019 для лечения клинической депрессии в США, а тетрапептид рапастинел, являющийся частичным агонистом НМДА-рецептора, получил отметку прорывного кандидата в лекарства для лечения клинической депрессии в США. Дополнительным плюсом лекарств на основе коротких пептидов является, как правило, хорошая переносимость (Velden WJ, et al., Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11), BMC Med. 2009 Sep 8;7:44), высокое проникновение через гематоэнцефалический барьер (проницаемость рапастинела через гематоэнцефалический барьер лучше, чем у героина, по-видимому, за счет активного транспорта (Moskal JR, et al., GLYX-13: a monoclonal antibody-derived peptide that acts as an N-methyl-D-aspartate receptor modulator. Neuropharmacology. 2005 Dec;49(7):1077-87)).
Несмотря на многочисленные исследования в области антагонистов НМДА-рецептора, проблема создания безопасного и эффективного средства для лечения депрессионных расстройств и других заболеваний ЦНС до сих пор является актуальной. Заявляемое изобретение направлено на получение нового биологически активного соединения пептидной природы, подавляющего функциональную активность НМДА-рецептора.
Сущность изобретения
Задачей настоящего изобретения является создание безопасного и эффективного средства для лечения депрессионных расстройств. Для обеспечения безопасного профиля и хорошей проницаемости в ЦНС был проведен поиск соединений, состоящих из коротких пептидов, которые являются структурно схожими с известными химическими ингибиторами НМДА-рецепторов. Указанная задача решается путем создания пептида, состоящего из двух аминокислотных остатков (дипептида), D-Phe-L-Tyr, способного подавлять активность НМДА-рецепторов.
Указанная задача также решается путем создания фармацевтической композиции для лечения или профилактики заболеваний, опосредованных избыточной активностью НМДА-рецепторов, включающей эффективное количество указанного дипептида, а также фармацевтически приемлемый носитель.
Указанная задача также решается путем применения пептида D-Phe-L-Tyr для получения лекарственного средства для лечения или профилактики заболеваний, опосредованных избыточной активностью НМДА-рецепторов.
В некоторых вариантах изобретения заболеваниями, опосредованными избыточной активностью НМДА-рецепторов, являются депрессия, нейропатическая боль, большое депрессивное расстройство, судорожные расстройства, нейродегенеративные заболевания.
Техническим результатом настоящего изобретения является создание нового, физиологически активного дипептида, способного подавлять активность НМДА-рецепторов.
Краткое описание рисунков
Фиг. 1 - Фиг. 1 Масс-спектр пептида D-Phe-L-Tyr, полученного методом ESI-TOF
Фиг. 2 - Аппроксимация кривой "доза-эффект" рецепторов в нейронах гиппокампа для дипептида D-Phe-L-Tyr с максимальным эффектом равным 100% (A) или 62% - (Б). D - дипептид D-Phe-L-Tyr.
Подробное раскрытие изобретения
В описании данного изобретения термины «включает» и «включающий» интерпретируются как означающие «включает, помимо всего прочего». Указанные термины не предназначены для того, чтобы их истолковывали как «состоит только из». Если не определено отдельно, технические и научные термины в данной заявке имеют стандартные значения, общепринятые в научной и технической литературе.
Термины «лечение», «терапия» охватывают лечение патологических состояний у млекопитающих, предпочтительно у человека, и включают: а) блокирование (приостановку) течения заболевания, б) облегчение тяжести заболевания, т.е. индукцию регрессии заболевания.
Термин «профилактика», «предотвращение», «превентивная терапия» охватывает устранение факторов риска, а также профилактическое лечение субклинических стадий заболевания у млекопитающих, предпочтительно у человека, направленное на уменьшение вероятности возникновения клинических стадий заболевания. Пациенты для профилактической терапии отбираются на основе факторов, которые, на основании известных данных, влекут увеличение риска возникновения клинических стадий заболевания по сравнению с общим населением. К профилактической терапии относится а) первичная профилактика и б) вторичная профилактика. Первичная профилактика определяется как профилактическое лечение у пациентов, клиническая стадия заболевания у которых еще не наступила. Вторичная профилактика - это предотвращение повторного наступления того же или близкого клинического состояния заболевания.
Под «терапевтически эффективным количеством» подразумевается количество лекарственного препарата (фармацевтической композиции), вводимого или доставляемого пациенту, при котором у пациента с наибольшей вероятностью проявится желаемая реакция на лечение (профилактику). Точное требуемое количество может меняться от субъекта к субъекту в зависимости от возраста, массы тела и общего состояния пациента, тяжести заболевания, методики введения препарата, комбинированного лечения с другими препаратами и т.п. При применении в комбинированной терапии термин «эффективное количество» относится к комбинации количеств активных ингредиентов, прием которых ведет к превентивному или терапевтическому эффекту при последовательном или одновременном приеме.
После смешения пептида по настоящему изобретению с конкретным подходящим фармацевтически допустимым носителем в желаемой дозировке, композиции, составляющие суть изобретения, могут быть введены в организм человека или других животных перорально, интраназально, местно (с помощью кожных пластырей, порошков, мазей или капель), сублингвально, буккально, через слизистые оболочки, в виде спрея для рта или носа и т.п.
Эффективная дозировка соединения, вводимая разово или в виде нескольких отдельных доз, как правило, лежит в диапазоне от 0.5 до 50 мг соединения на кг массы тела пациента. Обычно соединение вводится пациенту, нуждающемуся в таком лечении, в дневной дозировке ориентировочно от 50 до 1000 мг на пациента. Введение может осуществляться как разово, так и несколько раз в день, неделю (или любой другой временной интервал), или время от времени. Например, соединение может быть введено в организм пациента один или несколько раз в день на недельной основе (например, каждый понедельник) в течение неопределенного времени или в течение нескольких недель (например, 4-10 недель).
Кроме того, изобретение предусматривает фармацевтические композиции для предупреждения и/или лечения расстройств, связанных с повышенной активностью НМДА-рецепторов, и характеризующиеся тем, что они содержат терапевтически эффективное количество соединения по изобретению и, по меньшей мере, одно вспомогательное вещество. В некоторых вариантах воплощениях изобретения вспомогательное вещество представляет собой фармацевтически приемлемый носитель и/или эксципиент.
Термин «фармацевтически приемлемый носитель и/или эксципиент» относится к таким носителям и/или эксципиентам, которые, являясь неактивными ингредиентами, в рамках проведенного медицинского заключения, пригодны для использования в контакте с тканями человека и животных без излишней токсичности, раздражения, аллергической реакции и т.д. и отвечают разумному соотношению пользы и риска. «Неактивные ингредиенты» входят в состав лекарственного средства для улучшения его фармакологических характеристик и/или стабильности, для улучшения фармакокинетики и более эффективной доставки к специфическим органам или тканям. Неактивные ингредиенты включают в себя множество веществ, известных специалистам в области фармацевтики, таких как вещества для контроля pH или осмотического давления, антибактериальные агенты, антиоксиданты, поверхностно активные вещества (например, полисорбат 20 или 80), криостабилизаторы, консерванты, растворители, загустители, наполнители, носители (микро- или нано-частицы) и другие вещества.
В различных вариантах изобретения заболеваниями, опосредованными или вызванными избыточной активностью НМДА-рецепторов, являются депрессия, нейропатическая боль, большое депрессивное расстройство, судорожные расстройства, нейродегенеративные заболевания и другие. В различных вариантах данного изобретения лекарственный препарат по изобретению может вводиться пациентам в сочетании с другими препаратами в различных режимах терапии, а также в сочетании с другими приемами терапии.
Структурно НМДА-рецептор представляет собой мультимерный ионотропный глутаматный рецепторы, состоящий из четырех субъединиц (гетеротетрамер двух субъединиц- NR1 и NR2). Самый распространенный у человека НМДА-рецептор состоит из двух субъединиц GluN1 и по одной GluN2A и GluN2B.
Авторами было проведено компьютерное моделирование пептидов небольшого размера, структурно мимикрирующих известные ингибиторы НМДА-рецептора в части связывания с рецептором. Заявляемый дипептид был обнаружен и отобран вследствие его сходства с ифенпродилом и потенциального взаимодействия с сайтом связывания ифенпродила, расположенного на НМДА-рецепторе. Ифенпродил является ингибитором рецептора НМДА, в частности, субъединиц GluN1 (глутамат-связывающего рецептора НМДА 1) и GluN2B (глутамат-связывающей субъединицы рецептора НМДА 2). Для ифенпродила известна активность для всех четырех типов НМДА-рецепторов: для GluN2B IC50 составляет примерно 0.1-0.5 мкМ, на все остальные IC50 около 100 мкМ.
Фармацевтическая композиция согласно изобретению приготавливается с помощью общепринятых в данной области техники приемов и включает фармакологически эффективное количество активного агента, пептида D-Phe-L-Tyr или его фармацевтически приемлемую соль (называемые далее "активное соединение"), составляющее обычно от 0.5 до 10 вес.%, в сочетании с одной или более фармацевтически приемлемыми вспомогательными агентами, такими как носители, разбавители, антиоксиданты, консерванты. Неограниченными примерами фармацевтически приемлемых солей для активного агента согласно изобретению являются хлорид, бромид, тартрат, сукцинат и др.
В соответствии с известными методами фармацевтические композиции могут быть представлены различными жидкими или твердыми формами.
Примеры жидких лекарственных форм для инъекций и парентерального введения включают растворы, эмульсии, суспензии и др.
Композиции, как правило, получают с помощью стандартных процедур, предусматривающих смешение активного соединения с жидким носителем.
Композиции согласно изобретению в форме инъекций или капель в нос содержат от 0.5 до 10% активного соединения и носитель. Инъекционные формы композиции предпочтительно представляют собой изотонические растворы или суспензии. Вышеуказанные формы могут стерилизоваться и содержать добавки, такие как консерванты: натрия метабисульфит, бензойная кислота, натрия бензоат, смесь метилпарабена и пропилпарабена, бензалкония хлорид; стабилизаторы: абрикосовая и аравийская камедь, декстрин, крахмальный клейстер, метилцеллюлоза, твин; соли, регулирующие осмотическое давление (хлорид натрия), или буферы. Кроме того, они могут содержать другие терапевтически полезные вещества.
Для лечения заболеваний, связанных с гиперактивацией НМДА-рецепторов, назначаемая для приема доза активного компонента (пептида D-Phe-L-Tyr) варьирует в зависимости от многих факторов, таких как возраст, пол, вес пациента, симптомы и тяжесть заболевания, конкретно назначаемое соединение, способ приема, форма препарата, в виде которой назначается активное соединение.
Обычно, общая назначаемая доза составляет от 50 до 1000 мг в день. Общая доза может быть разделена на несколько доз, например, для приема от 1 до 4 раз в день. При парентеральном приеме интервал назначаемых доз составляет от 50 до 1000 мг в день, предпочтительно, от 50 до 200 мг; при внутривенных инъекциях - от 50 до 1000 мг в день, предпочтительно, от 50 до 200 мг. Точная доза может быть выбрана лечащим врачом.
Нижеследующие примеры осуществления способа приведены в целях раскрытия характеристик настоящего изобретения и их не следует рассматривать как каким-либо образом ограничивающие объем изобретения.
Пример 1. Синтез дипептида D-Phe-L-Tyr
Синтез дипептида D-Phe-L-Tyr проводили классическим твердофазным методом с использованием Boc/Bzl-методологии и схемы неполного блокирования боковых функций аминокислот. В синтезе применяли сополимер стирола с 1%-дивинилбензола, модифицированный п-метилбензгидриламинной якорной группой (MBHA-resin), к которому первоначально присоединяли производное D-фенилаланина Boc-D-Phe-OH. После завершения синтеза, пептид отделили от полимерной подложки безводным HF с добавкой 10% по объему м-крезола. Пептиды очищали с помощью препаративной ВЭЖХ на колонке Phenomenex Synergy Hydro-RP RP (50 x 250мм). Идентичность полученных препаратов оценивали масс-спектрометрически и методом ЯМР H1. Строение пептида подтверждается масс-спектроскопическим анализом молекулярного пика пептида D-Phe-L-Tyr (Фиг. 1). В результате масс-спектроскопического анализа найдены: исходный пептид - пик 329,1495 Da, соответствующий брутто-формуле C18H21N2O4+. Спектр ЯМР H1: (ДМСО-d6 δ, м.д.): 2.72 м. (2Н); 2.94 м. (2Н); 4.47 с. (1Н); 6.67 м. (2H); 7.02 м. (4Н), 7.27 м. (3Н); 8.06 уш. с. (3Н); 8.84 д. (1Н); 9.49 уш. с. (1Н); 13.0 уш. с. (1H).
Пример 2. Экспериментальное свидетельство ингибирующего эффекта пептида D-Phe-L-Tyr на НМДА/глицин индуцированные токи в нейронах гиппокампа
Эксперименты проводились на нативных рецепторах нейронов, выделенных из переживающих срезов мозга крыс линии Вистар с помощью метода вибродиссоциации (Vorobjev V.S. Neurosci Meth., 1991, 68, 303-307). Исследование действия соединений на НМДА-рецепторы и кальций-непроницаемые АМПА-рецепторы проводилось на пирамидных нейронах гиппокампа, по действию на кальций-проницаемые АМПА рецепторы - на гигантских холинэргических интернейронах стриатума. Активация НМДА рецепторов осуществлялась НМДА (100 мкМ) в присутствии глицина (10 мкМ); активация АМПА рецепторов - каинатом (100 мкМ). Для регистрации токов применялся метод фиксации потенциала в конфигурации «whole cell». Внеклеточный раствор содержал (в мМ): NaCl 143; KCl 5; CaCl2 2.5; D-glucose 10; HEPES 10 (pH доводился до 7.4 при помощи добавления HCl). Пипеточный раствор содержал (в мМ): CsF 100; CsCl 40; NaCl 5; CaCl2 0.5; EGTA 5; HEPES 10 (pH доводился до 7.2 при помощи CsOH). Микропипетки изготавливались из боросиликатного стекла при помощи пуллера P-97 (Sutter Instruments, USA). Исследуемые вещества подавались при помощи перфузирующей системы RSC-200 (BioLogic Science Instruments, France), обеспечивающей смену раствора за не более чем 50 мс. Для записи ответов использовался усилитель EPC 8 (HEKA Elektronik, Germany). Управление экспериментом и запись ответов осуществлялись при помощи персонального компьютера. Исследуемые соединения растворялись в DMSO для приготовления стоковых растворов. Экспериментальные растворы исследуемых веществ приготовлялись путем добавления необходимого количества стокового раствора во внеклеточный раствор, содержащий также агонисты НМДА и глицин. Блокирующее действие исследуемых соединений определялось по их способности ингибировать поддерживающийся при аппликации агониста трансмембранный ток. Действие разных концентраций блокаторов использовалось для построения концентрационных зависимостей и определения величины ИК50 при помощи уравнения Хилла.
Аппроксимация со свободным значением максимального эффекта (Фиг. 2А) дала следующие значения: ИК50 = 600±600 мкМ, коэффициент Хилла = 0.6±0.3, а максимальный эффект - 100±30%. При фиксации максимального эффекта на уровне 62% (Фиг. 2Б), соответствующем уровню полного ингибирования NR2B-содержащих рецепторов ифенпродилом, ИК50 составила 130 ± 30 мкМ, а коэффициент Хилла 0.9 ± 0.2. Следует отметить, что эффективность снижения ионных токов через НМДА рецептор в концентрациях 50 - 100 мкМ для пептида D-Phe-L-Tyr примерно равна 15-20%, что примерно соответствует эффективности снижения ионных токов под действием рапастинела - 12.5 ± 2.4% (100 мкМ рапастинеля, 10 мкМ глицина, 100 мкМ глутамата) (Velden WJ, et al., Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11), BMC Med. 2009 Sep 8;7:44).
Пример 3. Сравнение функциональной активности изомеров L-Phe-L-Tyr и D-Phe-L-Tyr
Изомер D-Phe-L-Tyr был выбран на основе компьютерного моделирования и показал свою эффективность при ингибировании НМДА-рецепторов. Дополнительно, авторами было проведено сравнение эффективности ингибирования НМДА-рецепторов для изомеров L-Phe-L-Tyr и D-Phe-L-Tyr. Было показано, что изомер L-Phe-L-Tyr оказался менее эффективен по влиянию на связывание радиоактивно-меченого ифенпродила к НМДА-рецептору. Проведенные радиолигандные исследования по замещению радиоактивно-меченого [3H]-ифенпродила для L-Phe-L-Tyr и D-Phe-L-Tyr продемонстрировали, что в концентрациях 100 мкМ и при насыщающих концентрациях ифенпродила (10 мкМ) L-Phe-L-Tyr не изменяет связывание радиоактивно-меченого ифенпродила (в пределах погрешности +/- 5%), а D-Phe-L-Tyr повышает на 15-20%. Исходя из этих данных, можно предположить отсутствие активности или очень низкую активность для изомера L-Phe-L-Tyr, а также то, что ингибирование НМДА/глицин-индуцированных токов дипептидом D-Phe-L-Tyr обусловлено действием на GluN2A субъединицу, как на наиболее представленный тип НМДА рецептора в ЦНС (GluN1/GluN2A/GluN2B).
При этом ифенпродил связывается, в основном, с GluN2B субъединицей, а GluN2A обладает очень похожим на GluN2B сайтом связывания фенилэтиламинов, но тем не менее с существенно более низким сродством к ифенпродилу. Влияние исследуемых веществ на радиолигандное связывание с НМДА рецепторами изучали с помощью модифицированного метода, описанного в Zhou L.M. et al.,1997). Использовали радиоактивный лиганд [3H]-ифенпродил с удельной активностью 79 Ки/моль, связывающийся с NMDA рецепторами, содержащими NR2B субъединицы. Мембранный препарат для радиолигандного анализа готовили по описанному методу (Novak G., et al., 1993). Ткань гиппокампа измельчали в гомогенизаторе Поттера («тефлон-стекло») в буфере № 1 (5 мМ HEPES/4.5 мМ Трис буфера, рН 7.6), содержащего 0.32 М сахарозы, в соотношении 1 г ткани: 10 мл буфера. Гомогенат разбавляли буфером для исследования № 2 (5 мМ HEPES/4.5 мМ Трис буфера, рН 7.6) в соотношении 1 : 50и центрифугировали 10 мин при 1000g. Затем отбирали супернатант и вновь центрифугировали 20 мин при 25 000g. Осадок гомогенизировали в буфере № 2 в соотношении 1 : 50 и центрифугировали 20 мин при 8000 g. Супернатант и его мягкий, зыбкий надосадочный слой отбирали и центрифугировали 20 мин при 25000g. Полученный осадок суспендировали в буфере № 3 (5 мМ HEPES/4.5 мМ Трис буфера (рН=7.61), 5 мМ Na4EDTA), содержащем, и суспензию вновь центрифугировали. Такая процедура отмывки проводится четыре раза, причем при последней отмывке Na4EDTA исключается из состава. Конечный осадок ресуспендировали в буфере № 2 в соотношении 1:5 и хранили в жидком азоте. Реакционная смесь (конечный объем 0.5 мл) содержит 200 мкл буфера № 2, 50 мкл 50 нМ р-ра меченого лиганда и 250 мкл белковой суспензии. Неспецифическое связывание определяется в присутствии 50 мкл немеченого лиганда. Реакционная смесь инкубируется при комнатной температуре в течение 2 ч. По окончании инкубации пробы фильтруются через стекловолокнистые фильтры GF/B (Whatman), предварительно смоченные в 0.3% полиэтиленамине в течение 2 часов при 4 о С. Каждая пробирка промывается один раз холодным буфером № 2, затем фильтры промываются три раза тем же объемом буфера. Фильтры сушатся на воздухе до полного высыхания и переносятся в сцинтилляционные флаконы, в которые добавляется по 5 мл сцинтилляционной жидкости, содержащей 4 г дифенилоксазола (РРО), 0.2 г дифенилоксазоилбензола (РОРОР) и 1 л толуола. Радиоактивность определяли на сцинтилляционном счетчике TriCarb2800 TR (PerkinElmer, Packard, США) с эффективностью счета около 65%. Исследование влияния изучаемых соединений на связывание [3H]-ифенпродила мембранами гиппокампа крысы проводили при добавлении в инкубационную среду 50 мкл исследуемых соединений в диапазоне концентраций 10-8 - 10-3 М. По результатам ингибирования рассчитывали IC50 для изученных соединений с помощью программы GraphPadPrism_4_Demo.
Пример 4. Раствор для инъекций, содержащий эффективное количество дипептида D-Phe-L-Tyr
Раствор для инъекций (1000 г):
Пептид D-Phe-L-Tyr - 5 г,
Натрия метабисульфит - 1 г,
1 М раствор хлористоводородной кислоты или 1 М раствор натрия гидроксида - до pH 3.5 - 4.0,
вода для инъекций - до 1000 г.
Пример 5. Интраназальная форма фармацевтической композиции, содержащей эффективное количество дипептида D-Phe-L-Tyr
Капли в нос (на 1000 г):
Пептид D-Phe-L-Tyr - 10 г,
метилпарабен - 1 г,
NaCl - 9 г,
Вода дистиллированная - до 1000 г.
Примеры твердых лекарственных форм фармацевтической композиции по настоящему изобретению включают, например, таблетки, пилюли, желатиновые капсулы и др.
Композиции согласно изобретению в форме таблеток содержат от 5 до 30% активного соединения, а также наполнитель(и) или носитель(и). В качестве таковых для таблеток применяются: а) разбавители: свекловичный сахар, лактоза, глюкоза, натрия хлорид, сорбит, маннит, фосфат кальция двузамещенный; б) связующие вещества: магниевый силикат алюминия, крахмальная паста, желатин, трагакант, метилцеллюлоза, карбоксиметилцеллюлоза и поливинилпирролидон; в) разрыхлители: декстроза, агар, альгиновая кислота или ее соли, крахмал.
Пример 6. Таблетированная форма фармацевтической композиции, содержащей эффективное количество дипептида D-Phe-L-Tyr
500 мг таблетки, содержащие по 100 мг пептида D-Phe-L-Tyr
Пептид D-Phe-L-Tyr - 100 мг,
Лактоза - 300 мг,
Альгиновая кислота - 50.0 мг,
Лимонная кислота - 10.0 мг,
Трагакант - 40.0 мг.
Таблетка может быть сформирована посредством прессовки или формовки активного ингредиента с одним или более дополнительными ингредиентами.
Для желатиновых капсул используются дополнительно красители и стабилизаторы. В качестве красителей используются: тартразин, индиго; в качестве стабилизаторов могут быть представлены: натрия метабисульфит, натрия бензоат. Предлагаемые желатиновые капсулы содержат от 1 до 20% активного ингредиента.
Пример 7. Капсульная форма фармацевтической композиции, содержащей эффективное количество дипептида D-Phe-L-Tyr
500 мг капсулы, содержащие по 100 мг пептида D-Phe-L-Tyr.
Пептид D-Phe-L-Tyr - 100 мг,
Глицерин - 100.0 мг,
Сахарный сироп - 250.0 мг,
Мятное масло - 40.0 мг,
Натрия бензоат - 10.0 мг,
Аскорбиновая кислота - 5.0 мг,
Тартразин - 5.0 мг.
Несмотря на то, что изобретение описано со ссылкой на раскрываемые варианты воплощения, для специалистов в данной области должно быть очевидно, что конкретные подробно описанные случаи приведены лишь в целях иллюстрирования настоящего изобретения, и их не следует рассматривать как каким-либо образом ограничивающие объем изобретения. Должно быть, понятно, что возможно осуществление различных модификаций без отступления от сути настоящего изобретения.

Claims (1)

  1. Применение фармацевтической композиции, обладающей антагонистической активностью по отношению к НМДА-рецепторам, для лечения или профилактики заболеваний, опосредованных избыточной активностью НМДА-рецепторов, при этом указанная композиция включает эффективное количество дипептида D-Phe-L-Tyr и фармацевтически приемлемый носитель.
RU2019124086A 2019-07-30 2019-07-30 Пептидный антагонист нмда-рецептора RU2716258C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019124086A RU2716258C1 (ru) 2019-07-30 2019-07-30 Пептидный антагонист нмда-рецептора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019124086A RU2716258C1 (ru) 2019-07-30 2019-07-30 Пептидный антагонист нмда-рецептора

Publications (1)

Publication Number Publication Date
RU2716258C1 true RU2716258C1 (ru) 2020-03-11

Family

ID=69898182

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019124086A RU2716258C1 (ru) 2019-07-30 2019-07-30 Пептидный антагонист нмда-рецептора

Country Status (1)

Country Link
RU (1) RU2716258C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957733A (zh) * 2022-05-12 2022-08-30 安徽工程大学 Boc-苯丙氨酸改性淀粉纳米粒子及其制备方法和在疏水药物负载的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2091390C1 (ru) * 1995-02-28 1997-09-27 Научно-исследовательский институт фармакологии РАН Замещенные пролилтирозины, обладающие психотропной активностью
RU2126418C1 (ru) * 1993-11-01 1999-02-20 Циба-Гейги Джапан Димитед Антагонисты рецепторов эндотелина
EA013644B1 (ru) * 2005-03-25 2010-06-30 Общество С Ограниченной Ответственностью "Фарминтерпрайсез" Фенилсодержащие n-ацильные производные аминов и аминокислот, способ их получения, фармацевтическая композиция и их применение
RU2577311C2 (ru) * 2009-10-22 2016-03-20 Импиэриэл Инноувейшнс Лимитид СПОСОБ ЛЕЧЕНИЯ ИЛИ ПРОФИЛАКТИКИ РАКОВОГО ЗАБОЛЕВАНИЯ У ЧЕЛОВЕКА, КОТОРОЕ ХАРАКТЕРИЗУЕТСЯ ПОВЫШЕННЫМ УРОВНЕМ ЭКСПРЕССИИ ИЛИ АКТИВНОСТИ Gadd45β ПО СРАВНЕНИЮ С ОБЫЧНЫМИ ЗДОРОВЫМИ КЛЕТКАМИ, В СЛУЧАЕ ЗАВИСИМОСТИ ЖИЗНЕСПОСОБНОСТИ И/ИЛИ РОСТА РАКОВЫХ КЛЕТОК ОТ NF-кВ, И ТРИПЕПТИД.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2126418C1 (ru) * 1993-11-01 1999-02-20 Циба-Гейги Джапан Димитед Антагонисты рецепторов эндотелина
RU2091390C1 (ru) * 1995-02-28 1997-09-27 Научно-исследовательский институт фармакологии РАН Замещенные пролилтирозины, обладающие психотропной активностью
EA013644B1 (ru) * 2005-03-25 2010-06-30 Общество С Ограниченной Ответственностью "Фарминтерпрайсез" Фенилсодержащие n-ацильные производные аминов и аминокислот, способ их получения, фармацевтическая композиция и их применение
RU2577311C2 (ru) * 2009-10-22 2016-03-20 Импиэриэл Инноувейшнс Лимитид СПОСОБ ЛЕЧЕНИЯ ИЛИ ПРОФИЛАКТИКИ РАКОВОГО ЗАБОЛЕВАНИЯ У ЧЕЛОВЕКА, КОТОРОЕ ХАРАКТЕРИЗУЕТСЯ ПОВЫШЕННЫМ УРОВНЕМ ЭКСПРЕССИИ ИЛИ АКТИВНОСТИ Gadd45β ПО СРАВНЕНИЮ С ОБЫЧНЫМИ ЗДОРОВЫМИ КЛЕТКАМИ, В СЛУЧАЕ ЗАВИСИМОСТИ ЖИЗНЕСПОСОБНОСТИ И/ИЛИ РОСТА РАКОВЫХ КЛЕТОК ОТ NF-кВ, И ТРИПЕПТИД.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARIYOSHI, Y. & TAKEUCHI, H. "STRUCTURE-ACTIVITY RELATIONSHIPS OF N-β-PHENYLPROPIONYL-l-TYROSINE AND ITS DERIVATIVES ON THE INHIBITION OF AN IDENTIFIABLE GIANT NEURONE OF AN AFRICAN GIANT SNAIL.", British Journal of Pharmacology, 1982, 77(4), 631-639. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957733A (zh) * 2022-05-12 2022-08-30 安徽工程大学 Boc-苯丙氨酸改性淀粉纳米粒子及其制备方法和在疏水药物负载的应用
CN114957733B (zh) * 2022-05-12 2024-04-05 安徽工程大学 Boc-苯丙氨酸改性淀粉纳米粒子及其制备方法和在疏水药物负载的应用

Similar Documents

Publication Publication Date Title
CN106102737B (zh) 色甘酸衍生物以及成像和治疗的相关方法
TWI791507B (zh) 使用ccr3-抑制劑治療老化相關損傷之方法及組合物
EP3185859B1 (en) New therapeutic approaches for treating parkinson's disease
US20220202798A1 (en) Use of pridopidine for the treatment of fragile x syndrome
RU2716258C1 (ru) Пептидный антагонист нмда-рецептора
KR20200061310A (ko) 히스톤 탈아세틸화효소 6 억제제를 포함하는 약학적 조성물
JP7045701B2 (ja) シスチン・グルタミン酸トランスポーター阻害剤を含む薬剤
PT1338604E (pt) Trímeros de n-alquilglicina com a capacidade de proteger os neurónios contra as agressões excitotóxicas e composições contendo os ditos trímeros
EP0694299B1 (en) The use of( a) bicycloheptane derivative(s)
US10799499B2 (en) Combinatorial therapies of neurological disorders
US20220169508A1 (en) Pharmaceutical formulations of nitrite and uses thereof
WO2022114906A1 (ko) 신규 퇴행성 신경질환 치료용 약학적 조성물
Greene et al. Alzheimer's disease and type 2 diabetes: what is the connection?
AU2021202066A1 (en) Use of iminosugar compound in preparation of anti-sars-cov-2 virus drug
Zhou et al. An AMPA glutamatergic receptor activation-nitric oxide synthesis step signals transsynaptic apoptosis in limbic cortex
Salinska et al. Dantrolene antagonizes the glycineB site of the NMDA receptor
CN112773791B (zh) 一种s1p抑制剂在制备治疗神经退行性疾病药物中的应用
JP2019509321A (ja) 疼痛を処置するための組み合わせ
WO2022246930A1 (zh) 靶向pdcd4的配体小分子在制备抗抑郁药物中的应用
Dong et al. Neuroprotective Effects of Resveratrol on a Mouse Model of Parkinson’s Disease via the Wnt/Beta-Catenin Signaling Pathway
WO2023221793A1 (zh) 一种酚酸衍生物用于治疗缺血性脑卒中的应用
WO2021189750A1 (zh) 一种肉桂酰氨基酸类化合物及其用途
TW201035081A (en) Novel pharmaceutical composition for treatment of schizophrenia
KR20070118101A (ko) 치매와 관련된 야간 행동 장애의 예방 또는 치료제
Parveen et al. THE ACTION OF KETAMINE IN TREATMENT OF DEPRESSIVE DISORDERS THROUGH GLUTAMATERGIC SYSTEM